// SPDX-License-Identifier: GPL-2.0-only /* * Block crypto operations until tests complete * * Copyright 2021 Google LLC * * This file defines the fips140_crypto_register_*() functions, to which all * calls to crypto_register_*() in the module are redirected. These functions * override the tfm initialization function of each algorithm to insert a wait * for the module having completed its self-tests and integrity check. * * The exact field that we override depends on the algorithm type. For * algorithm types that have a strongly-typed initialization function pointer * (e.g. skcipher), we must override that, since cra_init isn't guaranteed to be * called for those despite the field being present in the base struct. For the * other algorithm types (e.g. "cipher") we must override cra_init. * * All of this applies to both normal algorithms and template instances. * * The purpose of all of this is to meet a FIPS requirement where the module * must not produce any output from cryptographic algorithms until it completes * its tests. Technically this is impossible, but this solution meets the * intent of the requirement, assuming the user makes a supported sequence of * API calls. Note that we can't simply run the tests before registering the * algorithms, as the algorithms must be registered in order to run the tests. * * It would be much easier to handle this in the kernel's crypto API framework. * Unfortunately, that was deemed insufficient because the module itself is * required to do the enforcement. What is *actually* required is still very * vague, but the approach implemented here should meet the requirement. */ /* * This file is the one place in fips140.ko that needs to call the kernel's real * algorithm registration functions, so #undefine all the macros from * fips140-defs.h so that the "fips140_" prefix doesn't automatically get added. */ #undef aead_register_instance #undef ahash_register_instance #undef crypto_register_aead #undef crypto_register_aeads #undef crypto_register_ahash #undef crypto_register_ahashes #undef crypto_register_alg #undef crypto_register_algs #undef crypto_register_rng #undef crypto_register_rngs #undef crypto_register_shash #undef crypto_register_shashes #undef crypto_register_skcipher #undef crypto_register_skciphers #undef shash_register_instance #undef skcipher_register_instance #include #include #include #include #include #include #include "fips140-module.h" /* Indicates whether the self-tests and integrity check have completed */ DECLARE_COMPLETION(fips140_tests_done); /* The thread running the self-tests and integrity check */ struct task_struct *fips140_init_thread; /* * Map from crypto_alg to original initialization function (possibly NULL) * * Note: unregistering an algorithm will leak its map entry, as we don't bother * to remove it. This should be fine since fips140.ko can't be unloaded. The * proper solution would be to store the original function pointer in a new * field in 'struct crypto_alg', but that would require kernel support. */ static DEFINE_XARRAY(fips140_init_func_map); static bool fips140_ready(void) { return completion_done(&fips140_tests_done); } /* * Wait until crypto operations are allowed to proceed. Return true if the * tests are done, or false if the caller is the thread running the tests so it * is allowed to proceed anyway. */ static bool fips140_wait_until_ready(struct crypto_alg *alg) { if (fips140_ready()) return true; /* * The thread running the tests must not wait. Since tfms can only be * allocated in task context, we can reliably determine whether the * invocation is from that thread or not by checking 'current'. */ if (current == fips140_init_thread) return false; pr_info("blocking user of %s until tests complete\n", alg->cra_driver_name); wait_for_completion(&fips140_tests_done); pr_info("tests done, allowing %s to proceed\n", alg->cra_driver_name); return true; } static int fips140_store_init_function(struct crypto_alg *alg, void *func) { void *ret; /* * The XArray API requires 4-byte aligned values. Although function * pointers in general aren't guaranteed to be 4-byte aligned, it should * be the case for the platforms this module is used on. */ if (WARN_ON((unsigned long)func & 3)) return -EINVAL; ret = xa_store(&fips140_init_func_map, (unsigned long)alg, func, GFP_KERNEL); return xa_err(ret); } /* Get the algorithm's original initialization function (possibly NULL) */ static void *fips140_load_init_function(struct crypto_alg *alg) { return xa_load(&fips140_init_func_map, (unsigned long)alg); } /* tfm initialization function overrides */ static int fips140_alg_init_tfm(struct crypto_tfm *tfm) { struct crypto_alg *alg = tfm->__crt_alg; int (*cra_init)(struct crypto_tfm *tfm) = fips140_load_init_function(alg); if (fips140_wait_until_ready(alg)) WRITE_ONCE(alg->cra_init, cra_init); return cra_init ? cra_init(tfm) : 0; } static int fips140_aead_init_tfm(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); int (*init)(struct crypto_aead *tfm) = fips140_load_init_function(&alg->base); if (fips140_wait_until_ready(&alg->base)) WRITE_ONCE(alg->init, init); return