summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio11
-rw-r--r--Documentation/ABI/testing/sysfs-bus-iio-dac-ad576631
-rw-r--r--Documentation/ABI/testing/sysfs-bus-thunderbolt22
-rw-r--r--Documentation/ABI/testing/sysfs-class-devlink4
-rw-r--r--Documentation/ABI/testing/sysfs-class-led-trigger-tty6
-rw-r--r--Documentation/ABI/testing/sysfs-class-net15
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-dsa11
-rw-r--r--Documentation/ABI/testing/sysfs-class-net-qmi10
-rw-r--r--Documentation/ABI/testing/sysfs-class-typec20
-rw-r--r--Documentation/ABI/testing/sysfs-devices-consumer5
-rw-r--r--Documentation/ABI/testing/sysfs-devices-supplier5
-rw-r--r--Documentation/ABI/testing/sysfs-driver-ufs36
-rw-r--r--Documentation/ABI/testing/sysfs-fs-f2fs32
-rw-r--r--Documentation/ABI/testing/sysfs-platform_profile24
-rw-r--r--Documentation/Makefile2
-rw-r--r--Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst4
-rw-r--r--Documentation/RCU/Design/Requirements/Requirements.rst732
-rw-r--r--Documentation/RCU/NMI-RCU.rst3
-rw-r--r--Documentation/RCU/checklist.rst10
-rw-r--r--Documentation/RCU/rcubarrier.rst6
-rw-r--r--Documentation/RCU/stallwarn.rst27
-rw-r--r--Documentation/RCU/whatisRCU.rst10
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst6
-rw-r--r--Documentation/admin-guide/device-mapper/dm-integrity.rst12
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt77
-rw-r--r--Documentation/admin-guide/media/rkisp1.rst16
-rw-r--r--Documentation/admin-guide/syscall-user-dispatch.rst4
-rw-r--r--Documentation/admin-guide/thunderbolt.rst23
-rw-r--r--Documentation/admin-guide/xfs.rst42
-rw-r--r--Documentation/asm-annotations.rst5
-rw-r--r--Documentation/block/biovecs.rst2
-rw-r--r--Documentation/block/queue-sysfs.rst13
-rw-r--r--Documentation/bpf/bpf_design_QA.rst6
-rw-r--r--Documentation/bpf/bpf_devel_QA.rst11
-rw-r--r--Documentation/dev-tools/kasan.rst26
-rw-r--r--Documentation/dev-tools/kunit/usage.rst57
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic.yaml6
-rw-r--r--Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-mx-secbus2.yaml42
-rw-r--r--Documentation/devicetree/bindings/arm/arm,scmi.txt8
-rw-r--r--Documentation/devicetree/bindings/arm/atmel-sysregs.txt2
-rw-r--r--Documentation/devicetree/bindings/arm/bcm/brcm,bcm4908.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/fsl.yaml23
-rw-r--r--Documentation/devicetree/bindings/arm/mediatek.yaml4
-rw-r--r--Documentation/devicetree/bindings/arm/msm/qcom,llcc.yaml1
-rw-r--r--Documentation/devicetree/bindings/arm/qcom.yaml12
-rw-r--r--Documentation/devicetree/bindings/arm/renesas.yaml2
-rw-r--r--Documentation/devicetree/bindings/arm/rockchip.yaml5
-rw-r--r--Documentation/devicetree/bindings/arm/sirf.yaml30
-rw-r--r--Documentation/devicetree/bindings/arm/ste-u300.txt46
-rw-r--r--Documentation/devicetree/bindings/arm/sunxi.yaml19
-rw-r--r--Documentation/devicetree/bindings/arm/tegra.yaml8
-rw-r--r--Documentation/devicetree/bindings/arm/xilinx.yaml6
-rw-r--r--Documentation/devicetree/bindings/arm/zte,sysctrl.txt30
-rw-r--r--Documentation/devicetree/bindings/arm/zte.yaml28
-rw-r--r--Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml4
-rw-r--r--Documentation/devicetree/bindings/c6x/clocks.txt40
-rw-r--r--Documentation/devicetree/bindings/c6x/dscr.txt127
-rw-r--r--Documentation/devicetree/bindings/c6x/emifa.txt62
-rw-r--r--Documentation/devicetree/bindings/c6x/soc.txt28
-rw-r--r--Documentation/devicetree/bindings/connector/usb-connector.yaml12
-rw-r--r--Documentation/devicetree/bindings/display/bridge/sii902x.txt2
-rw-r--r--Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt4
-rw-r--r--Documentation/devicetree/bindings/display/panel/panel-simple.yaml19
-rw-r--r--Documentation/devicetree/bindings/extcon/wlf,arizona.yaml1
-rw-r--r--Documentation/devicetree/bindings/firmware/qcom,scm.txt2
-rw-r--r--Documentation/devicetree/bindings/gpio/mrvl-gpio.yaml3
-rw-r--r--Documentation/devicetree/bindings/hwmon/adi,ltc2947.yaml1
-rw-r--r--Documentation/devicetree/bindings/hwmon/baikal,bt1-pvt.yaml8
-rw-r--r--Documentation/devicetree/bindings/hwmon/ti,tmp513.yaml1
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-gpio.yaml2
-rw-r--r--Documentation/devicetree/bindings/i2c/snps,designware-i2c.yaml3
-rw-r--r--Documentation/devicetree/bindings/iio/accel/bosch,bma255.yaml4
-rw-r--r--Documentation/devicetree/bindings/iio/accel/kionix,kxcjk1013.yaml3
-rw-r--r--Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/maxim,max9611.yaml1
-rw-r--r--Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml1
-rw-r--r--Documentation/devicetree/bindings/iio/adc/ti,palmas-gpadc.yaml2
-rw-r--r--Documentation/devicetree/bindings/iio/adc/x-powers,axp209-adc.yaml12
-rw-r--r--Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt49
-rw-r--r--Documentation/devicetree/bindings/iio/dac/adi,ad5758.yaml41
-rw-r--r--Documentation/devicetree/bindings/iio/dac/adi,ad5766.yaml63
-rw-r--r--Documentation/devicetree/bindings/iio/dac/microchip,mcp4725.yaml31
-rw-r--r--Documentation/devicetree/bindings/iio/gyroscope/bosch,bmg160.yaml3
-rw-r--r--Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.txt45
-rw-r--r--Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.yaml70
-rw-r--r--Documentation/devicetree/bindings/iio/health/maxim,max30100.yaml1
-rw-r--r--Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt67
-rw-r--r--Documentation/devicetree/bindings/iio/imu/invensense,mpu6050.yaml104
-rw-r--r--Documentation/devicetree/bindings/iio/magnetometer/bosch,bmc150_magn.yaml3
-rw-r--r--Documentation/devicetree/bindings/iio/magnetometer/yamaha,yas530.yaml112
-rw-r--r--Documentation/devicetree/bindings/input/adc-keys.txt22
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/goodix.yaml1
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/touchscreen.yaml2
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun6i-a31-r-intc.yaml67
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml11
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/qcom,pdc.txt2
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/realtek,rtl-intc.yaml57
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/sigma,smp8642-intc.txt48
-rw-r--r--Documentation/devicetree/bindings/interrupt-controller/ti,c64x+megamod-pic.txt103
-rw-r--r--Documentation/devicetree/bindings/leds/richtek,rt8515.yaml111
-rw-r--r--Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml3
-rw-r--r--Documentation/devicetree/bindings/media/marvell,mmp2-ccic.yaml5
-rw-r--r--Documentation/devicetree/bindings/media/mediatek-jpeg-decoder.txt2
-rw-r--r--Documentation/devicetree/bindings/media/mediatek-jpeg-encoder.txt2
-rw-r--r--Documentation/devicetree/bindings/media/mediatek-mdp.txt2
-rw-r--r--Documentation/devicetree/bindings/memory-controllers/renesas,rpc-if.yaml6
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc-controller.yaml1
-rw-r--r--Documentation/devicetree/bindings/mmc/mmc-pwrseq-simple.yaml2
-rw-r--r--Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml55
-rw-r--r--Documentation/devicetree/bindings/net/brcm,bcm4908-enet.yaml48
-rw-r--r--Documentation/devicetree/bindings/net/brcm,bcm7445-switch-v4.0.txt101
-rw-r--r--Documentation/devicetree/bindings/net/btusb.txt4
-rw-r--r--Documentation/devicetree/bindings/net/can/fsl,flexcan.yaml11
-rw-r--r--Documentation/devicetree/bindings/net/dsa/arrow,xrs700x.yaml73
-rw-r--r--Documentation/devicetree/bindings/net/dsa/brcm,sf2.yaml173
-rw-r--r--Documentation/devicetree/bindings/net/dsa/mt7530.txt6
-rw-r--r--Documentation/devicetree/bindings/net/ethernet-controller.yaml3
-rw-r--r--Documentation/devicetree/bindings/net/marvell-pp2.txt6
-rw-r--r--Documentation/devicetree/bindings/net/qca,ar803x.yaml16
-rw-r--r--Documentation/devicetree/bindings/net/qcom,ipa.yaml15
-rw-r--r--Documentation/devicetree/bindings/net/renesas,etheravb.yaml2
-rw-r--r--Documentation/devicetree/bindings/net/snps,dwmac.yaml1
-rw-r--r--Documentation/devicetree/bindings/net/ti,k3-am654-cpsw-nuss.yaml50
-rw-r--r--Documentation/devicetree/bindings/net/ti,k3-am654-cpts.yaml7
-rw-r--r--Documentation/devicetree/bindings/net/toshiba,visconti-dwmac.yaml85
-rw-r--r--Documentation/devicetree/bindings/net/xilinx_axienet.txt4
-rw-r--r--Documentation/devicetree/bindings/power/brcm,bcm-pmb.yaml50
-rw-r--r--Documentation/devicetree/bindings/power/mediatek,power-controller.yaml11
-rw-r--r--Documentation/devicetree/bindings/power/qcom,rpmpd.yaml1
-rw-r--r--Documentation/devicetree/bindings/power/supply/battery.yaml3
-rw-r--r--Documentation/devicetree/bindings/power/supply/bq2515x.yaml1
-rw-r--r--Documentation/devicetree/bindings/regulator/dlg,da9121.yaml1
-rw-r--r--Documentation/devicetree/bindings/regulator/fixed-regulator.yaml2
-rw-r--r--Documentation/devicetree/bindings/reset/brcm,bcm4908-misc-pcie-reset.yaml39
-rw-r--r--Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.txt44
-rw-r--r--Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.yaml77
-rw-r--r--Documentation/devicetree/bindings/reset/sirf,rstc.txt42
-rw-r--r--Documentation/devicetree/bindings/reset/zte,zx2967-reset.txt20
-rw-r--r--Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml1
-rw-r--r--Documentation/devicetree/bindings/rtc/rtc.yaml2
-rw-r--r--Documentation/devicetree/bindings/serial/fsl-imx-uart.yaml2
-rw-r--r--Documentation/devicetree/bindings/serial/fsl-mxs-auart.yaml2
-rw-r--r--Documentation/devicetree/bindings/serial/pl011.yaml4
-rw-r--r--Documentation/devicetree/bindings/serial/renesas,hscif.yaml1
-rw-r--r--Documentation/devicetree/bindings/serial/sirf-uart.txt34
-rw-r--r--Documentation/devicetree/bindings/serial/st,stm32-uart.yaml13
-rw-r--r--Documentation/devicetree/bindings/soc/imx/imx8m-soc.yaml86
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt1
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt57
-rw-r--r--Documentation/devicetree/bindings/soc/qcom/qcom,smem.yaml72
-rw-r--r--Documentation/devicetree/bindings/soc/ti/ti,pruss.yaml76
-rw-r--r--Documentation/devicetree/bindings/soc/zte/pd-2967xx.txt19
-rw-r--r--Documentation/devicetree/bindings/sound/mt8192-mt6359-rt1015-rt5682.yaml4
-rw-r--r--Documentation/devicetree/bindings/sound/sgtl5000.yaml2
-rw-r--r--Documentation/devicetree/bindings/spi/spi-zynq-qspi.txt25
-rw-r--r--Documentation/devicetree/bindings/spi/xlnx,zynq-qspi.yaml59
-rw-r--r--Documentation/devicetree/bindings/sram/allwinner,sun4i-a10-system-control.yaml1
-rw-r--r--Documentation/devicetree/bindings/sram/sram.yaml2
-rw-r--r--Documentation/devicetree/bindings/timer/nuvoton,npcm7xx-timer.txt3
-rw-r--r--Documentation/devicetree/bindings/timer/stericsson-u300-apptimer.txt18
-rw-r--r--Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt25
-rw-r--r--Documentation/devicetree/bindings/trivial-devices.yaml10
-rw-r--r--Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml6
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3-st.txt4
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3-xilinx.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/dwc3.txt128
-rw-r--r--Documentation/devicetree/bindings/usb/exynos-usb.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/fsl,imx8mp-dwc3.yaml105
-rw-r--r--Documentation/devicetree/bindings/usb/generic-ehci.yaml51
-rw-r--r--Documentation/devicetree/bindings/usb/generic-ohci.yaml34
-rw-r--r--Documentation/devicetree/bindings/usb/generic-xhci.yaml65
-rw-r--r--Documentation/devicetree/bindings/usb/generic.txt57
-rw-r--r--Documentation/devicetree/bindings/usb/intel,keembay-dwc3.yaml9
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt121
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.yaml188
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtu3.txt108
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,mtu3.yaml287
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,musb.txt57
-rw-r--r--Documentation/devicetree/bindings/usb/mediatek,musb.yaml114
-rw-r--r--Documentation/devicetree/bindings/usb/omap-usb.txt2
-rw-r--r--Documentation/devicetree/bindings/usb/qcom,dwc3.yaml13
-rw-r--r--Documentation/devicetree/bindings/usb/renesas,usb-xhci.yaml4
-rw-r--r--Documentation/devicetree/bindings/usb/rockchip,dwc3.txt56
-rw-r--r--Documentation/devicetree/bindings/usb/rockchip,dwc3.yaml108
-rw-r--r--Documentation/devicetree/bindings/usb/snps,dwc3.yaml332
-rw-r--r--Documentation/devicetree/bindings/usb/ti,j721e-usb.yaml4
-rw-r--r--Documentation/devicetree/bindings/usb/ti,keystone-dwc3.yaml4
-rw-r--r--Documentation/devicetree/bindings/usb/usb-device.txt102
-rw-r--r--Documentation/devicetree/bindings/usb/usb-device.yaml124
-rw-r--r--Documentation/devicetree/bindings/usb/usb-drd.yaml78
-rw-r--r--Documentation/devicetree/bindings/usb/usb-hcd.yaml36
-rw-r--r--Documentation/devicetree/bindings/usb/usb-xhci.txt41
-rw-r--r--Documentation/devicetree/bindings/usb/usb-xhci.yaml42
-rw-r--r--Documentation/devicetree/bindings/usb/usb.yaml63
-rw-r--r--Documentation/devicetree/bindings/usb/usbmisc-imx.txt2
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.yaml14
-rw-r--r--Documentation/devicetree/bindings/watchdog/qcom-wdt.yaml1
-rw-r--r--Documentation/devicetree/bindings/watchdog/watchdog.yaml1
-rw-r--r--Documentation/driver-api/auxiliary_bus.rst2
-rw-r--r--Documentation/filesystems/f2fs.rst19
-rw-r--r--Documentation/filesystems/fsverity.rst76
-rw-r--r--Documentation/filesystems/overlayfs.rst8
-rw-r--r--Documentation/filesystems/porting.rst16
-rw-r--r--Documentation/firmware-guide/acpi/debug.rst19
-rw-r--r--Documentation/firmware-guide/acpi/gpio-properties.rst1
-rw-r--r--Documentation/kbuild/gcc-plugins.rst47
-rw-r--r--Documentation/kbuild/llvm.rst44
-rw-r--r--Documentation/kbuild/makefiles.rst3
-rw-r--r--Documentation/networking/bonding.rst13
-rw-r--r--Documentation/networking/caif/caif.rst1
-rw-r--r--Documentation/networking/device_drivers/ethernet/index.rst1
-rw-r--r--Documentation/networking/device_drivers/ethernet/intel/ice.rst1027
-rw-r--r--Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst70
-rw-r--r--Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst217
-rw-r--r--Documentation/networking/device_drivers/ethernet/ti/am65_nuss_cpsw_switchdev.rst143
-rw-r--r--Documentation/networking/device_drivers/index.rst1
-rw-r--r--Documentation/networking/device_drivers/qlogic/index.rst18
-rw-r--r--Documentation/networking/device_drivers/qlogic/qlge.rst118
-rw-r--r--Documentation/networking/devlink/am65-nuss-cpsw-switch.rst26
-rw-r--r--Documentation/networking/devlink/devlink-port.rst199
-rw-r--r--Documentation/networking/devlink/devlink-resource.rst14
-rw-r--r--Documentation/networking/devlink/devlink-trap.rst5
-rw-r--r--Documentation/networking/devlink/index.rst2
-rw-r--r--Documentation/networking/dsa/dsa.rst4
-rw-r--r--Documentation/networking/ethtool-netlink.rst11
-rw-r--r--Documentation/networking/filter.rst67
-rw-r--r--Documentation/networking/ip-sysctl.rst92
-rw-r--r--Documentation/networking/netdev-FAQ.rst16
-rw-r--r--Documentation/networking/netdev-features.rst21
-rw-r--r--Documentation/networking/phy.rst13
-rw-r--r--Documentation/networking/sfp-phylink.rst2
-rw-r--r--Documentation/networking/snmp_counter.rst28
-rw-r--r--Documentation/networking/timestamping.rst3
-rw-r--r--Documentation/networking/tls-offload.rst3
-rw-r--r--Documentation/power/index.rst1
-rw-r--r--Documentation/power/powercap/dtpm.rst212
-rw-r--r--Documentation/power/runtime_pm.rst14
-rw-r--r--Documentation/process/magic-number.rst1
-rw-r--r--Documentation/scheduler/schedutil.txt169
-rw-r--r--Documentation/translations/it_IT/process/magic-number.rst1
-rw-r--r--Documentation/translations/zh_CN/process/magic-number.rst1
-rw-r--r--Documentation/usb/gadget-testing.rst30
-rw-r--r--Documentation/usb/raw-gadget.rst102
-rw-r--r--Documentation/userspace-api/index.rst1
-rw-r--r--Documentation/userspace-api/sysfs-platform_profile.rst42
-rw-r--r--Documentation/virt/kvm/api.rst21
-rw-r--r--Documentation/virt/kvm/nested-vmx.rst6
-rw-r--r--Documentation/virt/kvm/running-nested-guests.rst2
249 files changed, 7184 insertions, 2586 deletions
diff --git a/Documentation/ABI/testing/sysfs-bus-iio b/Documentation/ABI/testing/sysfs-bus-iio
index 35289d47d6cb..d957f5da5c04 100644
--- a/Documentation/ABI/testing/sysfs-bus-iio
+++ b/Documentation/ABI/testing/sysfs-bus-iio
@@ -198,6 +198,7 @@ Description:
Units after application of scale and offset are m/s^2.
What: /sys/bus/iio/devices/iio:deviceX/in_angl_raw
+What: /sys/bus/iio/devices/iio:deviceX/in_anglY_raw
KernelVersion: 4.17
Contact: linux-iio@vger.kernel.org
Description:
@@ -1812,3 +1813,13 @@ Contact: linux-iio@vger.kernel.org
Description:
Unscaled light intensity according to CIE 1931/DIN 5033 color space.
Units after application of scale are nano nanowatts per square meter.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_anglY_label
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Optional symbolic label for channel Y.
+ For Intel hid hinge sensor, the label values are:
+ hinge, keyboard, screen. It means the three channels
+ each correspond respectively to hinge angle, keyboard angle,
+ and screen angle.
diff --git a/Documentation/ABI/testing/sysfs-bus-iio-dac-ad5766 b/Documentation/ABI/testing/sysfs-bus-iio-dac-ad5766
new file mode 100644
index 000000000000..7fbcba15bf1e
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-iio-dac-ad5766
@@ -0,0 +1,31 @@
+What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_dither_enable
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Dither enable. Write 1 to enable dither or 0 to disable it.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_dither_invert
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Inverts the dither applied to the selected DAC channel. Dither is not
+ inverted by default. Write "1" to invert dither.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_dither_scale_available
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Returns possible scalings available for the current channel.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_dither_scale
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Scales the dither before it is applied to the selected channel.
+
+What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_dither_source
+KernelVersion: 5.12
+Contact: linux-iio@vger.kernel.org
+Description:
+ Selects dither source applied to the selected channel. Write "0" to
+ select N0 source, write "1" to select N1 source.
diff --git a/Documentation/ABI/testing/sysfs-bus-thunderbolt b/Documentation/ABI/testing/sysfs-bus-thunderbolt
index a91b4b24496e..d7f09d011b6d 100644
--- a/Documentation/ABI/testing/sysfs-bus-thunderbolt
+++ b/Documentation/ABI/testing/sysfs-bus-thunderbolt
@@ -49,6 +49,15 @@ Description: Holds a comma separated list of device unique_ids that
If a device is authorized automatically during boot its
boot attribute is set to 1.
+What: /sys/bus/thunderbolt/devices/.../domainX/deauthorization
+Date: May 2021
+KernelVersion: 5.12
+Contact: Mika Westerberg <mika.westerberg@linux.intel.com>
+Description: This attribute tells whether the system supports
+ de-authorization of devices. Value of 1 means user can
+ de-authorize PCIe tunnel by writing 0 to authorized
+ attribute under each device.
+
What: /sys/bus/thunderbolt/devices/.../domainX/iommu_dma_protection
Date: Mar 2019
KernelVersion: 4.21
@@ -76,6 +85,8 @@ Description: This attribute holds current Thunderbolt security level
usbonly Automatically tunnel USB controller of the
connected Thunderbolt dock (and Display Port). All
PCIe links downstream of the dock are removed.
+ nopcie USB4 system where PCIe tunneling is disabled from
+ the BIOS.
======= ==================================================
What: /sys/bus/thunderbolt/devices/.../authorized
@@ -84,22 +95,25 @@ KernelVersion: 4.13
Contact: thunderbolt-software@lists.01.org
Description: This attribute is used to authorize Thunderbolt devices
after they have been connected. If the device is not
- authorized, no devices such as PCIe and Display port are
- available to the system.
+ authorized, no PCIe devices are available to the system.
Contents of this attribute will be 0 when the device is not
yet authorized.
Possible values are supported:
- == ===========================================
+ == ===================================================
+ 0 The device will be de-authorized (only supported if
+ deauthorization attribute under domain contains 1)
1 The device will be authorized and connected
- == ===========================================
+ == ===================================================
When key attribute contains 32 byte hex string the possible
values are:
== ========================================================
+ 0 The device will be de-authorized (only supported if
+ deauthorization attribute under domain contains 1)
1 The 32 byte hex string is added to the device NVM and
the device is authorized.
2 Send a challenge based on the 32 byte hex string. If the
diff --git a/Documentation/ABI/testing/sysfs-class-devlink b/Documentation/ABI/testing/sysfs-class-devlink
index b662f747c83e..8a21ce515f61 100644
--- a/Documentation/ABI/testing/sysfs-class-devlink
+++ b/Documentation/ABI/testing/sysfs-class-devlink
@@ -5,8 +5,8 @@ Description:
Provide a place in sysfs for the device link objects in the
kernel at any given time. The name of a device link directory,
denoted as ... above, is of the form <supplier>--<consumer>
- where <supplier> is the supplier device name and <consumer> is
- the consumer device name.
+ where <supplier> is the supplier bus:device name and <consumer>
+ is the consumer bus:device name.
What: /sys/class/devlink/.../auto_remove_on
Date: May 2020
diff --git a/Documentation/ABI/testing/sysfs-class-led-trigger-tty b/Documentation/ABI/testing/sysfs-class-led-trigger-tty
new file mode 100644
index 000000000000..2bf6b24e781b
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-class-led-trigger-tty
@@ -0,0 +1,6 @@
+What: /sys/class/leds/<led>/ttyname
+Date: Dec 2020
+KernelVersion: 5.10
+Contact: linux-leds@vger.kernel.org
+Description:
+ Specifies the tty device name of the triggering tty
diff --git a/Documentation/ABI/testing/sysfs-class-net b/Documentation/ABI/testing/sysfs-class-net
index 1f2002df5ba2..1419103d11f9 100644
--- a/Documentation/ABI/testing/sysfs-class-net
+++ b/Documentation/ABI/testing/sysfs-class-net
@@ -337,3 +337,18 @@ Contact: netdev@vger.kernel.org
Description:
32-bit unsigned integer counting the number of times the link has
been down
+
+What: /sys/class/net/<iface>/threaded
+Date: Jan 2021
+KernelVersion: 5.12
+Contact: netdev@vger.kernel.org
+Description:
+ Boolean value to control the threaded mode per device. User could
+ set this value to enable/disable threaded mode for all napi
+ belonging to this device, without the need to do device up/down.
+
+ Possible values:
+ == ==================================
+ 0 threaded mode disabled for this dev
+ 1 threaded mode enabled for this dev
+ == ==================================
diff --git a/Documentation/ABI/testing/sysfs-class-net-dsa b/Documentation/ABI/testing/sysfs-class-net-dsa
index 985d84c585c6..e2da26b44dd0 100644
--- a/Documentation/ABI/testing/sysfs-class-net-dsa
+++ b/Documentation/ABI/testing/sysfs-class-net-dsa
@@ -3,5 +3,12 @@ Date: August 2018
KernelVersion: 4.20
Contact: netdev@vger.kernel.org
Description:
- String indicating the type of tagging protocol used by the
- DSA slave network device.
+ On read, this file returns a string indicating the type of
+ tagging protocol used by the DSA network devices that are
+ attached to this master interface.
+ On write, this file changes the tagging protocol of the
+ attached DSA switches, if this operation is supported by the
+ driver. Changing the tagging protocol must be done with the DSA
+ interfaces and the master interface all administratively down.
+ See the "name" field of each registered struct dsa_device_ops
+ for a list of valid values.
diff --git a/Documentation/ABI/testing/sysfs-class-net-qmi b/Documentation/ABI/testing/sysfs-class-net-qmi
index c310db4ccbc2..ed79f5893421 100644
--- a/Documentation/ABI/testing/sysfs-class-net-qmi
+++ b/Documentation/ABI/testing/sysfs-class-net-qmi
@@ -48,3 +48,13 @@ Description:
Write a number ranging from 1 to 254 to delete a previously
created qmap mux based network device.
+
+What: /sys/class/net/<qmimux iface>/qmap/mux_id
+Date: January 2021
+KernelVersion: 5.12
+Contact: Daniele Palmas <dnlplm@gmail.com>
+Description:
+ Unsigned integer
+
+ Indicates the mux id associated to the qmimux network interface
+ during its creation.
diff --git a/Documentation/ABI/testing/sysfs-class-typec b/Documentation/ABI/testing/sysfs-class-typec
index 8eab41e79ce6..40122d915ae1 100644
--- a/Documentation/ABI/testing/sysfs-class-typec
+++ b/Documentation/ABI/testing/sysfs-class-typec
@@ -105,7 +105,25 @@ Date: April 2017
Contact: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Description:
Revision number of the supported USB Power Delivery
- specification, or 0 when USB Power Delivery is not supported.
+ specification, or 0.0 when USB Power Delivery is not supported.
+
+ Example values:
+ - "2.0": USB Power Delivery Release 2.0
+ - "3.0": USB Power Delivery Release 3.0
+ - "3.1": USB Power Delivery Release 3.1
+
+What: /sys/class/typec/<port>-{partner|cable}/usb_power_delivery_revision
+Date: January 2021
+Contact: Benson Leung <bleung@chromium.org>
+Description:
+ Revision number of the supported USB Power Delivery
+ specification of the port partner or cable, or 0.0 when USB
+ Power Delivery is not supported.
+
+ Example values:
+ - "2.0": USB Power Delivery Release 2.0
+ - "3.0": USB Power Delivery Release 3.0
+ - "3.1": USB Power Delivery Release 3.1
What: /sys/class/typec/<port>/usb_typec_revision
Date: April 2017
diff --git a/Documentation/ABI/testing/sysfs-devices-consumer b/Documentation/ABI/testing/sysfs-devices-consumer
index 1f06d74d1c3c..0809fda092e6 100644
--- a/Documentation/ABI/testing/sysfs-devices-consumer
+++ b/Documentation/ABI/testing/sysfs-devices-consumer
@@ -4,5 +4,6 @@ Contact: Saravana Kannan <saravanak@google.com>
Description:
The /sys/devices/.../consumer:<consumer> are symlinks to device
links where this device is the supplier. <consumer> denotes the
- name of the consumer in that device link. There can be zero or
- more of these symlinks for a given device.
+ name of the consumer in that device link and is of the form
+ bus:device name. There can be zero or more of these symlinks
+ for a given device.
diff --git a/Documentation/ABI/testing/sysfs-devices-supplier b/Documentation/ABI/testing/sysfs-devices-supplier
index a919e0db5e90..207f5972e98d 100644
--- a/Documentation/ABI/testing/sysfs-devices-supplier
+++ b/Documentation/ABI/testing/sysfs-devices-supplier
@@ -4,5 +4,6 @@ Contact: Saravana Kannan <saravanak@google.com>
Description:
The /sys/devices/.../supplier:<supplier> are symlinks to device
links where this device is the consumer. <supplier> denotes the
- name of the supplier in that device link. There can be zero or
- more of these symlinks for a given device.
+ name of the supplier in that device link and is of the form
+ bus:device name. There can be zero or more of these symlinks
+ for a given device.
diff --git a/Documentation/ABI/testing/sysfs-driver-ufs b/Documentation/ABI/testing/sysfs-driver-ufs
index adc0d0e91607..75ccc5c62b3c 100644
--- a/Documentation/ABI/testing/sysfs-driver-ufs
+++ b/Documentation/ABI/testing/sysfs-driver-ufs
@@ -916,21 +916,25 @@ Date: September 2014
Contact: Subhash Jadavani <subhashj@codeaurora.org>
Description: This entry could be used to set or show the UFS device
runtime power management level. The current driver
- implementation supports 6 levels with next target states:
+ implementation supports 7 levels with next target states:
== ====================================================
- 0 an UFS device will stay active, an UIC link will
+ 0 UFS device will stay active, UIC link will
stay active
- 1 an UFS device will stay active, an UIC link will
+ 1 UFS device will stay active, UIC link will
hibernate
- 2 an UFS device will moved to sleep, an UIC link will
+ 2 UFS device will be moved to sleep, UIC link will
stay active
- 3 an UFS device will moved to sleep, an UIC link will
+ 3 UFS device will be moved to sleep, UIC link will
hibernate
- 4 an UFS device will be powered off, an UIC link will
+ 4 UFS device will be powered off, UIC link will
hibernate
- 5 an UFS device will be powered off, an UIC link will
+ 5 UFS device will be powered off, UIC link will
be powered off
+ 6 UFS device will be moved to deep sleep, UIC link
+ will be powered off. Note, deep sleep might not be
+ supported in which case this value will not be
+ accepted
== ====================================================
What: /sys/bus/platform/drivers/ufshcd/*/rpm_target_dev_state
@@ -954,21 +958,25 @@ Date: September 2014
Contact: Subhash Jadavani <subhashj@codeaurora.org>
Description: This entry could be used to set or show the UFS device
system power management level. The current driver
- implementation supports 6 levels with next target states:
+ implementation supports 7 levels with next target states:
== ====================================================
- 0 an UFS device will stay active, an UIC link will
+ 0 UFS device will stay active, UIC link will
stay active
- 1 an UFS device will stay active, an UIC link will
+ 1 UFS device will stay active, UIC link will
hibernate
- 2 an UFS device will moved to sleep, an UIC link will
+ 2 UFS device will be moved to sleep, UIC link will
stay active
- 3 an UFS device will moved to sleep, an UIC link will
+ 3 UFS device will be moved to sleep, UIC link will
hibernate
- 4 an UFS device will be powered off, an UIC link will
+ 4 UFS device will be powered off, UIC link will
hibernate
- 5 an UFS device will be powered off, an UIC link will
+ 5 UFS device will be powered off, UIC link will
be powered off
+ 6 UFS device will be moved to deep sleep, UIC link
+ will be powered off. Note, deep sleep might not be
+ supported in which case this value will not be
+ accepted
== ====================================================
What: /sys/bus/platform/drivers/ufshcd/*/spm_target_dev_state
diff --git a/Documentation/ABI/testing/sysfs-fs-f2fs b/Documentation/ABI/testing/sysfs-fs-f2fs
index 3dfee94e0618..cbeac1bebe2f 100644
--- a/Documentation/ABI/testing/sysfs-fs-f2fs
+++ b/Documentation/ABI/testing/sysfs-fs-f2fs
@@ -377,3 +377,35 @@ Description: This gives a control to limit the bio size in f2fs.
Default is zero, which will follow underlying block layer limit,
whereas, if it has a certain bytes value, f2fs won't submit a
bio larger than that size.
+
+What: /sys/fs/f2fs/<disk>/stat/sb_status
+Date: December 2020
+Contact: "Chao Yu" <yuchao0@huawei.com>
+Description: Show status of f2fs superblock in real time.
+
+ ====== ===================== =================================
+ value sb status macro description
+ 0x1 SBI_IS_DIRTY dirty flag for checkpoint
+ 0x2 SBI_IS_CLOSE specify unmounting
+ 0x4 SBI_NEED_FSCK need fsck.f2fs to fix
+ 0x8 SBI_POR_DOING recovery is doing or not
+ 0x10 SBI_NEED_SB_WRITE need to recover superblock
+ 0x20 SBI_NEED_CP need to checkpoint
+ 0x40 SBI_IS_SHUTDOWN shutdown by ioctl
+ 0x80 SBI_IS_RECOVERED recovered orphan/data
+ 0x100 SBI_CP_DISABLED CP was disabled last mount
+ 0x200 SBI_CP_DISABLED_QUICK CP was disabled quickly
+ 0x400 SBI_QUOTA_NEED_FLUSH need to flush quota info in CP
+ 0x800 SBI_QUOTA_SKIP_FLUSH skip flushing quota in current CP
+ 0x1000 SBI_QUOTA_NEED_REPAIR quota file may be corrupted
+ 0x2000 SBI_IS_RESIZEFS resizefs is in process
+ ====== ===================== =================================
+
+What: /sys/fs/f2fs/<disk>/ckpt_thread_ioprio
+Date: January 2021
+Contact: "Daeho Jeong" <daehojeong@google.com>
+Description: Give a way to change checkpoint merge daemon's io priority.
+ Its default value is "be,3", which means "BE" I/O class and
+ I/O priority "3". We can select the class between "rt" and "be",
+ and set the I/O priority within valid range of it. "," delimiter
+ is necessary in between I/O class and priority number.
diff --git a/Documentation/ABI/testing/sysfs-platform_profile b/Documentation/ABI/testing/sysfs-platform_profile
new file mode 100644
index 000000000000..9d6b89b66cca
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-platform_profile
@@ -0,0 +1,24 @@
+What: /sys/firmware/acpi/platform_profile_choices
+Date: October 2020
+Contact: Hans de Goede <hdegoede@redhat.com>
+Description: This file contains a space-separated list of profiles supported for this device.
+
+ Drivers must use the following standard profile-names:
+
+ ============ ============================================
+ low-power Low power consumption
+ cool Cooler operation
+ quiet Quieter operation
+ balanced Balance between low power consumption and performance
+ performance High performance operation
+ ============ ============================================
+
+ Userspace may expect drivers to offer more than one of these
+ standard profile names.
+
+What: /sys/firmware/acpi/platform_profile
+Date: October 2020
+Contact: Hans de Goede <hdegoede@redhat.com>
+Description: Reading this file gives the current selected profile for this
+ device. Writing this file with one of the strings from
+ platform_profile_choices changes the profile to the new value.
diff --git a/Documentation/Makefile b/Documentation/Makefile
index 61a7310b49e0..9c42dde97671 100644
--- a/Documentation/Makefile
+++ b/Documentation/Makefile
@@ -75,7 +75,7 @@ quiet_cmd_sphinx = SPHINX $@ --> file://$(abspath $(BUILDDIR)/$3/$4)
cmd_sphinx = $(MAKE) BUILDDIR=$(abspath $(BUILDDIR)) $(build)=Documentation/userspace-api/media $2 && \
PYTHONDONTWRITEBYTECODE=1 \
BUILDDIR=$(abspath $(BUILDDIR)) SPHINX_CONF=$(abspath $(srctree)/$(src)/$5/$(SPHINX_CONF)) \
- $(PYTHON) $(srctree)/scripts/jobserver-exec \
+ $(PYTHON3) $(srctree)/scripts/jobserver-exec \
$(SHELL) $(srctree)/Documentation/sphinx/parallel-wrapper.sh \
$(SPHINXBUILD) \
-b $2 \
diff --git a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst
index 72f0f6fbd53c..6f89cf1e567d 100644
--- a/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst
+++ b/Documentation/RCU/Design/Expedited-Grace-Periods/Expedited-Grace-Periods.rst
@@ -38,7 +38,7 @@ sections.
RCU-preempt Expedited Grace Periods
===================================
-``CONFIG_PREEMPT=y`` kernels implement RCU-preempt.
+``CONFIG_PREEMPTION=y`` kernels implement RCU-preempt.
The overall flow of the handling of a given CPU by an RCU-preempt
expedited grace period is shown in the following diagram:
@@ -112,7 +112,7 @@ things.
RCU-sched Expedited Grace Periods
---------------------------------
-``CONFIG_PREEMPT=n`` kernels implement RCU-sched. The overall flow of
+``CONFIG_PREEMPTION=n`` kernels implement RCU-sched. The overall flow of
the handling of a given CPU by an RCU-sched expedited grace period is
shown in the following diagram:
diff --git a/Documentation/RCU/Design/Requirements/Requirements.rst b/Documentation/RCU/Design/Requirements/Requirements.rst
index d4c9a016074b..38a39476fc24 100644
--- a/Documentation/RCU/Design/Requirements/Requirements.rst
+++ b/Documentation/RCU/Design/Requirements/Requirements.rst
@@ -72,13 +72,13 @@ understanding of this guarantee.
RCU's grace-period guarantee allows updaters to wait for the completion
of all pre-existing RCU read-side critical sections. An RCU read-side
-critical section begins with the marker ``rcu_read_lock()`` and ends
-with the marker ``rcu_read_unlock()``. These markers may be nested, and
+critical section begins with the marker rcu_read_lock() and ends
+with the marker rcu_read_unlock(). These markers may be nested, and
RCU treats a nested set as one big RCU read-side critical section.
-Production-quality implementations of ``rcu_read_lock()`` and
-``rcu_read_unlock()`` are extremely lightweight, and in fact have
+Production-quality implementations of rcu_read_lock() and
+rcu_read_unlock() are extremely lightweight, and in fact have
exactly zero overhead in Linux kernels built for production use with
-``CONFIG_PREEMPT=n``.
+``CONFIG_PREEMPTION=n``.
This guarantee allows ordering to be enforced with extremely low
overhead to readers, for example:
@@ -102,12 +102,12 @@ overhead to readers, for example:
15 WRITE_ONCE(y, 1);
16 }
-Because the ``synchronize_rcu()`` on line 14 waits for all pre-existing
-readers, any instance of ``thread0()`` that loads a value of zero from
-``x`` must complete before ``thread1()`` stores to ``y``, so that
+Because the synchronize_rcu() on line 14 waits for all pre-existing
+readers, any instance of thread0() that loads a value of zero from
+``x`` must complete before thread1() stores to ``y``, so that
instance must also load a value of zero from ``y``. Similarly, any
-instance of ``thread0()`` that loads a value of one from ``y`` must have
-started after the ``synchronize_rcu()`` started, and must therefore also
+instance of thread0() that loads a value of one from ``y`` must have
+started after the synchronize_rcu() started, and must therefore also
load a value of one from ``x``. Therefore, the outcome:
::
@@ -121,14 +121,14 @@ cannot happen.