init ? init(tfm) : 0; } static int fips140_ahash_init_tfm(struct crypto_ahash *tfm) { struct hash_alg_common *halg = crypto_hash_alg_common(tfm); struct ahash_alg *alg = container_of(halg, struct ahash_alg, halg); int (*init_tfm)(struct crypto_ahash *tfm) = fips140_load_init_function(&halg->base); if (fips140_wait_until_ready(&halg->base)) WRITE_ONCE(alg->init_tfm, init_tfm); return init_tfm ? init_tfm(tfm) : 0; } static int fips140_shash_init_tfm(struct crypto_shash *tfm) { struct shash_alg *alg = crypto_shash_alg(tfm); int (*init_tfm)(struct crypto_shash *tfm) = fips140_load_init_function(&alg->base); if (fips140_wait_until_ready(&alg->base)) WRITE_ONCE(alg->init_tfm, init_tfm); return init_tfm ? init_tfm(tfm) : 0; } static int fips140_skcipher_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_alg *alg = crypto_skcipher_alg(tfm); int (*init)(struct crypto_skcipher *tfm) = fips140_load_init_function(&alg->base); if (fips140_wait_until_ready(&alg->base)) WRITE_ONCE(alg->init, init); return init ? init(tfm) : 0; } /* Single algorithm registration */ #define prepare_alg(alg, base_alg, field, wrapper_func) \ ({ \ int err = 0; \ \ if (!fips140_ready() && alg->field != wrapper_func) { \ err = fips140_store_init_function(base_alg, alg->field);\ if (err == 0) \ alg->field = wrapper_func; \ } \ err; \ }) static int fips140_prepare_alg(struct crypto_alg *alg) { /* * Override cra_init. This is only for algorithm types like cipher and * rng that don't have a strongly-typed initialization function. */ return prepare_alg(alg, alg, cra_init, fips140_alg_init_tfm); } static int fips140_prepare_aead_alg(struct aead_alg *alg) { return prepare_alg(alg, &alg->base, init, fips140_aead_init_tfm); } static int fips140_prepare_ahash_alg(struct ahash_alg *alg) { return prepare_alg(alg, &alg->halg.base, init_tfm, fips140_ahash_init_tfm); } static int fips140_prepare_rng_alg(struct rng_alg *alg) { /* * rng doesn't have a strongly-typed initialization function, so we must * treat rng algorithms as "generic" algorithms. */ return fips140_prepare_alg(&alg->base); } static int fips140_prepare_shash_alg(struct shash_alg *alg) { return prepare_alg(alg, &alg->base, init_tfm, fips140_shash_init_tfm); } static int fips140_prepare_skcipher_alg(struct skcipher_alg *alg) { return prepare_alg(alg, &alg->base, init, fips140_skcipher_init_tfm); } int fips140_crypto_register_alg(struct crypto_alg *alg) { return fips140_prepare_alg(alg) ?: crypto_register_alg(alg); } int fips140_crypto_register_aead(struct aead_alg *alg) { return fips140_prepare_aead_alg(alg) ?: crypto_register_aead(alg); } int fips140_crypto_register_ahash(struct ahash_alg *alg) { return fips140_prepare_ahash_alg(alg) ?: crypto_register_ahash(alg); } int fips140_crypto_register_rng(struct rng_alg *alg) { return fips140_prepare_rng_alg(alg) ?: crypto_register_rng(alg); } int fips140_crypto_register_shash(struct shash_alg *alg) { return fips140_prepare_shash_alg(alg) ?: crypto_register_shash(alg); } int fips140_crypto_register_skcipher(struct skcipher_alg *alg) { return fips140_prepare_skcipher_alg(alg) ?: crypto_register_skcipher(alg); } /* Instance registration */ int fips140_aead_register_instance(struct crypto_template *tmpl, struct aead_instance *inst) { return fips140_prepare_aead_alg(&inst->alg) ?: aead_register_instance(tmpl, inst); } int fips140_ahash_register_instance(struct crypto_template *tmpl, struct ahash_instance *inst) { return fips140_prepare_ahash_alg(&inst->alg) ?: ahash_register_instance(tmpl, inst); } int fips140_shash_register_instance(struct crypto_template *tmpl, struct shash_instance *inst) { return fips140_prepare_shash_alg(&inst->alg) ?: shash_register_instance(tmpl, inst); } int fips140_skcipher_register_instance(struct crypto_template *tmpl, struct skcipher_instance *inst) { return fips140_prepare_skcipher_alg(&inst->alg) ?: skcipher_register_instance(tmpl, inst); } /* Bulk algorithm registration */ int fips140_crypto_register_algs(struct crypto_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_alg(&algs[i]); if (err) return err; } return crypto_register_algs(algs, count); } int fips140_crypto_register_aeads(struct aead_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_aead_alg(&algs[i]); if (err) return err; } return crypto_register_aeads(algs, count); } int fips140_crypto_register_ahashes(struct ahash_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_ahash_alg(&algs[i]); if (err) return err; } return crypto_register_ahashes(algs, count); } int fips140_crypto_register_rngs(struct rng_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_rng_alg(&algs[i]); if (err) return err; } return crypto_register_rngs(algs, count); } int fips140_crypto_register_shashes(struct shash_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_shash_alg(&algs[i]); if (err) return err; } return crypto_register_shashes(algs, count); } int fips140_crypto_register_skciphers(struct skcipher_alg *algs, int count) { int i; int err; for (i = 0; i < count; i++) { err = fips140_prepare_skcipher_alg(&algs[i]); if (err) return err; } return crypto_register_skciphers(algs, count); }