+-----------------------------------------------------------------------+
| Wait a minute! You said that updaters can make useful forward |
| progress concurrently with readers, but pre-existing readers will |
-| block ``synchronize_rcu()``!!! |
+| block synchronize_rcu()!!! |
| Just who are you trying to fool??? |
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
| First, if updaters do not wish to be blocked by readers, they can use |
-| ``call_rcu()`` or ``kfree_rcu()``, which will be discussed later. |
-| Second, even when using ``synchronize_rcu()``, the other update-side |
+| call_rcu() or kfree_rcu(), which will be discussed later. |
+| Second, even when using synchronize_rcu(), the other update-side |
| code does run concurrently with readers, whether pre-existing or not. |
+-----------------------------------------------------------------------+
@@ -170,34 +170,34 @@ recovery from node failure, more or less as follows:
29 WRITE_ONCE(state, STATE_NORMAL);
30 }
-The RCU read-side critical section in ``do_something_dlm()`` works with
-the ``synchronize_rcu()`` in ``start_recovery()`` to guarantee that
-``do_something()`` never runs concurrently with ``recovery()``, but with
-little or no synchronization overhead in ``do_something_dlm()``.
+The RCU read-side critical section in do_something_dlm() works with
+the synchronize_rcu() in start_recovery() to guarantee that
+do_something() never runs concurrently with recovery(), but with
+little or no synchronization overhead in do_something_dlm().
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| Why is the ``synchronize_rcu()`` on line 28 needed? |
+| Why is the synchronize_rcu() on line 28 needed? |
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
| Without that extra grace period, memory reordering could result in |
-| ``do_something_dlm()`` executing ``do_something()`` concurrently with |
-| the last bits of ``recovery()``. |
+| do_something_dlm() executing do_something() concurrently with |
+| the last bits of recovery(). |
+-----------------------------------------------------------------------+
In order to avoid fatal problems such as deadlocks, an RCU read-side
-critical section must not contain calls to ``synchronize_rcu()``.
+critical section must not contain calls to synchronize_rcu().
Similarly, an RCU read-side critical section must not contain anything
that waits, directly or indirectly, on completion of an invocation of
-``synchronize_rcu()``.
+synchronize_rcu().
Although RCU's grace-period guarantee is useful in and of itself, with
`quite a few use cases <https://lwn.net/Articles/573497/>`__, it would
be good to be able to use RCU to coordinate read-side access to linked
data structures. For this, the grace-period guarantee is not sufficient,
-as can be seen in function ``add_gp_buggy()`` below. We will look at the
+as can be seen in function add_gp_buggy() below. We will look at the
reader's code later, but in the meantime, just think of the reader as
locklessly picking up the ``gp`` pointer, and, if the value loaded is
non-\ ``NULL``, locklessly accessing the ``->a`` and ``->b`` fields.
@@ -256,8 +256,8 @@ Publish/Subscribe Guarantee
RCU's publish-subscribe guarantee allows data to be inserted into a
linked data structure without disrupting RCU readers. The updater uses
-``rcu_assign_pointer()`` to insert the new data, and readers use
-``rcu_dereference()`` to access data, whether new or old. The following
+rcu_assign_pointer() to insert the new data, and readers use
+rcu_dereference() to access data, whether new or old. The following
shows an example of insertion:
::
@@ -279,7 +279,7 @@ shows an example of insertion:
15 return true;
16 }
-The ``rcu_assign_pointer()`` on line 13 is conceptually equivalent to a
+The rcu_assign_pointer() on line 13 is conceptually equivalent to a
simple assignment statement, but also guarantees that its assignment
will happen after the two assignments in lines 11 and 12, similar to the
C11 ``memory_order_release`` store operation. It also prevents any
@@ -289,7 +289,7 @@ number of “interesting” compiler optimizations, for example, the use of
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| But ``rcu_assign_pointer()`` does nothing to prevent the two |
+| But rcu_assign_pointer() does nothing to prevent the two |
| assignments to ``p->a`` and ``p->b`` from being reordered. Can't that |
| also cause problems? |
+-----------------------------------------------------------------------+
@@ -303,7 +303,7 @@ number of “interesting” compiler optimizations, for example, the use of
It is tempting to assume that the reader need not do anything special to
control its accesses to the RCU-protected data, as shown in
-``do_something_gp_buggy()`` below:
+do_something_gp_buggy() below:
::
@@ -321,11 +321,10 @@ control its accesses to the RCU-protected data, as shown in
12 }
However, this temptation must be resisted because there are a
-surprisingly large number of ways that the compiler (to say nothing of
-`DEC Alpha CPUs <https://h71000.www7.hp.com/wizard/wiz_2637.html>`__)
-can trip this code up. For but one example, if the compiler were short
-of registers, it might choose to refetch from ``gp`` rather than keeping
-a separate copy in ``p`` as follows:
+surprisingly large number of ways that the compiler (or weak ordering
+CPUs like the DEC Alpha) can trip this code up. For but one example, if
+the compiler were short of registers, it might choose to refetch from
+``gp`` rather than keeping a separate copy in ``p`` as follows:
::
@@ -345,7 +344,7 @@ If this function ran concurrently with a series of updates that replaced
the current structure with a new one, the fetches of ``gp->a`` and
``gp->b`` might well come from two different structures, which could
cause serious confusion. To prevent this (and much else besides),
-``do_something_gp()`` uses ``rcu_dereference()`` to fetch from ``gp``:
+do_something_gp() uses rcu_dereference() to fetch from ``gp``:
::
@@ -362,21 +361,21 @@ cause serious confusion. To prevent this (and much else besides),
11 return false;
12 }
-The ``rcu_dereference()`` uses volatile casts and (for DEC Alpha) memory
+The rcu_dereference() uses volatile casts and (for DEC Alpha) memory
barriers in the Linux kernel. Should a `high-quality implementation of
C11 ``memory_order_consume``
[PDF] <http://www.rdrop.com/users/paulmck/RCU/consume.2015.07.13a.pdf>`__
-ever appear, then ``rcu_dereference()`` could be implemented as a
+ever appear, then rcu_dereference() could be implemented as a
``memory_order_consume`` load. Regardless of the exact implementation, a
-pointer fetched by ``rcu_dereference()`` may not be used outside of the
+pointer fetched by rcu_dereference() may not be used outside of the
outermost RCU read-side critical section containing that
-``rcu_dereference()``, unless protection of the corresponding data
+rcu_dereference(), unless protection of the corresponding data
element has been passed from RCU to some other synchronization
mechanism, most commonly locking or `reference
counting <https://www.kernel.org/doc/Documentation/RCU/rcuref.txt>`__.
-In short, updaters use ``rcu_assign_pointer()`` and readers use
-``rcu_dereference()``, and these two RCU API elements work together to
+In short, updaters use rcu_assign_pointer() and readers use
+rcu_dereference(), and these two RCU API elements work together to
ensure that readers have a consistent view of newly added data elements.
Of course, it is also necessary to remove elements from RCU-protected
@@ -388,9 +387,9 @@ data structures, for example, using the following process:
the newly removed data element).
#. At this point, only the updater has a reference to the newly removed
data element, so it can safely reclaim the data element, for example,
- by passing it to ``kfree()``.
+ by passing it to kfree().
-This process is implemented by ``remove_gp_synchronous()``:
+This process is implemented by remove_gp_synchronous():
::
@@ -413,16 +412,16 @@ This process is implemented by ``remove_gp_synchronous()``:
This function is straightforward, with line 13 waiting for a grace
period before line 14 frees the old data element. This waiting ensures
-that readers will reach line 7 of ``do_something_gp()`` before the data
-element referenced by ``p`` is freed. The ``rcu_access_pointer()`` on
-line 6 is similar to ``rcu_dereference()``, except that:
+that readers will reach line 7 of do_something_gp() before the data
+element referenced by ``p`` is freed. The rcu_access_pointer() on
+line 6 is similar to rcu_dereference(), except that:
-#. The value returned by ``rcu_access_pointer()`` cannot be
+#. The value returned by rcu_access_pointer() cannot be
dereferenced. If you want to access the value pointed to as well as
- the pointer itself, use ``rcu_dereference()`` instead of
- ``rcu_access_pointer()``.
-#. The call to ``rcu_access_pointer()`` need not be protected. In
- contrast, ``rcu_dereference()`` must either be within an RCU
+ the pointer itself, use rcu_dereference() instead of
+ rcu_access_pointer().
+#. The call to rcu_access_pointer() need not be protected. In
+ contrast, rcu_dereference() must either be within an RCU
read-side critical section or in a code segment where the pointer
cannot change, for example, in code protected by the corresponding
update-side lock.
@@ -430,13 +429,13 @@ line 6 is similar to ``rcu_dereference()``, except that:
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| Without the ``rcu_dereference()`` or the ``rcu_access_pointer()``, |
+| Without the rcu_dereference() or the rcu_access_pointer(), |
| what destructive optimizations might the compiler make use of? |
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
-| Let's start with what happens to ``do_something_gp()`` if it fails to |
-| use ``rcu_dereference()``. It could reuse a value formerly fetched |
+| Let's start with what happens to do_something_gp() if it fails to |
+| use rcu_dereference(). It could reuse a value formerly fetched |
| from this same pointer. It could also fetch the pointer from ``gp`` |
| in a byte-at-a-time manner, resulting in *load tearing*, in turn |
| resulting a bytewise mash-up of two distinct pointer values. It might |
@@ -445,15 +444,15 @@ line 6 is similar to ``rcu_dereference()``, except that:
| update has changed the pointer to match the wrong guess. Too bad |
| about any dereferences that returned pre-initialization garbage in |
| the meantime! |
-| For ``remove_gp_synchronous()``, as long as all modifications to |
+| For remove_gp_synchronous(), as long as all modifications to |
| ``gp`` are carried out while holding ``gp_lock``, the above |
| optimizations are harmless. However, ``sparse`` will complain if you |
| define ``gp`` with ``__rcu`` and then access it without using either |
-| ``rcu_access_pointer()`` or ``rcu_dereference()``. |
+| rcu_access_pointer() or rcu_dereference(). |
+-----------------------------------------------------------------------+
In short, RCU's publish-subscribe guarantee is provided by the
-combination of ``rcu_assign_pointer()`` and ``rcu_dereference()``. This
+combination of rcu_assign_pointer() and rcu_dereference(). This
guarantee allows data elements to be safely added to RCU-protected
linked data structures without disrupting RCU readers. This guarantee
can be used in combination with the grace-period guarantee to also allow
@@ -462,9 +461,9 @@ again without disrupting RCU readers.
This guarantee was only partially premeditated. DYNIX/ptx used an
explicit memory barrier for publication, but had nothing resembling
-``rcu_dereference()`` for subscription, nor did it have anything
+rcu_dereference() for subscription, nor did it have anything
resembling the dependency-ordering barrier that was later subsumed
-into ``rcu_dereference()`` and later still into ``READ_ONCE()``. The
+into rcu_dereference() and later still into READ_ONCE(). The
need for these operations made itself known quite suddenly at a
late-1990s meeting with the DEC Alpha architects, back in the days when
DEC was still a free-standing company. It took the Alpha architects a
@@ -474,7 +473,7 @@ documentation did not make this point clear. More recent work with the C
and C++ standards committees have provided much education on tricks and
traps from the compiler. In short, compilers were much less tricky in
the early 1990s, but in 2015, don't even think about omitting
-``rcu_dereference()``!
+rcu_dereference()!
Memory-Barrier Guarantees
~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -484,31 +483,31 @@ demonstrates the need for RCU's stringent memory-ordering guarantees on
systems with more than one CPU:
#. Each CPU that has an RCU read-side critical section that begins
- before ``synchronize_rcu()`` starts is guaranteed to execute a full
+ before synchronize_rcu() starts is guaranteed to execute a full
memory barrier between the time that the RCU read-side critical
- section ends and the time that ``synchronize_rcu()`` returns. Without
+ section ends and the time that synchronize_rcu() returns. Without
this guarantee, a pre-existing RCU read-side critical section might
hold a reference to the newly removed ``struct foo`` after the
- ``kfree()`` on line 14 of ``remove_gp_synchronous()``.
+ kfree() on line 14 of remove_gp_synchronous().
#. Each CPU that has an RCU read-side critical section that ends after
- ``synchronize_rcu()`` returns is guaranteed to execute a full memory
- barrier between the time that ``synchronize_rcu()`` begins and the
+ synchronize_rcu() returns is guaranteed to execute a full memory
+ barrier between the time that synchronize_rcu() begins and the
time that the RCU read-side critical section begins. Without this
guarantee, a later RCU read-side critical section running after the
- ``kfree()`` on line 14 of ``remove_gp_synchronous()`` might later run
- ``do_something_gp()`` and find the newly deleted ``struct foo``.
-#. If the task invoking ``synchronize_rcu()`` remains on a given CPU,
+ kfree() on line 14 of remove_gp_synchronous() might later run
+ do_something_gp() and find the newly deleted ``struct foo``.
+#. If the task invoking synchronize_rcu() remains on a given CPU,
then that CPU is guaranteed to execute a full memory barrier sometime
- during the execution of ``synchronize_rcu()``. This guarantee ensures
- that the ``kfree()`` on line 14 of ``remove_gp_synchronous()`` really
+ during the execution of synchronize_rcu(). This guarantee ensures
+ that the kfree() on line 14 of remove_gp_synchronous() really
does execute after the removal on line 11.
-#. If the task invoking ``synchronize_rcu()`` migrates among a group of
+#. If the task invoking synchronize_rcu() migrates among a group of
CPUs during that invocation, then each of the CPUs in that group is
guaranteed to execute a full memory barrier sometime during the
- execution of ``synchronize_rcu()``. This guarantee also ensures that
- the ``kfree()`` on line 14 of ``remove_gp_synchronous()`` really does
+ execution of synchronize_rcu(). This guarantee also ensures that
+ the kfree() on line 14 of remove_gp_synchronous() really does
execute after the removal on line 11, but also in the case where the
- thread executing the ``synchronize_rcu()`` migrates in the meantime.
+ thread executing the synchronize_rcu() migrates in the meantime.
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
@@ -516,19 +515,19 @@ systems with more than one CPU:
| Given that multiple CPUs can start RCU read-side critical sections at |
| any time without any ordering whatsoever, how can RCU possibly tell |
| whether or not a given RCU read-side critical section starts before a |
-| given instance of ``synchronize_rcu()``? |
+| given instance of synchronize_rcu()? |
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
| If RCU cannot tell whether or not a given RCU read-side critical |
-| section starts before a given instance of ``synchronize_rcu()``, then |
+| section starts before a given instance of synchronize_rcu(), then |
| it must assume that the RCU read-side critical section started first. |
-| In other words, a given instance of ``synchronize_rcu()`` can avoid |
+| In other words, a given instance of synchronize_rcu() can avoid |
| waiting on a given RCU read-side critical section only if it can |
-| prove that ``synchronize_rcu()`` started first. |
-| A related question is “When ``rcu_read_lock()`` doesn't generate any |
+| prove that synchronize_rcu() started first. |
+| A related question is “When rcu_read_lock() doesn't generate any |
| code, why does it matter how it relates to a grace period?” The |
-| answer is that it is not the relationship of ``rcu_read_lock()`` |
+| answer is that it is not the relationship of rcu_read_lock() |
| itself that is important, but rather the relationship of the code |
| within the enclosed RCU read-side critical section to the code |
| preceding and following the grace period. If we take this viewpoint, |
@@ -556,14 +555,14 @@ systems with more than one CPU:
| Yes, they really are required. To see why the first guarantee is |
| required, consider the following sequence of events: |
| |
-| #. CPU 1: ``rcu_read_lock()`` |
+| #. CPU 1: rcu_read_lock() |
| #. CPU 1: ``q = rcu_dereference(gp); /* Very likely to return p. */`` |
| #. CPU 0: ``list_del_rcu(p);`` |
-| #. CPU 0: ``synchronize_rcu()`` starts. |
+| #. CPU 0: synchronize_rcu() starts. |
| #. CPU 1: ``do_something_with(q->a);`` |
| ``/* No smp_mb(), so might happen after kfree(). */`` |
-| #. CPU 1: ``rcu_read_unlock()`` |
-| #. CPU 0: ``synchronize_rcu()`` returns. |
+| #. CPU 1: rcu_read_unlock() |
+| #. CPU 0: synchronize_rcu() returns. |
| #. CPU 0: ``kfree(p);`` |
| |
| Therefore, there absolutely must be a full memory barrier between the |
@@ -574,14 +573,14 @@ systems with more than one CPU:
| is roughly similar: |
| |
| #. CPU 0: ``list_del_rcu(p);`` |
-| #. CPU 0: ``synchronize_rcu()`` starts. |
-| #. CPU 1: ``rcu_read_lock()`` |
+| #. CPU 0: synchronize_rcu() starts. |
+| #. CPU 1: rcu_read_lock() |
| #. CPU 1: ``q = rcu_dereference(gp);`` |
| ``/* Might return p if no memory barrier. */`` |
-| #. CPU 0: ``synchronize_rcu()`` returns. |
+| #. CPU 0: synchronize_rcu() returns. |
| #. CPU 0: ``kfree(p);`` |
| #. CPU 1: ``do_something_with(q->a); /* Boom!!! */`` |
-| #. CPU 1: ``rcu_read_unlock()`` |
+| #. CPU 1: rcu_read_unlock() |
| |
| And similarly, without a memory barrier between the beginning of the |
| grace period and the beginning of the RCU read-side critical section, |
@@ -597,7 +596,7 @@ systems with more than one CPU:
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| You claim that ``rcu_read_lock()`` and ``rcu_read_unlock()`` generate |
+| You claim that rcu_read_lock() and rcu_read_unlock() generate |
| absolutely no code in some kernel builds. This means that the |
| compiler might arbitrarily rearrange consecutive RCU read-side |
| critical sections. Given such rearrangement, if a given RCU read-side |
@@ -607,11 +606,11 @@ systems with more than one CPU:
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
-| In cases where ``rcu_read_lock()`` and ``rcu_read_unlock()`` generate |
+| In cases where rcu_read_lock() and rcu_read_unlock() generate |
| absolutely no code, RCU infers quiescent states only at special |
| locations, for example, within the scheduler. Because calls to |
-| ``schedule()`` had better prevent calling-code accesses to shared |
-| variables from being rearranged across the call to ``schedule()``, if |
+| schedule() had better prevent calling-code accesses to shared |
+| variables from being rearranged across the call to schedule(), if |
| RCU detects the end of a given RCU read-side critical section, it |
| will necessarily detect the end of all prior RCU read-side critical |
| sections, no matter how aggressively the compiler scrambles the code. |
@@ -655,8 +654,8 @@ read-side critical section might search for a given data element, and
then might acquire the update-side spinlock in order to update that
element, all while remaining in that RCU read-side critical section. Of
course, it is necessary to exit the RCU read-side critical section
-before invoking ``synchronize_rcu()``, however, this inconvenience can
-be avoided through use of the ``call_rcu()`` and ``kfree_rcu()`` API
+before invoking synchronize_rcu(), however, this inconvenience can
+be avoided through use of the call_rcu() and kfree_rcu() API
members described later in this document.
+-----------------------------------------------------------------------+
@@ -694,10 +693,10 @@ these non-guarantees were premeditated.
Readers Impose Minimal Ordering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Reader-side markers such as ``rcu_read_lock()`` and
-``rcu_read_unlock()`` provide absolutely no ordering guarantees except
+Reader-side markers such as rcu_read_lock() and
+rcu_read_unlock() provide absolutely no ordering guarantees except
through their interaction with the grace-period APIs such as
-``synchronize_rcu()``. To see this, consider the following pair of
+synchronize_rcu(). To see this, consider the following pair of
threads:
::
@@ -722,7 +721,7 @@ threads:
18 rcu_read_unlock();
19 }
-After ``thread0()`` and ``thread1()`` execute concurrently, it is quite
+After thread0() and thread1() execute concurrently, it is quite
possible to have
::
@@ -730,7 +729,7 @@ possible to have
(r1 == 1 && r2 == 0)
(that is, ``y`` appears to have been assigned before ``x``), which would
-not be possible if ``rcu_read_lock()`` and ``rcu_read_unlock()`` had
+not be possible if rcu_read_lock() and rcu_read_unlock() had
much in the way of ordering properties. But they do not, so the CPU is
within its rights to do significant reordering. This is by design: Any
significant ordering constraints would slow down these fast-path APIs.
@@ -742,14 +741,14 @@ significant ordering constraints would slow down these fast-path APIs.
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
-| No, the volatile casts in ``READ_ONCE()`` and ``WRITE_ONCE()`` |
+| No, the volatile casts in READ_ONCE() and WRITE_ONCE() |
| prevent the compiler from reordering in this particular case. |
+-----------------------------------------------------------------------+
Readers Do Not Exclude Updaters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Neither ``rcu_read_lock()`` nor ``rcu_read_unlock()`` exclude updates.
+Neither rcu_read_lock() nor rcu_read_unlock() exclude updates.
All they do is to prevent grace periods from ending. The following
example illustrates this:
@@ -775,19 +774,19 @@ example illustrates this:
18 spin_unlock(&my_lock);
19 }
-If the ``thread0()`` function's ``rcu_read_lock()`` excluded the
-``thread1()`` function's update, the ``WARN_ON()`` could never fire. But
-the fact is that ``rcu_read_lock()`` does not exclude much of anything
-aside from subsequent grace periods, of which ``thread1()`` has none, so
-the ``WARN_ON()`` can and does fire.
+If the thread0() function's rcu_read_lock() excluded the
+thread1() function's update, the WARN_ON() could never fire. But
+the fact is that rcu_read_lock() does not exclude much of anything
+aside from subsequent grace periods, of which thread1() has none, so
+the WARN_ON() can and does fire.
Updaters Only Wait For Old Readers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-It might be tempting to assume that after ``synchronize_rcu()``
+It might be tempting to assume that after synchronize_rcu()
completes, there are no readers executing. This temptation must be
avoided because new readers can start immediately after
-``synchronize_rcu()`` starts, and ``synchronize_rcu()`` is under no
+synchronize_rcu() starts, and synchronize_rcu() is under no
obligation to wait for these new readers.
+-----------------------------------------------------------------------+
@@ -799,10 +798,10 @@ obligation to wait for these new readers.
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
-| For no time at all. Even if ``synchronize_rcu()`` were to wait until |
+| For no time at all. Even if synchronize_rcu() were to wait until |
| all readers had completed, a new reader might start immediately after |
-| ``synchronize_rcu()`` completed. Therefore, the code following |
-| ``synchronize_rcu()`` can *never* rely on there being no readers. |
+| synchronize_rcu() completed. Therefore, the code following |
+| synchronize_rcu() can *never* rely on there being no readers. |
+-----------------------------------------------------------------------+
Grace Periods Don't Partition Read-Side Critical Sections
@@ -892,12 +891,12 @@ period is known to end before the second grace period starts:
28 rcu_read_unlock();
29 }
-Here, if ``(r1 == 1)``, then ``thread0()``'s write to ``b`` must happen
-before the end of ``thread1()``'s grace period. If in addition
-``(r4 == 1)``, then ``thread3()``'s read from ``b`` must happen after
-the beginning of ``thread2()``'s grace period. If it is also the case
-that ``(r2 == 1)``, then the end of ``thread1()``'s grace period must
-precede the beginning of ``thread2()``'s grace period. This mean that
+Here, if ``(r1 == 1)``, then thread0()'s write to ``b`` must happen
+before the end of thread1()'s grace period. If in addition
+``(r4 == 1)``, then thread3()'s read from ``b`` must happen after
+the beginning of thread2()'s grace period. If it is also the case
+that ``(r2 == 1)``, then the end of thread1()'s grace period must
+precede the beginning of thread2()'s grace period. This mean that
the two RCU read-side critical sections cannot overlap, guaranteeing
that ``(r3 == 1)``. As a result, the outcome:
@@ -1076,8 +1075,8 @@ is captured by the following list of situations:
b. Wait-free read-side primitives for real-time use.
This focus on read-mostly situations means that RCU must interoperate
-with other synchronization primitives. For example, the ``add_gp()`` and
-``remove_gp_synchronous()`` examples discussed earlier use RCU to
+with other synchronization primitives. For example, the add_gp() and
+remove_gp_synchronous() examples discussed earlier use RCU to
protect readers and locking to coordinate updaters. However, the need
extends much farther, requiring that a variety of synchronization
primitives be legal within RCU read-side critical sections, including
@@ -1104,11 +1103,11 @@ memory barriers.
| sections. |
| Note that it *is* legal for a normal RCU read-side critical section |
| to conditionally acquire a sleeping locks (as in |
-| ``mutex_trylock()``), but only as long as it does not loop |
+| mutex_trylock()), but only as long as it does not loop |
| indefinitely attempting to conditionally acquire that sleeping locks. |
-| The key point is that things like ``mutex_trylock()`` either return |
+| The key point is that things like mutex_trylock() either return |
| with the mutex held, or return an error indication if the mutex was |
-| not immediately available. Either way, ``mutex_trylock()`` returns |
+| not immediately available. Either way, mutex_trylock() returns |
| immediately without sleeping. |
+-----------------------------------------------------------------------+
@@ -1182,8 +1181,8 @@ and has become decreasingly so as memory sizes have expanded and memory
costs have plummeted. However, as I learned from Matt Mackall's
`bloatwatch <http://elinux.org/Linux_Tiny-FAQ>`__ efforts, memory
footprint is critically important on single-CPU systems with
-non-preemptible (``CONFIG_PREEMPT=n``) kernels, and thus `tiny
-RCU <https://lkml.kernel.org/g/20090113221724.GA15307@linux.vnet.ibm.com>`__
+non-preemptible (``CONFIG_PREEMPTION=n``) kernels, and thus `tiny
+RCU <https://lore.kernel.org/r/20090113221724.GA15307@linux.vnet.ibm.com>`__
was born. Josh Triplett has since taken over the small-memory banner
with his `Linux kernel tinification <https://tiny.wiki.kernel.org/>`__
project, which resulted in `SRCU <Sleepable RCU_>`__ becoming optional
@@ -1191,57 +1190,57 @@ for those kernels not needing it.
The remaining performance requirements are, for the most part,
unsurprising. For example, in keeping with RCU's read-side
-specialization, ``rcu_dereference()`` should have negligible overhead
+specialization, rcu_dereference() should have negligible overhead
(for example, suppression of a few minor compiler optimizations).
-Similarly, in non-preemptible environments, ``rcu_read_lock()`` and
-``rcu_read_unlock()`` should have exactly zero overhead.
+Similarly, in non-preemptible environments, rcu_read_lock() and
+rcu_read_unlock() should have exactly zero overhead.
In preemptible environments, in the case where the RCU read-side
critical section was not preempted (as will be the case for the
-highest-priority real-time process), ``rcu_read_lock()`` and
-``rcu_read_unlock()`` should have minimal overhead. In particular, they
+highest-priority real-time process), rcu_read_lock() and
+rcu_read_unlock() should have minimal overhead. In particular, they
should not contain atomic read-modify-write operations, memory-barrier
instructions, preemption disabling, interrupt disabling, or backwards
branches. However, in the case where the RCU read-side critical section
-was preempted, ``rcu_read_unlock()`` may acquire spinlocks and disable
+was preempted, rcu_read_unlock() may acquire spinlocks and disable
interrupts. This is why it is better to nest an RCU read-side critical
section within a preempt-disable region than vice versa, at least in
cases where that critical section is short enough to avoid unduly
degrading real-time latencies.
-The ``synchronize_rcu()`` grace-period-wait primitive is optimized for
+The synchronize_rcu() grace-period-wait primitive is optimized for
throughput. It may therefore incur several milliseconds of latency in
addition to the duration of the longest RCU read-side critical section.
On the other hand, multiple concurrent invocations of
-``synchronize_rcu()`` are required to use batching optimizations so that
+synchronize_rcu() are required to use batching optimizations so that
they can be satisfied by a single underlying grace-period-wait
operation. For example, in the Linux kernel, it is not unusual for a
single grace-period-wait operation to serve more than `1,000 separate
invocations <https://www.usenix.org/conference/2004-usenix-annual-technical-conference/making-rcu-safe-deep-sub-millisecond-response>`__
-of ``synchronize_rcu()``, thus amortizing the per-invocation overhead
+of synchronize_rcu(), thus amortizing the per-invocation overhead
down to nearly zero. However, the grace-period optimization is also
required to avoid measurable degradation of real-time scheduling and
interrupt latencies.
-In some cases, the multi-millisecond ``synchronize_rcu()`` latencies are
-unacceptable. In these cases, ``synchronize_rcu_expedited()`` may be
+In some cases, the multi-millisecond synchronize_rcu() latencies are
+unacceptable. In these cases, synchronize_rcu_expedited() may be
used instead, reducing the grace-period latency down to a few tens of
microseconds on small systems, at least in cases where the RCU read-side
critical sections are short. There are currently no special latency
-requirements for ``synchronize_rcu_expedited()`` on large systems, but,
+requirements for synchronize_rcu_expedited() on large systems, but,
consistent with the empirical nature of the RCU specification, that is
subject to change. However, there most definitely are scalability
-requirements: A storm of ``synchronize_rcu_expedited()`` invocations on
+requirements: A storm of synchronize_rcu_expedited() invocations on
4096 CPUs should at least make reasonable forward progress. In return
-for its shorter latencies, ``synchronize_rcu_expedited()`` is permitted
+for its shorter latencies, synchronize_rcu_expedited() is permitted
to impose modest degradation of real-time latency on non-idle online
CPUs. Here, “modest” means roughly the same latency degradation as a
scheduling-clock interrupt.
There are a number of situations where even
-``synchronize_rcu_expedited()``'s reduced grace-period latency is
-unacceptable. In these situations, the asynchronous ``call_rcu()`` can
-be used in place of ``synchronize_rcu()`` as follows:
+synchronize_rcu_expedited()'s reduced grace-period latency is
+unacceptable. In these situations, the asynchronous call_rcu() can
+be used in place of synchronize_rcu() as follows:
::
@@ -1275,19 +1274,19 @@ be used in place of ``synchronize_rcu()`` as follows:
28 }
A definition of ``struct foo`` is finally needed, and appears on
-lines 1-5. The function ``remove_gp_cb()`` is passed to ``call_rcu()``
+lines 1-5. The function remove_gp_cb() is passed to call_rcu()
on line 25, and will be invoked after the end of a subsequent grace
-period. This gets the same effect as ``remove_gp_synchronous()``, but
+period. This gets the same effect as remove_gp_synchronous(), but
without forcing the updater to wait for a grace period to elapse. The
-``call_rcu()`` function may be used in a number of situations where
-neither ``synchronize_rcu()`` nor ``synchronize_rcu_expedited()`` would
-be legal, including within preempt-disable code, ``local_bh_disable()``
+call_rcu() function may be used in a number of situations where
+neither synchronize_rcu() nor synchronize_rcu_expedited() would
+be legal, including within preempt-disable code, local_bh_disable()
code, interrupt-disable code, and interrupt handlers. However, even
-``call_rcu()`` is illegal within NMI handlers and from idle and offline
-CPUs. The callback function (``remove_gp_cb()`` in this case) will be
+call_rcu() is illegal within NMI handlers and from idle and offline
+CPUs. The callback function (remove_gp_cb() in this case) will be
executed within softirq (software interrupt) environment within the
Linux kernel, either within a real softirq handler or under the
-protection of ``local_bh_disable()``. In both the Linux kernel and in
+protection of local_bh_disable(). In both the Linux kernel and in
userspace, it is bad practice to write an RCU callback function that
takes too long. Long-running operations should be relegated to separate
threads or (in the Linux kernel) workqueues.
@@ -1295,23 +1294,23 @@ threads or (in the Linux kernel) workqueues.
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| Why does line 19 use ``rcu_access_pointer()``? After all, |
-| ``call_rcu()`` on line 25 stores into the structure, which would |
+| Why does line 19 use rcu_access_pointer()? After all, |
+| call_rcu() on line 25 stores into the structure, which would |
| interact badly with concurrent insertions. Doesn't this mean that |
-| ``rcu_dereference()`` is required? |
+| rcu_dereference() is required? |
+-----------------------------------------------------------------------+
| **Answer**: |
+-----------------------------------------------------------------------+
| Presumably the ``->gp_lock`` acquired on line 18 excludes any |
-| changes, including any insertions that ``rcu_dereference()`` would |
+| changes, including any insertions that rcu_dereference() would |
| protect against. Therefore, any insertions will be delayed until |
| after ``->gp_lock`` is released on line 25, which in turn means that |
-| ``rcu_access_pointer()`` suffices. |
+| rcu_access_pointer() suffices. |
+-----------------------------------------------------------------------+
-However, all that ``remove_gp_cb()`` is doing is invoking ``kfree()`` on
+However, all that remove_gp_cb() is doing is invoking kfree() on
the data element. This is a common idiom, and is supported by
-``kfree_rcu()``, which allows “fire and forget” operation as shown
+kfree_rcu(), which allows “fire and forget” operation as shown
below:
::
@@ -1338,20 +1337,20 @@ below:
20 return true;
21 }
-Note that ``remove_gp_faf()`` simply invokes ``kfree_rcu()`` and
+Note that remove_gp_faf() simply invokes kfree_rcu() and
proceeds, without any need to pay any further attention to the
-subsequent grace period and ``kfree()``. It is permissible to invoke
-``kfree_rcu()`` from the same environments as for ``call_rcu()``.
-Interestingly enough, DYNIX/ptx had the equivalents of ``call_rcu()``
-and ``kfree_rcu()``, but not ``synchronize_rcu()``. This was due to the
+subsequent grace period and kfree(). It is permissible to invoke
+kfree_rcu() from the same environments as for call_rcu().
+Interestingly enough, DYNIX/ptx had the equivalents of call_rcu()
+and kfree_rcu(), but not synchronize_rcu(). This was due to the
fact that RCU was not heavily used within DYNIX/ptx, so the very few
-places that needed something like ``synchronize_rcu()`` simply
+places that needed something like synchronize_rcu() simply
open-coded it.
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
-| Earlier it was claimed that ``call_rcu()`` and ``kfree_rcu()`` |
+| Earlier it was claimed that call_rcu() and kfree_rcu() |
| allowed updaters to avoid being blocked by readers. But how can that |
| be correct, given that the invocation of the callback and the freeing |
| of the memory (respectively) must still wait for a grace period to |
@@ -1363,16 +1362,16 @@ open-coded it.
| definition would say that updates in garbage-collected languages |
| cannot complete until the next time the garbage collector runs, which |
| does not seem at all reasonable. The key point is that in most cases, |
-| an updater using either ``call_rcu()`` or ``kfree_rcu()`` can proceed |
-| to the next update as soon as it has invoked ``call_rcu()`` or |
-| ``kfree_rcu()``, without having to wait for a subsequent grace |
+| an updater using either call_rcu() or kfree_rcu() can proceed |
+| to the next update as soon as it has invoked call_rcu() or |
+| kfree_rcu(), without having to wait for a subsequent grace |
| period. |
+-----------------------------------------------------------------------+
But what if the updater must wait for the completion of code to be
executed after the end of the grace period, but has other tasks that can
be carried out in the meantime? The polling-style
-``get_state_synchronize_rcu()`` and ``cond_synchronize_rcu()`` functions
+get_state_synchronize_rcu() and cond_synchronize_rcu() functions
may be used for this purpose, as shown below:
::
@@ -1397,11 +1396,11 @@ may be used for this purpose, as shown below:
18 return true;
19 }
-On line 14, ``get_state_synchronize_rcu()`` obtains a “cookie” from RCU,
+On line 14, get_state_synchronize_rcu() obtains a “cookie” from RCU,
then line 15 carries out other tasks, and finally, line 16 returns
immediately if a grace period has elapsed in the meantime, but otherwise
waits as required. The need for ``get_state_synchronize_rcu`` and
-``cond_synchronize_rcu()`` has appeared quite recently, so it is too
+cond_synchronize_rcu() has appeared quite recently, so it is too
early to tell whether they will stand the test of time.
RCU thus provides a range of tools to allow updaters to strike the
@@ -1421,8 +1420,8 @@ example, an infinite loop in an RCU read-side critical section must by
definition prevent later grace periods from ever completing. For a more
involved example, consider a 64-CPU system built with
``CONFIG_RCU_NOCB_CPU=y`` and booted with ``rcu_nocbs=1-63``, where
-CPUs 1 through 63 spin in tight loops that invoke ``call_rcu()``. Even
-if these tight loops also contain calls to ``cond_resched()`` (thus
+CPUs 1 through 63 spin in tight loops that invoke call_rcu(). Even
+if these tight loops also contain calls to cond_resched() (thus
allowing grace periods to complete), CPU 0 simply will not be able to
invoke callbacks as fast as the other 63 CPUs can register them, at
least not until the system runs out of memory. In both of these
@@ -1435,21 +1434,21 @@ RCU takes the following steps to encourage timely completion of grace
periods:
#. If a grace period fails to complete within 100 milliseconds, RCU
- causes future invocations of ``cond_resched()`` on the holdout CPUs
+ causes future invocations of cond_resched() on the holdout CPUs
to provide an RCU quiescent state. RCU also causes those CPUs'
- ``need_resched()`` invocations to return ``true``, but only after the
+ need_resched() invocations to return ``true``, but only after the
corresponding CPU's next scheduling-clock.
#. CPUs mentioned in the ``nohz_full`` kernel boot parameter can run
indefinitely in the kernel without scheduling-clock interrupts, which
- defeats the above ``need_resched()`` strategem. RCU will therefore
- invoke ``resched_cpu()`` on any ``nohz_full`` CPUs still holding out
+ defeats the above need_resched() strategem. RCU will therefore
+ invoke resched_cpu() on any ``nohz_full`` CPUs still holding out
after 109 milliseconds.
#. In kernels built with ``CONFIG_RCU_BOOST=y``, if a given task that
has been preempted within an RCU read-side critical section is
holding out for more than 500 milliseconds, RCU will resort to
priority boosting.
#. If a CPU is still holding out 10 seconds into the grace period, RCU
- will invoke ``resched_cpu()`` on it regardless of its ``nohz_full``
+ will invoke resched_cpu() on it regardless of its ``nohz_full``
state.
The above values are defaults for systems running with ``HZ=1000``. They
@@ -1460,7 +1459,7 @@ caution when changing them. Note that these forward-progress measures
are provided only for RCU, not for `SRCU <Sleepable RCU_>`__ or `Tasks
RCU`_.
-RCU takes the following steps in ``call_rcu()`` to encourage timely
+RCU takes the following steps in call_rcu() to encourage timely
invocation of callbacks when any given non-\ ``rcu_nocbs`` CPU has
10,000 callbacks, or has 10,000 more callbacks than it had the last time
encouragement was provided:
@@ -1481,8 +1480,8 @@ RCU, not for `SRCU <Sleepable RCU_>`__ or `Tasks
RCU`_. Even for RCU, callback-invocation forward
progress for ``rcu_nocbs`` CPUs is much less well-developed, in part
because workloads benefiting from ``rcu_nocbs`` CPUs tend to invoke
-``call_rcu()`` relatively infrequently. If workloads emerge that need
-both ``rcu_nocbs`` CPUs and high ``call_rcu()`` invocation rates, then
+call_rcu() relatively infrequently. If workloads emerge that need
+both ``rcu_nocbs`` CPUs and high call_rcu() invocation rates, then
additional forward-progress work will be required.
Composability
@@ -1496,11 +1495,11 @@ in fact may be nested arbitrarily deeply. In practice, as with all
real-world implementations of composable constructs, there are
limitations.
-Implementations of RCU for which ``rcu_read_lock()`` and
-``rcu_read_unlock()`` generate no code, such as Linux-kernel RCU when
-``CONFIG_PREEMPT=n``, can be nested arbitrarily deeply. After all, there
+Implementations of RCU for which rcu_read_lock() and
+rcu_read_unlock() generate no code, such as Linux-kernel RCU when
+``CONFIG_PREEMPTION=n``, can be nested arbitrarily deeply. After all, there
is no overhead. Except that if all these instances of
-``rcu_read_lock()`` and ``rcu_read_unlock()`` are visible to the
+rcu_read_lock() and rcu_read_unlock() are visible to the
compiler, compilation will eventually fail due to exhausting memory,
mass storage, or user patience, whichever comes first. If the nesting is
not visible to the compiler, as is the case with mutually recursive
@@ -1558,11 +1557,11 @@ argue that such workloads should instead use something other than RCU,
the fact remains that RCU must handle such workloads gracefully. This
requirement is another factor driving batching of grace periods, but it
is also the driving force behind the checks for large numbers of queued
-RCU callbacks in the ``call_rcu()`` code path. Finally, high update
+RCU callbacks in the call_rcu() code path. Finally, high update
rates should not delay RCU read-side critical sections, although some
small read-side delays can occur when using
-``synchronize_rcu_expedited()``, courtesy of this function's use of
-``smp_call_function_single()``.
+synchronize_rcu_expedited(), courtesy of this function's use of
+smp_call_function_single().
Although all three of these corner cases were understood in the early
1990s, a simple user-level test consisting of ``close(open(path))`` in a
@@ -1583,48 +1582,48 @@ Software-Engineering Requirements
Between Murphy's Law and “To err is human”, it is necessary to guard
against mishaps and misuse:
-#. It is all too easy to forget to use ``rcu_read_lock()`` everywhere
+#. It is all too easy to forget to use rcu_read_lock() everywhere
that it is needed, so kernels built with ``CONFIG_PROVE_RCU=y`` will
- splat if ``rcu_dereference()`` is used outside of an RCU read-side
+ splat if rcu_dereference() is used outside of an RCU read-side
critical section. Update-side code can use
- ``rcu_dereference_protected()``, which takes a `lockdep
+ rcu_dereference_protected(), which takes a `lockdep
expression <https://lwn.net/Articles/371986/>`__ to indicate what is
providing the protection. If the indicated protection is not
provided, a lockdep splat is emitted.
Code shared between readers and updaters can use
- ``rcu_dereference_check()``, which also takes a lockdep expression,
- and emits a lockdep splat if neither ``rcu_read_lock()`` nor the
+ rcu_dereference_check(), which also takes a lockdep expression,
+ and emits a lockdep splat if neither rcu_read_lock() nor the
indicated protection is in place. In addition,
- ``rcu_dereference_raw()`` is used in those (hopefully rare) cases
+ rcu_dereference_raw() is used in those (hopefully rare) cases
where the required protection cannot be easily described. Finally,
- ``rcu_read_lock_held()`` is provided to allow a function to verify
+ rcu_read_lock_held() is provided to allow a function to verify
that it has been invoked within an RCU read-side critical section. I
was made aware of this set of requirements shortly after Thomas
Gleixner audited a number of RCU uses.
#. A given function might wish to check for RCU-related preconditions
upon entry, before using any other RCU API. The
- ``rcu_lockdep_assert()`` does this job, asserting the expression in
+ rcu_lockdep_assert() does this job, asserting the expression in
kernels having lockdep enabled and doing nothing otherwise.
-#. It is also easy to forget to use ``rcu_assign_pointer()`` and
- ``rcu_dereference()``, perhaps (incorrectly) substituting a simple
+#. It is also easy to forget to use rcu_assign_pointer() and
+ rcu_dereference(), perhaps (incorrectly) substituting a simple
assignment. To catch this sort of error, a given RCU-protected
pointer may be tagged with ``__rcu``, after which sparse will
complain about simple-assignment accesses to that pointer. Arnd
Bergmann made me aware of this requirement, and also supplied the
needed `patch series <https://lwn.net/Articles/376011/>`__.
#. Kernels built with ``CONFIG_DEBUG_OBJECTS_RCU_HEAD=y`` will splat if
- a data element is passed to ``call_rcu()`` twice in a row, without a
+ a data element is passed to call_rcu() twice in a row, without a
grace period in between. (This error is similar to a double free.)
The corresponding ``rcu_head`` structures that are dynamically
allocated are automatically tracked, but ``rcu_head`` structures
allocated on the stack must be initialized with
- ``init_rcu_head_on_stack()`` and cleaned up with
- ``destroy_rcu_head_on_stack()``. Similarly, statically allocated
+ init_rcu_head_on_stack() and cleaned up with
+ destroy_rcu_head_on_stack(). Similarly, statically allocated
non-stack ``rcu_head`` structures must be initialized with
- ``init_rcu_head()`` and cleaned up with ``destroy_rcu_head()``.
+ init_rcu_head() and cleaned up with destroy_rcu_head().
Mathieu Desnoyers made me aware of this requirement, and also
supplied the needed
- `patch <https://lkml.kernel.org/g/20100319013024.GA28456@Krystal>`__.
+ `patch <https://lore.kernel.org/r/20100319013024.GA28456@Krystal>`__.
#. An infinite loop in an RCU read-side critical section will eventually
trigger an RCU CPU stall warning splat, with the duration of
“eventually” being controlled by the ``RCU_CPU_STALL_TIMEOUT``
@@ -1638,9 +1637,9 @@ against mishaps and misuse:
``rcupdate.rcu_cpu_stall_suppress`` to suppress the splats. This
kernel parameter may also be set via ``sysfs``. Furthermore, RCU CPU
stall warnings are counter-productive during sysrq dumps and during
- panics. RCU therefore supplies the ``rcu_sysrq_start()`` and
- ``rcu_sysrq_end()`` API members to be called before and after long
- sysrq dumps. RCU also supplies the ``rcu_panic()`` notifier that is
+ panics. RCU therefore supplies the rcu_sysrq_start() and
+ rcu_sysrq_end() API members to be called before and after long
+ sysrq dumps. RCU also supplies the rcu_panic() notifier that is
automatically invoked at the beginning of a panic to suppress further
RCU CPU stall warnings.
@@ -1656,7 +1655,7 @@ against mishaps and misuse:
synchronization mechanism, for example, reference counting.
#. In kernels built with ``CONFIG_RCU_TRACE=y``, RCU-related information
is provided via event tracing.
-#. Open-coded use of ``rcu_assign_pointer()`` and ``rcu_dereference()``
+#. Open-coded use of rcu_assign_pointer() and rcu_dereference()
to create typical linked data structures can be surprisingly
error-prone. Therefore, RCU-protected `linked
lists <https://lwn.net/Articles/609973/#RCU%20List%20APIs>`__ and,
@@ -1665,12 +1664,11 @@ against mishaps and misuse:
other special-purpose RCU-protected data structures are available in
the Linux kernel and the userspace RCU library.
#. Some linked structures are created at compile time, but still require
- ``__rcu`` checking. The ``RCU_POINTER_INITIALIZER()`` macro serves
+ ``__rcu`` checking. The RCU_POINTER_INITIALIZER() macro serves
this purpose.
-#. It is not necessary to use ``rcu_assign_pointer()`` when creating
+#. It is not necessary to use rcu_assign_pointer() when creating
linked structures that are to be published via a single external
- pointer. The ``RCU_INIT_POINTER()`` macro is provided for this task
- and also for assigning ``NULL`` pointers at runtime.
+ pointer. The RCU_INIT_POINTER() macro is provided for this task.
This not a hard-and-fast list: RCU's diagnostic capabilities will
continue to be guided by the number and type of usage bugs found in
@@ -1716,7 +1714,7 @@ requires almost all of them be hidden behind a ``CONFIG_RCU_EXPERT``
This all should be quite obvious, but the fact remains that Linus
Torvalds recently had to
-`remind <https://lkml.kernel.org/g/CA+55aFy4wcCwaL4okTs8wXhGZ5h-ibecy_Meg9C4MNQrUnwMcg@mail.gmail.com>`__
+`remind <https://lore.kernel.org/r/CA+55aFy4wcCwaL4okTs8wXhGZ5h-ibecy_Meg9C4MNQrUnwMcg@mail.gmail.com>`__
me of this requirement.
Firmware Interface
@@ -1743,17 +1741,17 @@ Early Boot
~~~~~~~~~~
The Linux kernel's boot sequence is an interesting process, and RCU is
-used early, even before ``rcu_init()`` is invoked. In fact, a number of
+used early, even before rcu_init() is invoked. In fact, a number of
RCU's primitives can be used as soon as the initial task's
``task_struct`` is available and the boot CPU's per-CPU variables are
-set up. The read-side primitives (``rcu_read_lock()``,
-``rcu_read_unlock()``, ``rcu_dereference()``, and
-``rcu_access_pointer()``) will operate normally very early on, as will
-``rcu_assign_pointer()``.
+set up. The read-side primitives (rcu_read_lock(),
+rcu_read_unlock(), rcu_dereference(), and
+rcu_access_pointer()) will operate normally very early on, as will
+rcu_assign_pointer().
-Although ``call_rcu()`` may be invoked at any time during boot,
+Although call_rcu() may be invoked at any time during boot,
callbacks are not guaranteed to be invoked until after all of RCU's
-kthreads have been spawned, which occurs at ``early_initcall()`` time.
+kthreads have been spawned, which occurs at early_initcall() time.
This delay in callback invocation is due to the fact that RCU does not
invoke callbacks until it is fully initialized, and this full
initialization cannot occur until after the scheduler has initialized
@@ -1762,22 +1760,22 @@ it would be possible to invoke callbacks earlier, however, this is not a
panacea because there would be severe restrictions on what operations
those callbacks could invoke.
-Perhaps surprisingly, ``synchronize_rcu()`` and
-``synchronize_rcu_expedited()``, will operate normally during very early
+Perhaps surprisingly, synchronize_rcu() and
+synchronize_rcu_expedited(), will operate normally during very early
boot, the reason being that there is only one CPU and preemption is
-disabled. This means that the call ``synchronize_rcu()`` (or friends)
+disabled. This means that the call synchronize_rcu() (or friends)
itself is a quiescent state and thus a grace period, so the early-boot
implementation can be a no-op.
However, once the scheduler has spawned its first kthread, this early
-boot trick fails for ``synchronize_rcu()`` (as well as for
-``synchronize_rcu_expedited()``) in ``CONFIG_PREEMPT=y`` kernels. The
+boot trick fails for synchronize_rcu() (as well as for
+synchronize_rcu_expedited()) in ``CONFIG_PREEMPTION=y`` kernels. The
reason is that an RCU read-side critical section might be preempted,
-which means that a subsequent ``synchronize_rcu()`` really does have to
+which means that a subsequent synchronize_rcu() really does have to
wait for something, as opposed to simply returning immediately.
-Unfortunately, ``synchronize_rcu()`` can't do this until all of its
+Unfortunately, synchronize_rcu() can't do this until all of its
kthreads are spawned, which doesn't happen until some time during
-``early_initcalls()`` time. But this is no excuse: RCU is nevertheless
+early_initcalls() time. But this is no excuse: RCU is nevertheless
required to correctly handle synchronous grace periods during this time
period. Once all of its kthreads are up and running, RCU starts running
normally.
@@ -1820,7 +1818,7 @@ Interrupts and NMIs
The Linux kernel has interrupts, and RCU read-side critical sections are
legal within interrupt handlers and within interrupt-disabled regions of
-code, as are invocations of ``call_rcu()``.
+code, as are invocations of call_rcu().
Some Linux-kernel architectures can enter an interrupt handler from
non-idle process context, and then just never leave it, instead
@@ -1832,22 +1830,22 @@ way during a rewrite of RCU's dyntick-idle code.
The Linux kernel has non-maskable interrupts (NMIs), and RCU read-side
critical sections are legal within NMI handlers. Thankfully, RCU
-update-side primitives, including ``call_rcu()``, are prohibited within
+update-side primitives, including call_rcu(), are prohibited within
NMI handlers.
The name notwithstanding, some Linux-kernel architectures can have
nested NMIs, which RCU must handle correctly. Andy Lutomirski `surprised
-me <https://lkml.kernel.org/r/CALCETrXLq1y7e_dKFPgou-FKHB6Pu-r8+t-6Ds+8=va7anBWDA@mail.gmail.com>`__
+me <https://lore.kernel.org/r/CALCETrXLq1y7e_dKFPgou-FKHB6Pu-r8+t-6Ds+8=va7anBWDA@mail.gmail.com>`__
with this requirement; he also kindly surprised me with `an
-algorithm <https://lkml.kernel.org/r/CALCETrXSY9JpW3uE6H8WYk81sg56qasA2aqmjMPsq5dOtzso=g@mail.gmail.com>`__
+algorithm <https://lore.kernel.org/r/CALCETrXSY9JpW3uE6H8WYk81sg56qasA2aqmjMPsq5dOtzso=g@mail.gmail.com>`__
that meets this requirement.
Furthermore, NMI handlers can be interrupted by what appear to RCU to be
normal interrupts. One way that this can happen is for code that
-directly invokes ``rcu_irq_enter()`` and ``rcu_irq_exit()`` to be called
+directly invokes rcu_irq_enter() and rcu_irq_exit() to be called
from an NMI handler. This astonishing fact of life prompted the current
-code structure, which has ``rcu_irq_enter()`` invoking
-``rcu_nmi_enter()`` and ``rcu_irq_exit()`` invoking ``rcu_nmi_exit()``.
+code structure, which has rcu_irq_enter() invoking
+rcu_nmi_enter() and rcu_irq_exit() invoking rcu_nmi_exit().
And yes, I also learned of this requirement the hard way.
Loadable Modules
@@ -1857,45 +1855,45 @@ The Linux kernel has loadable modules, and these modules can also be
unloaded. After a given module has been unloaded, any attempt to call
one of its functions results in a segmentation fault. The module-unload
functions must therefore cancel any delayed calls to loadable-module
-functions, for example, any outstanding ``mod_timer()`` must be dealt
-with via ``del_timer_sync()`` or similar.
+functions, for example, any outstanding mod_timer() must be dealt
+with via del_timer_sync() or similar.
Unfortunately, there is no way to cancel an RCU callback; once you
-invoke ``call_rcu()``, the callback function is eventually going to be
+invoke call_rcu(), the callback function is eventually going to be
invoked, unless the system goes down first. Because it is normally
considered socially irresponsible to crash the system in response to a
module unload request, we need some other way to deal with in-flight RCU
callbacks.
-RCU therefore provides ``rcu_barrier()``, which waits until all
+RCU therefore provides rcu_barrier(), which waits until all
in-flight RCU callbacks have been invoked. If a module uses
-``call_rcu()``, its exit function should therefore prevent any future
-invocation of ``call_rcu()``, then invoke ``rcu_barrier()``. In theory,
-the underlying module-unload code could invoke ``rcu_barrier()``
+call_rcu(), its exit function should therefore prevent any future
+invocation of call_rcu(), then invoke rcu_barrier(). In theory,
+the underlying module-unload code could invoke rcu_barrier()
unconditionally, but in practice this would incur unacceptable
latencies.
Nikita Danilov noted this requirement for an analogous
filesystem-unmount situation, and Dipankar Sarma incorporated
-``rcu_barrier()`` into RCU. The need for ``rcu_barrier()`` for module
+rcu_barrier() into RCU. The need for rcu_barrier() for module
unloading became apparent later.
.. important::
- The ``rcu_barrier()`` function is not, repeat,
+ The rcu_barrier() function is not, repeat,
*not*, obligated to wait for a grace period. It is instead only required
to wait for RCU callbacks that have already been posted. Therefore, if
there are no RCU callbacks posted anywhere in the system,
- ``rcu_barrier()`` is within its rights to return immediately. Even if
- there are callbacks posted, ``rcu_barrier()`` does not necessarily need
+ rcu_barrier() is within its rights to return immediately. Even if
+ there are callbacks posted, rcu_barrier() does not necessarily need
to wait for a grace period.
+-----------------------------------------------------------------------+
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
| Wait a minute! Each RCU callbacks must wait for a grace period to |
-| complete, and ``rcu_barrier()`` must wait for each pre-existing |
-| callback to be invoked. Doesn't ``rcu_barrier()`` therefore need to |
+| complete, and rcu_barrier() must wait for each pre-existing |
+| callback to be invoked. Doesn't rcu_barrier() therefore need to |
| wait for a full grace period if there is even one callback posted |
| anywhere in the system? |
+-----------------------------------------------------------------------+
@@ -1904,14 +1902,14 @@ unloading became apparent later.
| Absolutely not!!! |
| Yes, each RCU callbacks must wait for a grace period to complete, but |
| it might well be partly (or even completely) finished waiting by the |
-| time ``rcu_barrier()`` is invoked. In that case, ``rcu_barrier()`` |
+| time rcu_barrier() is invoked. In that case, rcu_barrier() |
| need only wait for the remaining portion of the grace period to |
| elapse. So even if there are quite a few callbacks posted, |
-| ``rcu_barrier()`` might well return quite quickly. |
+| rcu_barrier() might well return quite quickly. |
| |
| So if you need to wait for a grace period as well as for all |
| pre-existing callbacks, you will need to invoke both |
-| ``synchronize_rcu()`` and ``rcu_barrier()``. If latency is a concern, |
+| synchronize_rcu() and rcu_barrier(). If latency is a concern, |
| you can always use workqueues to invoke them concurrently. |
+-----------------------------------------------------------------------+
@@ -1929,18 +1927,18 @@ The Linux-kernel CPU-hotplug implementation has notifiers that are used
to allow the various kernel subsystems (including RCU) to respond
appropriately to a given CPU-hotplug operation. Most RCU operations may
be invoked from CPU-hotplug notifiers, including even synchronous
-grace-period operations such as (``synchronize_rcu()`` and
-``synchronize_rcu_expedited()``). However, these synchronous operations
+grace-period operations such as (synchronize_rcu() and
+synchronize_rcu_expedited()). However, these synchronous operations
do block and therefore cannot be invoked from notifiers that execute via
-``stop_machine()``, specifically those between the ``CPUHP_AP_OFFLINE``
+stop_machine(), specifically those between the ``CPUHP_AP_OFFLINE``
and ``CPUHP_AP_ONLINE`` states.
-In addition, all-callback-wait operations such as ``rcu_barrier()`` may
+In addition, all-callback-wait operations such as rcu_barrier() may
not be invoked from any CPU-hotplug notifier. This restriction is due
to the fact that there are phases of CPU-hotplug operations where the
outgoing CPU's callbacks will not be invoked until after the CPU-hotplug
operation ends, which could also result in deadlock. Furthermore,
-``rcu_barrier()`` blocks CPU-hotplug operations during its execution,
+rcu_barrier() blocks CPU-hotplug operations during its execution,
which results in another type of deadlock when invoked from a CPU-hotplug
notifier.
@@ -1955,12 +1953,12 @@ if offline CPUs block an RCU grace period for too long.
An offline CPU's quiescent state will be reported either:
-1. As the CPU goes offline using RCU's hotplug notifier (``rcu_report_dead()``).
-2. When grace period initialization (``rcu_gp_init()``) detects a
+1. As the CPU goes offline using RCU's hotplug notifier (rcu_report_dead()).
+2. When grace period initialization (rcu_gp_init()) detects a
race either with CPU offlining or with a task unblocking on a leaf
``rcu_node`` structure whose CPUs are all offline.
-The CPU-online path (``rcu_cpu_starting()``) should never need to report
+The CPU-online path (rcu_cpu_starting()) should never need to report
a quiescent state for an offline CPU. However, as a debugging measure,
it does emit a warning if a quiescent state was not already reported
for that CPU.
@@ -1984,11 +1982,11 @@ room for further improvement.
There is no longer any prohibition against holding any of
scheduler's runqueue or priority-inheritance spinlocks across an
-``rcu_read_unlock()``, even if interrupts and preemption were enabled
+rcu_read_unlock(), even if interrupts and preemption were enabled
somewhere within the corresponding RCU read-side critical section.
-Therefore, it is now perfectly legal to execute ``rcu_read_lock()``
+Therefore, it is now perfectly legal to execute rcu_read_lock()
with preemption enabled, acquire one of the scheduler locks, and hold
-that lock across the matching ``rcu_read_unlock()``.
+that lock across the matching rcu_read_unlock().
Similarly, the RCU flavor consolidation has removed the need for negative
nesting. The fact that interrupt-disabled regions of code act as RCU
@@ -1999,7 +1997,7 @@ Tracing and RCU
~~~~~~~~~~~~~~~
It is possible to use tracing on RCU code, but tracing itself uses RCU.
-For this reason, ``rcu_dereference_raw_check()`` is provided for use
+For this reason, rcu_dereference_raw_check() is provided for use
by tracing, which avoids the destructive recursion that could otherwise
ensue. This API is also used by virtualization in some architectures,
where RCU readers execute in environments in which tracing cannot be
@@ -2010,12 +2008,12 @@ Accesses to User Memory and RCU
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The kernel needs to access user-space memory, for example, to access data
-referenced by system-call parameters. The ``get_user()`` macro does this job.
+referenced by system-call parameters. The get_user() macro does this job.
However, user-space memory might well be paged out, which means that
-``get_user()`` might well page-fault and thus block while waiting for the
+get_user() might well page-fault and thus block while waiting for the
resulting I/O to complete. It would be a very bad thing for the compiler to
-reorder a ``get_user()`` invocation into an RCU read-side critical section.
+reorder a get_user() invocation into an RCU read-side critical section.
For example, suppose that the source code looked like this:
@@ -2040,23 +2038,23 @@ the following:
5 rcu_read_unlock();
6 do_something_with(v, user_v);
-If the compiler did make this transformation in a ``CONFIG_PREEMPT=n`` kernel
-build, and if ``get_user()`` did page fault, the result would be a quiescent
+If the compiler did make this transformation in a ``CONFIG_PREEMPTION=n`` kernel
+build, and if get_user() did page fault, the result would be a quiescent
state in the middle of an RCU read-side critical section. This misplaced
quiescent state could result in line 4 being a use-after-free access,
which could be bad for your kernel's actuarial statistics. Similar examples
-can be constructed with the call to ``get_user()`` preceding the
-``rcu_read_lock()``.
+can be constructed with the call to get_user() preceding the
+rcu_read_lock().
-Unfortunately, ``get_user()`` doesn't have any particular ordering properties,
+Unfortunately, get_user() doesn't have any particular ordering properties,
and in some architectures the underlying ``asm`` isn't even marked
``volatile``. And even if it was marked ``volatile``, the above access to
``p->value`` is not volatile, so the compiler would not have any reason to keep
those two accesses in order.
-Therefore, the Linux-kernel definitions of ``rcu_read_lock()`` and
-``rcu_read_unlock()`` must act as compiler barriers, at least for outermost
-instances of ``rcu_read_lock()`` and ``rcu_read_unlock()`` within a nested set
+Therefore, the Linux-kernel definitions of rcu_read_lock() and
+rcu_read_unlock() must act as compiler barriers, at least for outermost
+instances of rcu_read_lock() and rcu_read_unlock() within a nested set
of RCU read-side critical sections.
Energy Efficiency
@@ -2071,26 +2069,26 @@ call.
Because RCU avoids interrupting idle CPUs, it is illegal to execute an
RCU read-side critical section on an idle CPU. (Kernels built with
-``CONFIG_PROVE_RCU=y`` will splat if you try it.) The ``RCU_NONIDLE()``
+``CONFIG_PROVE_RCU=y`` will splat if you try it.) The RCU_NONIDLE()
macro and ``_rcuidle`` event tracing is provided to work around this
-restriction. In addition, ``rcu_is_watching()`` may be used to test
+restriction. In addition, rcu_is_watching() may be used to test
whether or not it is currently legal to run RCU read-side critical
sections on this CPU. I learned of the need for diagnostics on the one
-hand and ``RCU_NONIDLE()`` on the other while inspecting idle-loop code.
+hand and RCU_NONIDLE() on the other while inspecting idle-loop code.
Steven Rostedt supplied ``_rcuidle`` event tracing, which is used quite
heavily in the idle loop. However, there are some restrictions on the
-code placed within ``RCU_NONIDLE()``:
+code placed within RCU_NONIDLE():
#. Blocking is prohibited. In practice, this is not a serious
restriction given that idle tasks are prohibited from blocking to
begin with.
-#. Although nesting ``RCU_NONIDLE()`` is permitted, they cannot nest
+#. Although nesting RCU_NONIDLE() is permitted, they cannot nest
indefinitely deeply. However, given that they can be nested on the
order of a million deep, even on 32-bit systems, this should not be a
serious restriction. This nesting limit would probably be reached
long after the compiler OOMed or the stack overflowed.
-#. Any code path that enters ``RCU_NONIDLE()`` must sequence out of that
- same ``RCU_NONIDLE()``. For example, the following is grossly
+#. Any code path that enters RCU_NONIDLE() must sequence out of that
+ same RCU_NONIDLE(). For example, the following is grossly
illegal:
::
@@ -2103,7 +2101,7 @@ code placed within ``RCU_NONIDLE()``:
It is just as illegal to transfer control into the middle of
- ``RCU_NONIDLE()``'s argument. Yes, in theory, you could transfer in
+ RCU_NONIDLE()'s argument. Yes, in theory, you could transfer in
as long as you also transferred out, but in practice you could also
expect to get sharply worded review comments.
@@ -2195,9 +2193,9 @@ scheduling-clock interrupt be enabled when RCU needs it to be:
sections, and RCU believes this CPU to be idle, no problem. This
sort of thing is used by some architectures for light-weight
exception handlers, which can then avoid the overhead of
- ``rcu_irq_enter()`` and ``rcu_irq_exit()`` at exception entry and
+ rcu_irq_enter() and rcu_irq_exit() at exception entry and
exit, respectively. Some go further and avoid the entireties of
- ``irq_enter()`` and ``irq_exit()``.
+ irq_enter() and irq_exit().
Just make very sure you are running some of your tests with
``CONFIG_PROVE_RCU=y``, just in case one of your code paths was in
fact joking about not doing RCU read-side critical sections.
@@ -2221,7 +2219,7 @@ scheduling-clock interrupt be enabled when RCU needs it to be:
| **Quick Quiz**: |
+-----------------------------------------------------------------------+
| But what if my driver has a hardware interrupt handler that can run |
-| for many seconds? I cannot invoke ``schedule()`` from an hardware |
+| for many seconds? I cannot invoke schedule() from an hardware |
| interrupt handler, after all! |
+-----------------------------------------------------------------------+
| **Answer**: |
@@ -2243,8 +2241,8 @@ Memory Efficiency
Although small-memory non-realtime systems can simply use Tiny RCU, code
size is only one aspect of memory efficiency. Another aspect is the size
-of the ``rcu_head`` structure used by ``call_rcu()`` and
-``kfree_rcu()``. Although this structure contains nothing more than a
+of the ``rcu_head`` structure used by call_rcu() and
+kfree_rcu(). Although this structure contains nothing more than a
pair of pointers, it does appear in many RCU-protected data structures,
including some that are size critical. The ``page`` structure is a case
in point, as evidenced by the many occurrences of the ``union`` keyword
@@ -2254,7 +2252,7 @@ This need for memory efficiency is one reason that RCU uses hand-crafted
singly linked lists to track the ``rcu_head`` structures that are
waiting for a grace period to elapse. It is also the reason why
``rcu_head`` structures do not contain debug information, such as fields
-tracking the file and line of the ``call_rcu()`` or ``kfree_rcu()`` that
+tracking the file and line of the call_rcu() or kfree_rcu() that
posted them. Although this information might appear in debug-only kernel
builds at some point, in the meantime, the ``->func`` field will often
provide the needed debug information.
@@ -2264,18 +2262,18 @@ more extreme measures. Returning to the ``page`` structure, the
``rcu_head`` field shares storage with a great many other structures
that are used at various points in the corresponding page's lifetime. In
order to correctly resolve certain `race
-conditions <https://lkml.kernel.org/g/1439976106-137226-1-git-send-email-kirill.shutemov@linux.intel.com>`__,
+conditions <https://lore.kernel.org/r/1439976106-137226-1-git-send-email-kirill.shutemov@linux.intel.com>`__,
the Linux kernel's memory-management subsystem needs a particular bit to
remain zero during all phases of grace-period processing, and that bit
happens to map to the bottom bit of the ``rcu_head`` structure's
-``->next`` field. RCU makes this guarantee as long as ``call_rcu()`` is
-used to post the callback, as opposed to ``kfree_rcu()`` or some future
-“lazy” variant of ``call_rcu()`` that might one day be created for
+``->next`` field. RCU makes this guarantee as long as call_rcu() is
+used to post the callback, as opposed to kfree_rcu() or some future
+“lazy” variant of call_rcu() that might one day be created for
energy-efficiency purposes.
That said, there are limits. RCU requires that the ``rcu_head``
structure be aligned to a two-byte boundary, and passing a misaligned
-``rcu_head`` structure to one of the ``call_rcu()`` family of functions
+``rcu_head`` structure to one of the call_rcu() family of functions
will result in a splat. It is therefore necessary to exercise caution
when packing structures containing fields of type ``rcu_head``. Why not
a four-byte or even eight-byte alignment requirement? Because the m68k
@@ -2299,7 +2297,7 @@ hot code paths in performance-critical portions of the Linux kernel's
networking, security, virtualization, and scheduling code paths. RCU
must therefore use efficient implementations, especially in its
read-side primitives. To that end, it would be good if preemptible RCU's
-implementation of ``rcu_read_lock()`` could be inlined, however, doing
+implementation of rcu_read_lock() could be inlined, however, doing
this requires resolving ``#include`` issues with the ``task_struct``
structure.
@@ -2312,23 +2310,23 @@ on the ``rcu_node`` structure. RCU is required to tolerate all CPUs
continuously invoking any combination of RCU's runtime primitives with
minimal per-operation overhead. In fact, in many cases, increasing load
must *decrease* the per-operation overhead, witness the batching
-optimizations for ``synchronize_rcu()``, ``call_rcu()``,
-``synchronize_rcu_expedited()``, and ``rcu_barrier()``. As a general
+optimizations for synchronize_rcu(), call_rcu(),
+synchronize_rcu_expedited(), and rcu_barrier(). As a general
rule, RCU must cheerfully accept whatever the rest of the Linux kernel
decides to throw at it.
The Linux kernel is used for real-time workloads, especially in
conjunction with the `-rt
-patchset <https://rt.wiki.kernel.org/index.php/Main_Page>`__. The
+patchset <https://wiki.linuxfoundation.org/realtime/>`__. The
real-time-latency response requirements are such that the traditional
approach of disabling preemption across RCU read-side critical sections
-is inappropriate. Kernels built with ``CONFIG_PREEMPT=y`` therefore use
+is inappropriate. Kernels built with ``CONFIG_PREEMPTION=y`` therefore use
an RCU implementation that allows RCU read-side critical sections to be
preempted. This requirement made its presence known after users made it
clear that an earlier `real-time
patch <https://lwn.net/Articles/107930/>`__ did not meet their needs, in
conjunction with some `RCU
-issues <https://lkml.kernel.org/g/20050318002026.GA2693@us.ibm.com>`__
+issues <https://lore.kernel.org/r/20050318002026.GA2693@us.ibm.com>`__
encountered by a very early version of the -rt patchset.
In addition, RCU must make do with a sub-100-microsecond real-time
@@ -2346,7 +2344,7 @@ number of race conditions.
RCU must avoid degrading real-time response for CPU-bound threads,
whether executing in usermode (which is one use case for
``CONFIG_NO_HZ_FULL=y``) or in the kernel. That said, CPU-bound loops in
-the kernel must execute ``cond_resched()`` at least once per few tens of
+the kernel must execute cond_resched() at least once per few tens of
milliseconds in order to avoid receiving an IPI from RCU.
Finally, RCU's status as a synchronization primitive means that any RCU
@@ -2412,7 +2410,7 @@ grace periods from ever ending. The result was an out-of-memory
condition and a system hang.
The solution was the creation of RCU-bh, which does
-``local_bh_disable()`` across its read-side critical sections, and which
+local_bh_disable() across its read-side critical sections, and which
uses the transition from one type of softirq processing to another as a
quiescent state in addition to context switch, idle, user mode, and
offline. This means that RCU-bh grace periods can complete even when
@@ -2420,31 +2418,31 @@ some of the CPUs execute in softirq indefinitely, thus allowing
algorithms based on RCU-bh to withstand network-based denial-of-service
attacks.
-Because ``rcu_read_lock_bh()`` and ``rcu_read_unlock_bh()`` disable and
+Because rcu_read_lock_bh() and rcu_read_unlock_bh() disable and
re-enable softirq handlers, any attempt to start a softirq handlers
during the RCU-bh read-side critical section will be deferred. In this
-case, ``rcu_read_unlock_bh()`` will invoke softirq processing, which can
+case, rcu_read_unlock_bh() will invoke softirq processing, which can
take considerable time. One can of course argue that this softirq
overhead should be associated with the code following the RCU-bh
-read-side critical section rather than ``rcu_read_unlock_bh()``, but the
+read-side critical section rather than rcu_read_unlock_bh(), but the
fact is that most profiling tools cannot be expected to make this sort
of fine distinction. For example, suppose that a three-millisecond-long
RCU-bh read-side critical section executes during a time of heavy
networking load. There will very likely be an attempt to invoke at least
one softirq handler during that three milliseconds, but any such
invocation will be delayed until the time of the
-``rcu_read_unlock_bh()``. This can of course make it appear at first
-glance as if ``rcu_read_unlock_bh()`` was executing very slowly.
+rcu_read_unlock_bh(). This can of course make it appear at first
+glance as if rcu_read_unlock_bh() was executing very slowly.
The `RCU-bh
API <https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table>`__
-includes ``rcu_read_lock_bh()``, ``rcu_read_unlock_bh()``,
-``rcu_dereference_bh()``, ``rcu_dereference_bh_check()``,
-``synchronize_rcu_bh()``, ``synchronize_rcu_bh_expedited()``,
-``call_rcu_bh()``, ``rcu_barrier_bh()``, and
-``rcu_read_lock_bh_held()``. However, the update-side APIs are now
-simple wrappers for other RCU flavors, namely RCU-sched in
-CONFIG_PREEMPT=n kernels and RCU-preempt otherwise.
+includes rcu_read_lock_bh(), rcu_read_unlock_bh(), rcu_dereference_bh(),
+rcu_dereference_bh_check(), and rcu_read_lock_bh_held(). However, the
+old RCU-bh update-side APIs are now gone, replaced by synchronize_rcu(),
+synchronize_rcu_expedited(), call_rcu(), and rcu_barrier(). In addition,
+anything that disables bottom halves also marks an RCU-bh read-side
+critical section, including local_bh_disable() and local_bh_enable(),
+local_irq_save() and local_irq_restore(), and so on.
Sched Flavor (Historical)
~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -2462,32 +2460,32 @@ not have this property, given that any point in the code outside of an
RCU read-side critical section can be a quiescent state. Therefore,
*RCU-sched* was created, which follows “classic” RCU in that an
RCU-sched grace period waits for pre-existing interrupt and NMI
-handlers. In kernels built with ``CONFIG_PREEMPT=n``, the RCU and
+handlers. In kernels built with ``CONFIG_PREEMPTION=n``, the RCU and
RCU-sched APIs have identical implementations, while kernels built with
-``CONFIG_PREEMPT=y`` provide a separate implementation for each.
+``CONFIG_PREEMPTION=y`` provide a separate implementation for each.
-Note well that in ``CONFIG_PREEMPT=y`` kernels,
-``rcu_read_lock_sched()`` and ``rcu_read_unlock_sched()`` disable and
+Note well that in ``CONFIG_PREEMPTION=y`` kernels,
+rcu_read_lock_sched() and rcu_read_unlock_sched() disable and
re-enable preemption, respectively. This means that if there was a
preemption attempt during the RCU-sched read-side critical section,
-``rcu_read_unlock_sched()`` will enter the scheduler, with all the
-latency and overhead entailed. Just as with ``rcu_read_unlock_bh()``,
-this can make it look as if ``rcu_read_unlock_sched()`` was executing
+rcu_read_unlock_sched() will enter the scheduler, with all the
+latency and overhead entailed. Just as with rcu_read_unlock_bh(),
+this can make it look as if rcu_read_unlock_sched() was executing
very slowly. However, the highest-priority task won't be preempted, so
-that task will enjoy low-overhead ``rcu_read_unlock_sched()``
+that task will enjoy low-overhead rcu_read_unlock_sched()
invocations.
The `RCU-sched
API <https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table>`__
-includes ``rcu_read_lock_sched()``, ``rcu_read_unlock_sched()``,
-``rcu_read_lock_sched_notrace()``, ``rcu_read_unlock_sched_notrace()``,
-``rcu_dereference_sched()``, ``rcu_dereference_sched_check()``,
-``synchronize_sched()``, ``synchronize_rcu_sched_expedited()``,
-``call_rcu_sched()``, ``rcu_barrier_sched()``, and
-``rcu_read_lock_sched_held()``. However, anything that disables
-preemption also marks an RCU-sched read-side critical section, including
-``preempt_disable()`` and ``preempt_enable()``, ``local_irq_save()`` and
-``local_irq_restore()``, and so on.
+includes rcu_read_lock_sched(), rcu_read_unlock_sched(),
+rcu_read_lock_sched_notrace(), rcu_read_unlock_sched_notrace(),
+rcu_dereference_sched(), rcu_dereference_sched_check(), and
+rcu_read_lock_sched_held(). However, the old RCU-sched update-side APIs
+are now gone, replaced by synchronize_rcu(), synchronize_rcu_expedited(),
+call_rcu(), and rcu_barrier(). In addition, anything that disables
+preemption also marks an RCU-sched read-side critical section,
+including preempt_disable() and preempt_enable(), local_irq_save()
+and local_irq_restore(), and so on.
Sleepable RCU
~~~~~~~~~~~~~
@@ -2509,7 +2507,7 @@ this structure must be passed in to each SRCU function, for example,
structure. The key benefit of these domains is that a slow SRCU reader
in one domain does not delay an SRCU grace period in some other domain.
That said, one consequence of these domains is that read-side code must
-pass a “cookie” from ``srcu_read_lock()`` to ``srcu_read_unlock()``, for
+pass a “cookie” from srcu_read_lock() to srcu_read_unlock(), for
example, as follows:
::
@@ -2539,24 +2537,24 @@ period to elapse. For example, this results in a self-deadlock:
6 srcu_read_unlock(&ss, idx);
However, if line 5 acquired a mutex that was held across a
-``synchronize_srcu()`` for domain ``ss``, deadlock would still be
+synchronize_srcu() for domain ``ss``, deadlock would still be
possible. Furthermore, if line 5 acquired a mutex that was held across a
-``synchronize_srcu()`` for some other domain ``ss1``, and if an
+synchronize_srcu() for some other domain ``ss1``, and if an
``ss1``-domain SRCU read-side critical section acquired another mutex
-that was held across as ``ss``-domain ``synchronize_srcu()``, deadlock
+that was held across as ``ss``-domain synchronize_srcu(), deadlock
would again be possible. Such a deadlock cycle could extend across an
arbitrarily large number of different SRCU domains. Again, with great
power comes great responsibility.
Unlike the other RCU flavors, SRCU read-side critical sections can run
on idle and even offline CPUs. This ability requires that
-``srcu_read_lock()`` and ``srcu_read_unlock()`` contain memory barriers,
+srcu_read_lock() and srcu_read_unlock() contain memory barriers,
which means that SRCU readers will run a bit slower than would RCU
-readers. It also motivates the ``smp_mb__after_srcu_read_unlock()`` API,
-which, in combination with ``srcu_read_unlock()``, guarantees a full
+readers. It also motivates the smp_mb__after_srcu_read_unlock() API,
+which, in combination with srcu_read_unlock(), guarantees a full
memory barrier.
-Also unlike other RCU flavors, ``synchronize_srcu()`` may **not** be
+Also unlike other RCU flavors, synchronize_srcu() may **not** be
invoked from CPU-hotplug notifiers, due to the fact that SRCU grace
periods make use of timers and the possibility of timers being
temporarily “stranded” on the outgoing CPU. This stranding of timers
@@ -2565,7 +2563,7 @@ the CPU-hotplug process. The problem is that if a notifier is waiting on
an SRCU grace period, that grace period is waiting on a timer, and that
timer is stranded on the outgoing CPU, then the notifier will never be
awakened, in other words, deadlock has occurred. This same situation of
-course also prohibits ``srcu_barrier()`` from being invoked from
+course also prohibits srcu_barrier() from being invoked from
CPU-hotplug notifiers.
SRCU also differs from other RCU flavors in that SRCU's expedited and
@@ -2576,12 +2574,12 @@ have not yet completed. (But please note that this is a property of the
current implementation, not necessarily of future implementations.) In
addition, if SRCU has been idle for longer than the interval specified
by the ``srcutree.exp_holdoff`` kernel boot parameter (25 microseconds
-by default), and if a ``synchronize_srcu()`` invocation ends this idle
+by default), and if a synchronize_srcu() invocation ends this idle
period, that invocation will be automatically expedited.
As of v4.12, SRCU's callbacks are maintained per-CPU, eliminating a
locking bottleneck present in prior kernel versions. Although this will
-allow users to put much heavier stress on ``call_srcu()``, it is
+allow users to put much heavier stress on call_srcu(), it is
important to note that SRCU does not yet take any special steps to deal
with callback flooding. So if you are posting (say) 10,000 SRCU
callbacks per second per CPU, you are probably totally OK, but if you
@@ -2592,14 +2590,32 @@ of your CPUs and the size of your memory.
The `SRCU
API <https://lwn.net/Articles/609973/#RCU%20Per-Flavor%20API%20Table>`__
-includes ``srcu_read_lock()``, ``srcu_read_unlock()``,
-``srcu_dereference()``, ``srcu_dereference_check()``,
-``synchronize_srcu()``, ``synchronize_srcu_expedited()``,
-``call_srcu()``, ``srcu_barrier()``, and ``srcu_read_lock_held()``. It
-also includes ``DEFINE_SRCU()``, ``DEFINE_STATIC_SRCU()``, and
-``init_srcu_struct()`` APIs for defining and initializing
+includes srcu_read_lock(), srcu_read_unlock(),
+srcu_dereference(), srcu_dereference_check(),
+synchronize_srcu(), synchronize_srcu_expedited(),
+call_srcu(), srcu_barrier(), and srcu_read_lock_held(). It
+also includes DEFINE_SRCU(), DEFINE_STATIC_SRCU(), and
+init_srcu_struct() APIs for defining and initializing
``srcu_struct`` structures.
+More recently, the SRCU API has added polling interfaces:
+
+#. start_poll_synchronize_srcu() returns a cookie identifying
+ the completion of a future SRCU grace period and ensures
+ that this grace period will be started.
+#. poll_state_synchronize_srcu() returns ``true`` iff the
+ specified cookie corresponds to an already-completed
+ SRCU grace period.
+#. get_state_synchronize_srcu() returns a cookie just like
+ start_poll_synchronize_srcu() does, but differs in that
+ it does nothing to ensure that any future SRCU grace period
+ will be started.
+
+These functions are used to avoid unnecessary SRCU grace periods in
+certain types of buffer-cache algorithms having multi-stage age-out
+mechanisms. The idea is that by the time the block has aged completely
+from the cache, an SRCU grace period will be very likely to have elapsed.
+
Tasks RCU
~~~~~~~~~
@@ -2608,11 +2624,11 @@ required to install different types of probes. It would be good to be
able to free old trampolines, which sounds like a job for some form of
RCU. However, because it is necessary to be able to install a trace
anywhere in the code, it is not possible to use read-side markers such
-as ``rcu_read_lock()`` and ``rcu_read_unlock()``. In addition, it does
+as rcu_read_lock() and rcu_read_unlock(). In addition, it does
not work to have these markers in the trampoline itself, because there
-would need to be instructions following ``rcu_read_unlock()``. Although
-``synchronize_rcu()`` would guarantee that execution reached the
-``rcu_read_unlock()``, it would not be able to guarantee that execution
+would need to be instructions following rcu_read_unlock(). Although
+synchronize_rcu() would guarantee that execution reached the
+rcu_read_unlock(), it would not be able to guarantee that execution
had completely left the trampoline. Worse yet, in some situations
the trampoline's protection must extend a few instructions *prior* to
execution reaching the trampoline. For example, these few instructions
@@ -2623,16 +2639,16 @@ actually reached the trampoline itself.
The solution, in the form of `Tasks
RCU <https://lwn.net/Articles/607117/>`__, is to have implicit read-side
critical sections that are delimited by voluntary context switches, that
-is, calls to ``schedule()``, ``cond_resched()``, and
-``synchronize_rcu_tasks()``. In addition, transitions to and from
+is, calls to schedule(), cond_resched(), and
+synchronize_rcu_tasks(). In addition, transitions to and from
userspace execution also delimit tasks-RCU read-side critical sections.
The tasks-RCU API is quite compact, consisting only of
-``call_rcu_tasks()``, ``synchronize_rcu_tasks()``, and
-``rcu_barrier_tasks()``. In ``CONFIG_PREEMPT=n`` kernels, trampolines
-cannot be preempted, so these APIs map to ``call_rcu()``,
-``synchronize_rcu()``, and ``rcu_barrier()``, respectively. In
-``CONFIG_PREEMPT=y`` kernels, trampolines can be preempted, and these
+call_rcu_tasks(), synchronize_rcu_tasks(), and
+rcu_barrier_tasks(). In ``CONFIG_PREEMPTION=n`` kernels, trampolines
+cannot be preempted, so these APIs map to call_rcu(),
+synchronize_rcu(), and rcu_barrier(), respectively. In
+``CONFIG_PREEMPTION=y`` kernels, trampolines can be preempted, and these
three APIs are therefore implemented by separate functions that check
for voluntary context switches.
@@ -2646,8 +2662,8 @@ grace-period state machine so as to avoid the need for the additional
latency.
RCU disables CPU hotplug in a few places, perhaps most notably in the
-``rcu_barrier()`` operations. If there is a strong reason to use
-``rcu_barrier()`` in CPU-hotplug notifiers, it will be necessary to
+rcu_barrier() operations. If there is a strong reason to use
+rcu_barrier() in CPU-hotplug notifiers, it will be necessary to
avoid disabling CPU hotplug. This would introduce some complexity, so
there had better be a *very* good reason.
@@ -2664,7 +2680,7 @@ However, this combining tree does not spread its memory across NUMA
nodes nor does it align the CPU groups with hardware features such as
sockets or cores. Such spreading and alignment is currently believed to
be unnecessary because the hotpath read-side primitives do not access
-the combining tree, nor does ``call_rcu()`` in the common case. If you
+the combining tree, nor does call_rcu() in the common case. If you
believe that your architecture needs such spreading and alignment, then
your architecture should also benefit from the
``rcutree.rcu_fanout_leaf`` boot parameter, which can be set to the
@@ -2685,7 +2701,7 @@ likely that adjustments will be required to more gracefully handle
extreme loads. It might also be necessary to be able to relate CPU
utilization by RCU's kthreads and softirq handlers to the code that
instigated this CPU utilization. For example, RCU callback overhead
-might be charged back to the originating ``call_rcu()`` instance, though
+might be charged back to the originating call_rcu() instance, though
probably not in production kernels.
Additional work may be required to provide reasonable forward-progress
diff --git a/Documentation/RCU/NMI-RCU.rst b/Documentation/RCU/NMI-RCU.rst
index 180958388ff9..2a92bc685ef1 100644
--- a/Documentation/RCU/NMI-RCU.rst
+++ b/Documentation/RCU/NMI-RCU.rst
@@ -8,8 +8,7 @@ Although RCU is usually used to protect read-mostly data structures,
it is possible to use RCU to provide dynamic non-maskable interrupt
handlers, as well as dynamic irq handlers. This document describes
how to do this, drawing loosely from Zwane Mwaikambo's NMI-timer
-work in "arch/x86/oprofile/nmi_timer_int.c" and in
-"arch/x86/kernel/traps.c".
+work in "arch/x86/kernel/traps.c".
The relevant pieces of code are listed below, each followed by a
brief explanation::
diff --git a/Documentation/RCU/checklist.rst b/Documentation/RCU/checklist.rst
index bb7128eb322e..1030119294d0 100644
--- a/Documentation/RCU/checklist.rst
+++ b/Documentation/RCU/checklist.rst
@@ -70,7 +70,7 @@ over a rather long period of time, but improvements are always welcome!
is less readable and prevents lockdep from detecting locking issues.
Letting RCU-protected pointers "leak" out of an RCU read-side
- critical section is every bid as bad as letting them leak out
+ critical section is every bit as bad as letting them leak out
from under a lock. Unless, of course, you have arranged some
other means of protection, such as a lock or a reference count
-before- letting them out of the RCU read-side critical section.
@@ -129,9 +129,7 @@ over a rather long period of time, but improvements are always welcome!
accesses. The rcu_dereference() primitive ensures that
the CPU picks up the pointer before it picks up the data
that the pointer points to. This really is necessary
- on Alpha CPUs. If you don't believe me, see:
-
- http://www.openvms.compaq.com/wizard/wiz_2637.html
+ on Alpha CPUs.
The rcu_dereference() primitive is also an excellent
documentation aid, letting the person reading the
@@ -214,9 +212,9 @@ over a rather long period of time, but improvements are always welcome!
the rest of the system.
7. As of v4.20, a given kernel implements only one RCU flavor,
- which is RCU-sched for PREEMPT=n and RCU-preempt for PREEMPT=y.
+ which is RCU-sched for PREEMPTION=n and RCU-preempt for PREEMPTION=y.
If the updater uses call_rcu() or synchronize_rcu(),
- then the corresponding readers my use rcu_read_lock() and
+ then the corresponding readers may use rcu_read_lock() and
rcu_read_unlock(), rcu_read_lock_bh() and rcu_read_unlock_bh(),
or any pair of primitives that disables and re-enables preemption,
for example, rcu_read_lock_sched() and rcu_read_unlock_sched().
diff --git a/Documentation/RCU/rcubarrier.rst b/Documentation/RCU/rcubarrier.rst
index f64f4413a47c..3b4a24877496 100644
--- a/Documentation/RCU/rcubarrier.rst
+++ b/Documentation/RCU/rcubarrier.rst
@@ -9,7 +9,7 @@ RCU (read-copy update) is a synchronization mechanism that can be thought
of as a replacement for read-writer locking (among other things), but with
very low-overhead readers that are immune to deadlock, priority inversion,
and unbounded latency. RCU read-side critical sections are delimited
-by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPT
+by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPTION
kernels, generate no code whatsoever.
This means that RCU writers are unaware of the presence of concurrent
@@ -329,10 +329,10 @@ Answer: This cannot happen. The reason is that on_each_cpu() has its last
to smp_call_function() and further to smp_call_function_on_cpu(),
causing this latter to spin until the cross-CPU invocation of
rcu_barrier_func() has completed. This by itself would prevent
- a grace period from completing on non-CONFIG_PREEMPT kernels,
+ a grace period from completing on non-CONFIG_PREEMPTION kernels,
since each CPU must undergo a context switch (or other quiescent
state) before the grace period can complete. However, this is
- of no use in CONFIG_PREEMPT kernels.
+ of no use in CONFIG_PREEMPTION kernels.
Therefore, on_each_cpu() disables preemption across its call
to smp_call_function() and also across the local call to
diff --git a/Documentation/RCU/stallwarn.rst b/Documentation/RCU/stallwarn.rst
index c9ab6af4d3be..7148e9be08c3 100644
--- a/Documentation/RCU/stallwarn.rst
+++ b/Documentation/RCU/stallwarn.rst
@@ -25,7 +25,7 @@ warnings:
- A CPU looping with bottom halves disabled.
-- For !CONFIG_PREEMPT kernels, a CPU looping anywhere in the kernel
+- For !CONFIG_PREEMPTION kernels, a CPU looping anywhere in the kernel
without invoking schedule(). If the looping in the kernel is
really expected and desirable behavior, you might need to add
some calls to cond_resched().
@@ -44,7 +44,7 @@ warnings:
result in the ``rcu_.*kthread starved for`` console-log message,
which will include additional debugging information.
-- A CPU-bound real-time task in a CONFIG_PREEMPT kernel, which might
+- A CPU-bound real-time task in a CONFIG_PREEMPTION kernel, which might
happen to preempt a low-priority task in the middle of an RCU
read-side critical section. This is especially damaging if
that low-priority task is not permitted to run on any other CPU,
@@ -92,7 +92,9 @@ warnings:
buggy timer hardware through bugs in the interrupt or exception
path (whether hardware, firmware, or software) through bugs
in Linux's timer subsystem through bugs in the scheduler, and,
- yes, even including bugs in RCU itself.
+ yes, even including bugs in RCU itself. It can also result in
+ the ``rcu_.*timer wakeup didn't happen for`` console-log message,
+ which will include additional debugging information.
- A bug in the RCU implementation.
@@ -292,6 +294,25 @@ kthread is waiting for a short timeout, the "state" precedes value of the
task_struct ->state field, and the "cpu" indicates that the grace-period
kthread last ran on CPU 5.
+If the relevant grace-period kthread does not wake from FQS wait in a
+reasonable time, then the following additional line is printed::
+
+ kthread timer wakeup didn't happen for 23804 jiffies! g7076 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402
+
+The "23804" indicates that kthread's timer expired more than 23 thousand
+jiffies ago. The rest of the line has meaning similar to the kthread
+starvation case.
+
+Additionally, the following line is printed::
+
+ Possible timer handling issue on cpu=4 timer-softirq=11142
+
+Here "cpu" indicates that the grace-period kthread last ran on CPU 4,
+where it queued the fqs timer. The number following the "timer-softirq"
+is the current ``TIMER_SOFTIRQ`` count on cpu 4. If this value does not
+change on successive RCU CPU stall warnings, there is further reason to
+suspect a timer problem.
+
Multiple Warnings From One Stall
================================
diff --git a/Documentation/RCU/whatisRCU.rst b/Documentation/RCU/whatisRCU.rst
index 1a4723f48bd9..17e95ab2a201 100644
--- a/Documentation/RCU/whatisRCU.rst
+++ b/Documentation/RCU/whatisRCU.rst
@@ -683,7 +683,7 @@ Quick Quiz #1:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This section presents a "toy" RCU implementation that is based on
"classic RCU". It is also short on performance (but only for updates) and
-on features such as hotplug CPU and the ability to run in CONFIG_PREEMPT
+on features such as hotplug CPU and the ability to run in CONFIG_PREEMPTION
kernels. The definitions of rcu_dereference() and rcu_assign_pointer()
are the same as those shown in the preceding section, so they are omitted.
::
@@ -739,7 +739,7 @@ Quick Quiz #2:
Quick Quiz #3:
If it is illegal to block in an RCU read-side
critical section, what the heck do you do in
- PREEMPT_RT, where normal spinlocks can block???
+ CONFIG_PREEMPT_RT, where normal spinlocks can block???
:ref:`Answers to Quick Quiz <8_whatisRCU>`
@@ -1093,7 +1093,7 @@ Quick Quiz #2:
overhead is **negative**.
Answer:
- Imagine a single-CPU system with a non-CONFIG_PREEMPT
+ Imagine a single-CPU system with a non-CONFIG_PREEMPTION
kernel where a routing table is used by process-context
code, but can be updated by irq-context code (for example,
by an "ICMP REDIRECT" packet). The usual way of handling
@@ -1120,10 +1120,10 @@ Answer:
Quick Quiz #3:
If it is illegal to block in an RCU read-side
critical section, what the heck do you do in
- PREEMPT_RT, where normal spinlocks can block???
+ CONFIG_PREEMPT_RT, where normal spinlocks can block???
Answer:
- Just as PREEMPT_RT permits preemption of spinlock
+ Just as CONFIG_PREEMPT_RT permits preemption of spinlock
critical sections, it permits preemption of RCU
read-side critical sections. It also permits
spinlocks blocking while in RCU read-side critical
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 63521cd36ce5..1de8695c264b 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1029,7 +1029,7 @@ All time durations are in microseconds.
one number is written, $MAX is updated.
cpu.pressure
- A read-only nested-key file which exists on non-root cgroups.
+ A read-write nested-keyed file.
Shows pressure stall information for CPU. See
:ref:`Documentation/accounting/psi.rst <psi>` for details.
@@ -1475,7 +1475,7 @@ PAGE_SIZE multiple when read back.
reduces the impact on the workload and memory management.
memory.pressure
- A read-only nested-key file which exists on non-root cgroups.
+ A read-only nested-keyed file.
Shows pressure stall information for memory. See
:ref:`Documentation/accounting/psi.rst <psi>` for details.
@@ -1714,7 +1714,7 @@ IO Interface Files
8:16 rbps=2097152 wbps=max riops=max wiops=max
io.pressure
- A read-only nested-key file which exists on non-root cgroups.
+ A read-only nested-keyed file.
Shows pressure stall information for IO. See
:ref:`Documentation/accounting/psi.rst <psi>` for details.
diff --git a/Documentation/admin-guide/device-mapper/dm-integrity.rst b/Documentation/admin-guide/device-mapper/dm-integrity.rst
index 4e6f504474ac..2cc5488acbd9 100644
--- a/Documentation/admin-guide/device-mapper/dm-integrity.rst
+++ b/Documentation/admin-guide/device-mapper/dm-integrity.rst
@@ -177,14 +177,20 @@ bitmap_flush_interval:number
The bitmap flush interval in milliseconds. The metadata buffers
are synchronized when this interval expires.
+allow_discards
+ Allow block discard requests (a.k.a. TRIM) for the integrity device.
+ Discards are only allowed to devices using internal hash.
+
fix_padding
Use a smaller padding of the tag area that is more
space-efficient. If this option is not present, large padding is
used - that is for compatibility with older kernels.
-allow_discards
- Allow block discard requests (a.k.a. TRIM) for the integrity device.
- Discards are only allowed to devices using internal hash.
+legacy_recalculate
+ Allow recalculating of volumes with HMAC keys. This is disabled by
+ default for security reasons - an attacker could modify the volume,
+ set recalc_sector to zero, and the kernel would not detect the
+ modification.
The journal mode (D/J), buffer_sectors, journal_watermark, commit_time and
allow_discards can be changed when reloading the target (load an inactive
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index cbb51ab2be93..07f9372b494a 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -808,13 +808,14 @@
insecure, please do not use on production kernels.
debug_locks_verbose=
- [KNL] verbose self-tests
- Format=<0|1>
+ [KNL] verbose locking self-tests
+ Format: <int>
Print debugging info while doing the locking API
self-tests.
- We default to 0 (no extra messages), setting it to
- 1 will print _a lot_ more information - normally
- only useful to kernel developers.
+ Bitmask for the various LOCKTYPE_ tests. Defaults to 0
+ (no extra messages), setting it to -1 (all bits set)
+ will print _a_lot_ more information - normally only
+ useful to lockdep developers.
debug_objects [KNL] Enable object debugging
@@ -950,12 +951,6 @@
causing system reset or hang due to sending
INIT from AP to BSP.
- perf_v4_pmi= [X86,INTEL]
- Format: <bool>
- Disable Intel PMU counter freezing feature.
- The feature only exists starting from
- Arch Perfmon v4 (Skylake and newer).
-
disable_ddw [PPC/PSERIES]
Disable Dynamic DMA Window support. Use this
to workaround buggy firmware.
@@ -3467,20 +3462,6 @@
For example, to override I2C bus2:
omap_mux=i2c2_scl.i2c2_scl=0x100,i2c2_sda.i2c2_sda=0x100
- oprofile.timer= [HW]
- Use timer interrupt instead of performance counters
-
- oprofile.cpu_type= Force an oprofile cpu type
- This might be useful if you have an older oprofile
- userland or if you want common events.
- Format: { arch_perfmon }
- arch_perfmon: [X86] Force use of architectural
- perfmon on Intel CPUs instead of the
- CPU specific event set.
- timer: [X86] Force use of architectural NMI
- timer mode (see also oprofile.timer
- for generic hr timer mode)
-
oops=panic Always panic on oopses. Default is to just kill the
process, but there is a small probability of
deadlocking the machine.
@@ -3925,6 +3906,13 @@
Format: {"off"}
Disable Hardware Transactional Memory
+ preempt= [KNL]
+ Select preemption mode if you have CONFIG_PREEMPT_DYNAMIC
+ none - Limited to cond_resched() calls
+ voluntary - Limited to cond_resched() and might_sleep() calls
+ full - Any section that isn't explicitly preempt disabled
+ can be preempted anytime.
+
print-fatal-signals=
[KNL] debug: print fatal signals
@@ -4101,6 +4089,10 @@
value, meaning that RCU_SOFTIRQ is used by default.
Specify rcutree.use_softirq=0 to use rcuc kthreads.
+ But note that CONFIG_PREEMPT_RT=y kernels disable
+ this kernel boot parameter, forcibly setting it
+ to zero.
+
rcutree.rcu_fanout_exact= [KNL]
Disable autobalancing of the rcu_node combining
tree. This is used by rcutorture, and might
@@ -4188,12 +4180,6 @@
Set wakeup interval for idle CPUs that have
RCU callbacks (RCU_FAST_NO_HZ=y).
- rcutree.rcu_idle_lazy_gp_delay= [KNL]
- Set wakeup interval for idle CPUs that have
- only "lazy" RCU callbacks (RCU_FAST_NO_HZ=y).
- Lazy RCU callbacks are those which RCU can
- prove do nothing more than free memory.
-
rcutree.rcu_kick_kthreads= [KNL]
Cause the grace-period kthread to get an extra
wake_up() if it sleeps three times longer than
@@ -4347,6 +4333,14 @@
stress RCU, they don't participate in the actual
test, hence the "fake".
+ rcutorture.nocbs_nthreads= [KNL]
+ Set number of RCU callback-offload togglers.
+ Zero (the default) disables toggling.
+
+ rcutorture.nocbs_toggle= [KNL]
+ Set the delay in milliseconds between successive
+ callback-offload toggling attempts.
+
rcutorture.nreaders= [KNL]
Set number of RCU readers. The value -1 selects
N-1, where N is the number of CPUs. A value
@@ -4479,6 +4473,13 @@
only normal grace-period primitives. No effect
on CONFIG_TINY_RCU kernels.
+ But note that CONFIG_PREEMPT_RT=y kernels enables
+ this kernel boot parameter, forcibly setting
+ it to the value one, that is, converting any
+ post-boot attempt at an expedited RCU grace
+ period to instead use normal non-expedited
+ grace-period processing.
+
rcupdate.rcu_task_ipi_delay= [KNL]
Set time in jiffies during which RCU tasks will
avoid sending IPIs, starting with the beginning
@@ -4566,6 +4567,12 @@
refscale.verbose= [KNL]
Enable additional printk() statements.
+ refscale.verbose_batched= [KNL]
+ Batch the additional printk() statements. If zero
+ (the default) or negative, print everything. Otherwise,
+ print every Nth verbose statement, where N is the value
+ specified.
+
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
See Documentation/admin-guide/cgroup-v1/cpusets.rst.
@@ -5340,6 +5347,14 @@
are running concurrently, especially on systems
with rotating-rust storage.
+ torture.verbose_sleep_frequency= [KNL]
+ Specifies how many verbose printk()s should be
+ emitted between each sleep. The default of zero
+ disables verbose-printk() sleeping.
+
+ torture.verbose_sleep_duration= [KNL]
+ Duration of each verbose-printk() sleep in jiffies.
+
tp720= [HW,PS2]
tpm_suspend_pcr=[HW,TPM]
diff --git a/Documentation/admin-guide/media/rkisp1.rst b/Documentation/admin-guide/media/rkisp1.rst
index 2267e4fb475e..ccf418713623 100644
--- a/Documentation/admin-guide/media/rkisp1.rst
+++ b/Documentation/admin-guide/media/rkisp1.rst
@@ -13,6 +13,22 @@ This file documents the driver for the Rockchip ISP1 that is part of RK3288
and RK3399 SoCs. The driver is located under drivers/staging/media/rkisp1
and uses the Media-Controller API.
+Revisions
+=========
+
+There exist multiple smaller revisions to this ISP that got introduced in
+later SoCs. Revisions can be found in the enum :c:type:`rkisp1_cif_isp_version`
+in the UAPI and the revision of the ISP inside the running SoC can be read
+in the field hw_revision of struct media_device_info as returned by
+ioctl MEDIA_IOC_DEVICE_INFO.
+
+Versions in use are:
+
+- RKISP1_V10: used at least in rk3288 and rk3399
+- RKISP1_V11: declared in the original vendor code, but not used
+- RKISP1_V12: used at least in rk3326 and px30
+- RKISP1_V13: used at least in rk1808
+
Topology
========
.. _rkisp1_topology_graph:
diff --git a/Documentation/admin-guide/syscall-user-dispatch.rst b/Documentation/admin-guide/syscall-user-dispatch.rst
index a380d6515774..60314953c728 100644
--- a/Documentation/admin-guide/syscall-user-dispatch.rst
+++ b/Documentation/admin-guide/syscall-user-dispatch.rst
@@ -70,8 +70,8 @@ trampoline code on the vDSO, that trampoline is never intercepted.
[selector] is a pointer to a char-sized region in the process memory
region, that provides a quick way to enable disable syscall redirection
thread-wide, without the need to invoke the kernel directly. selector
-can be set to PR_SYS_DISPATCH_ON or PR_SYS_DISPATCH_OFF. Any other
-value should terminate the program with a SIGSYS.
+can be set to SYSCALL_DISPATCH_FILTER_ALLOW or SYSCALL_DISPATCH_FILTER_BLOCK.
+Any other value should terminate the program with a SIGSYS.
Security Notes
--------------
diff --git a/Documentation/admin-guide/thunderbolt.rst b/Documentation/admin-guide/thunderbolt.rst
index 613cb24c76c7..f18e881373c4 100644
--- a/Documentation/admin-guide/thunderbolt.rst
+++ b/Documentation/admin-guide/thunderbolt.rst
@@ -47,6 +47,9 @@ be DMA masters and thus read contents of the host memory without CPU and OS
knowing about it. There are ways to prevent this by setting up an IOMMU but
it is not always available for various reasons.
+Some USB4 systems have a BIOS setting to disable PCIe tunneling. This is
+treated as another security level (nopcie).
+
The security levels are as follows:
none
@@ -77,6 +80,10 @@ The security levels are as follows:
Display Port in a dock. All PCIe links downstream of the dock are
removed.
+ nopcie
+ PCIe tunneling is disabled/forbidden from the BIOS. Available in some
+ USB4 systems.
+
The current security level can be read from
``/sys/bus/thunderbolt/devices/domainX/security`` where ``domainX`` is
the Thunderbolt domain the host controller manages. There is typically
@@ -153,6 +160,22 @@ If the user still wants to connect the device they can either approve
the device without a key or write a new key and write 1 to the
``authorized`` file to get the new key stored on the device NVM.
+De-authorizing devices
+----------------------
+It is possible to de-authorize devices by writing ``0`` to their
+``authorized`` attribute. This requires support from the connection
+manager implementation and can be checked by reading domain
+``deauthorization`` attribute. If it reads ``1`` then the feature is
+supported.
+
+When a device is de-authorized the PCIe tunnel from the parent device
+PCIe downstream (or root) port to the device PCIe upstream port is torn
+down. This is essentially the same thing as PCIe hot-remove and the PCIe
+toplogy in question will not be accessible anymore until the device is
+authorized again. If there is storage such as NVMe or similar involved,
+there is a risk for data loss if the filesystem on that storage is not
+properly shut down. You have been warned!
+
DMA protection utilizing IOMMU
------------------------------
Recent systems from 2018 and forward with Thunderbolt ports may natively
diff --git a/Documentation/admin-guide/xfs.rst b/Documentation/admin-guide/xfs.rst
index 86de8a1ad91c..6178153d3320 100644
--- a/Documentation/admin-guide/xfs.rst
+++ b/Documentation/admin-guide/xfs.rst
@@ -495,3 +495,45 @@ the class and error context. For example, the default values for
"metadata/ENODEV" are "0" rather than "-1" so that this error handler defaults
to "fail immediately" behaviour. This is done because ENODEV is a fatal,
unrecoverable error no matter how many times the metadata IO is retried.
+
+Workqueue Concurrency
+=====================
+
+XFS uses kernel workqueues to parallelize metadata update processes. This
+enables it to take advantage of storage hardware that can service many IO
+operations simultaneously. This interface exposes internal implementation
+details of XFS, and as such is explicitly not part of any userspace API/ABI
+guarantee the kernel may give userspace. These are undocumented features of
+the generic workqueue implementation XFS uses for concurrency, and they are
+provided here purely for diagnostic and tuning purposes and may change at any
+time in the future.
+
+The control knobs for a filesystem's workqueues are organized by task at hand
+and the short name of the data device. They all can be found in:
+
+ /sys/bus/workqueue/devices/${task}!${device}
+
+================ ===========
+ Task Description
+================ ===========
+ xfs_iwalk-$pid Inode scans of the entire filesystem. Currently limited to
+ mount time quotacheck.
+ xfs-blockgc Background garbage collection of disk space that have been
+ speculatively allocated beyond EOF or for staging copy on
+ write operations.
+================ ===========
+
+For example, the knobs for the quotacheck workqueue for /dev/nvme0n1 would be
+found in /sys/bus/workqueue/devices/xfs_iwalk-1111!nvme0n1/.
+
+The interesting knobs for XFS workqueues are as follows:
+
+============ ===========
+ Knob Description
+============ ===========
+ max_active Maximum number of background threads that can be started to
+ run the work.
+ cpumask CPUs upon which the threads are allowed to run.
+ nice Relative priority of scheduling the threads. These are the
+ same nice levels that can be applied to userspace processes.
+============ ===========
diff --git a/Documentation/asm-annotations.rst b/Documentation/asm-annotations.rst
index 32ea57483378..76424e0431f4 100644
--- a/Documentation/asm-annotations.rst
+++ b/Documentation/asm-annotations.rst
@@ -100,6 +100,11 @@ Instruction Macros
~~~~~~~~~~~~~~~~~~
This section covers ``SYM_FUNC_*`` and ``SYM_CODE_*`` enumerated above.
+``objtool`` requires that all code must be contained in an ELF symbol. Symbol
+names that have a ``.L`` prefix do not emit symbol table entries. ``.L``
+prefixed symbols can be used within a code region, but should be avoided for
+denoting a range of code via ``SYM_*_START/END`` annotations.
+
* ``SYM_FUNC_START`` and ``SYM_FUNC_START_LOCAL`` are supposed to be **the
most frequent markings**. They are used for functions with standard calling
conventions -- global and local. Like in C, they both align the functions to
diff --git a/Documentation/block/biovecs.rst b/Documentation/block/biovecs.rst
index 36771a131b56..ddb867e0185b 100644
--- a/Documentation/block/biovecs.rst
+++ b/Documentation/block/biovecs.rst
@@ -40,6 +40,8 @@ normal code doesn't have to deal with bi_bvec_done.
There is a lower level advance function - bvec_iter_advance() - which takes
a pointer to a biovec, not a bio; this is used by the bio integrity code.
+As of 5.12 bvec segments with zero bv_len are not supported.
+
What's all this get us?
=======================
diff --git a/Documentation/block/queue-sysfs.rst b/Documentation/block/queue-sysfs.rst
index 2638d3446b79..4dc7f0d499a8 100644
--- a/Documentation/block/queue-sysfs.rst
+++ b/Documentation/block/queue-sysfs.rst
@@ -261,6 +261,12 @@ For block drivers that support REQ_OP_WRITE_ZEROES, the maximum number of
bytes that can be zeroed at once. The value 0 means that REQ_OP_WRITE_ZEROES
is not supported.
+zone_append_max_bytes (RO)
+--------------------------
+This is the maximum number of bytes that can be written to a sequential
+zone of a zoned block device using a zone append write operation
+(REQ_OP_ZONE_APPEND). This value is always 0 for regular block devices.
+
zoned (RO)
----------
This indicates if the device is a zoned block device and the zone model of the
@@ -273,4 +279,11 @@ devices are described in the ZBC (Zoned Block Commands) and ZAC
do not support zone commands, they will be treated as regular block devices
and zoned will report "none".
+zone_write_granularity (RO)
+---------------------------
+This indicates the alignment constraint, in bytes, for write operations in
+sequential zones of zoned block devices (devices with a zoned attributed
+that reports "host-managed" or "host-aware"). This value is always 0 for
+regular block devices.
+
Jens Axboe <jens.axboe@oracle.com>, February 2009
diff --git a/Documentation/bpf/bpf_design_QA.rst b/Documentation/bpf/bpf_design_QA.rst
index 2df7b067ab93..0e15f9b05c9d 100644
--- a/Documentation/bpf/bpf_design_QA.rst
+++ b/Documentation/bpf/bpf_design_QA.rst
@@ -208,6 +208,12 @@ data structures and compile with kernel internal headers. Both of these
kernel internals are subject to change and can break with newer kernels
such that the program needs to be adapted accordingly.
+Q: Are tracepoints part of the stable ABI?
+------------------------------------------
+A: NO. Tracepoints are tied to internal implementation details hence they are
+subject to change and can break with newer kernels. BPF programs need to change
+accordingly when this happens.
+
Q: How much stack space a BPF program uses?
-------------------------------------------
A: Currently all program types are limited to 512 bytes of stack
diff --git a/Documentation/bpf/bpf_devel_QA.rst b/Documentation/bpf/bpf_devel_QA.rst
index 5b613d2a5f1a..2ed89abbf9a4 100644
--- a/Documentation/bpf/bpf_devel_QA.rst
+++ b/Documentation/bpf/bpf_devel_QA.rst
@@ -501,16 +501,19 @@ All LLVM releases can be found at: http://releases.llvm.org/
Q: Got it, so how do I build LLVM manually anyway?
--------------------------------------------------
-A: You need cmake and gcc-c++ as build requisites for LLVM. Once you have
-that set up, proceed with building the latest LLVM and clang version
+A: We recommend that developers who want the fastest incremental builds
+use the Ninja build system, you can find it in your system's package
+manager, usually the package is ninja or ninja-build.
+
+You need ninja, cmake and gcc-c++ as build requisites for LLVM. Once you
+have that set up, proceed with building the latest LLVM and clang version
from the git repositories::
$ git clone https://github.com/llvm/llvm-project.git
- $ mkdir -p llvm-project/llvm/build/install
+ $ mkdir -p llvm-project/llvm/build
$ cd llvm-project/llvm/build
$ cmake .. -G "Ninja" -DLLVM_TARGETS_TO_BUILD="BPF;X86" \
-DLLVM_ENABLE_PROJECTS="clang" \
- -DBUILD_SHARED_LIBS=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_BUILD_RUNTIME=OFF
$ ninja
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index 0fc3fb1860c4..a248ac3941be 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -160,29 +160,13 @@ intended for use in production as a security mitigation. Therefore it supports
boot parameters that allow to disable KASAN competely or otherwise control
particular KASAN features.
-The things that can be controlled are:
+- ``kasan=off`` or ``=on`` controls whether KASAN is enabled (default: ``on``).
-1. Whether KASAN is enabled at all.
-2. Whether KASAN collects and saves alloc/free stacks.
-3. Whether KASAN panics on a detected bug or not.
+- ``kasan.stacktrace=off`` or ``=on`` disables or enables alloc and free stack
+ traces collection (default: ``on``).
-The ``kasan.mode`` boot parameter allows to choose one of three main modes:
-
-- ``kasan.mode=off`` - KASAN is disabled, no tag checks are performed
-- ``kasan.mode=prod`` - only essential production features are enabled
-- ``kasan.mode=full`` - all KASAN features are enabled
-
-The chosen mode provides default control values for the features mentioned
-above. However it's also possible to override the default values by providing:
-
-- ``kasan.stacktrace=off`` or ``=on`` - enable alloc/free stack collection
- (default: ``on`` for ``mode=full``,
- otherwise ``off``)
-- ``kasan.fault=report`` or ``=panic`` - only print KASAN report or also panic
- (default: ``report``)
-
-If ``kasan.mode`` parameter is not provided, it defaults to ``full`` when
-``CONFIG_DEBUG_KERNEL`` is enabled, and to ``prod`` otherwise.
+- ``kasan.fault=report`` or ``=panic`` controls whether to only print a KASAN
+ report or also panic the kernel (default: ``report``).
For developers
~~~~~~~~~~~~~~
diff --git a/Documentation/dev-tools/kunit/usage.rst b/Documentation/dev-tools/kunit/usage.rst
index d9fdc14f0677..650f99590df5 100644
--- a/Documentation/dev-tools/kunit/usage.rst
+++ b/Documentation/dev-tools/kunit/usage.rst
@@ -522,6 +522,63 @@ There's more boilerplate involved, but it can:
* E.g. if we wanted to also test ``sha256sum``, we could add a ``sha256``
field and reuse ``cases``.
+* be converted to a "parameterized test", see below.
+
+Parameterized Testing
+~~~~~~~~~~~~~~~~~~~~~
+
+The table-driven testing pattern is common enough that KUnit has special
+support for it.
+
+Reusing the same ``cases`` array from above, we can write the test as a
+"parameterized test" with the following.
+
+.. code-block:: c
+
+ // This is copy-pasted from above.
+ struct sha1_test_case {
+ const char *str;
+ const char *sha1;
+ };
+ struct sha1_test_case cases[] = {
+ {
+ .str = "hello world",
+ .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
+ },
+ {
+ .str = "hello world!",
+ .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
+ },
+ };
+
+ // Need a helper function to generate a name for each test case.
+ static void case_to_desc(const struct sha1_test_case *t, char *desc)
+ {
+ strcpy(desc, t->str);
+ }
+ // Creates `sha1_gen_params()` to iterate over `cases`.
+ KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
+
+ // Looks no different from a normal test.
+ static void sha1_test(struct kunit *test)
+ {
+ // This function can just contain the body of the for-loop.
+ // The former `cases[i]` is accessible under test->param_value.
+ char out[40];
+ struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
+
+ sha1sum(test_param->str, out);
+ KUNIT_EXPECT_STREQ_MSG(test, (char *)out, test_param->sha1,
+ "sha1sum(%s)", test_param->str);
+ }
+
+ // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
+ // function declared by KUNIT_ARRAY_PARAM.
+ static struct kunit_case sha1_test_cases[] = {
+ KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
+ {}
+ };
+
.. _kunit-on-non-uml:
KUnit on non-UML architectures
diff --git a/Documentation/devicetree/bindings/arm/amlogic.yaml b/Documentation/devicetree/bindings/arm/amlogic.yaml
index 3341788d1096..5f6769bf45bd 100644
--- a/Documentation/devicetree/bindings/arm/amlogic.yaml
+++ b/Documentation/devicetree/bindings/arm/amlogic.yaml
@@ -151,6 +151,7 @@ properties:
- description: Boards with the Amlogic Meson G12B S922X SoC
items:
- enum:
+ - azw,gsking-x
- azw,gtking
- azw,gtking-pro
- hardkernel,odroid-n2
@@ -163,9 +164,10 @@ properties:
- description: Boards with the Amlogic Meson SM1 S905X3/D3/Y3 SoC
items:
- enum:
- - seirobotics,sei610
- - khadas,vim3l
- hardkernel,odroid-c4
+ - hardkernel,odroid-hc4
+ - khadas,vim3l
+ - seirobotics,sei610
- const: amlogic,sm1
- description: Boards with the Amlogic Meson A1 A113L SoC
diff --git a/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-mx-secbus2.yaml b/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-mx-secbus2.yaml
new file mode 100644
index 000000000000..eee7cda9f91b
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/amlogic/amlogic,meson-mx-secbus2.yaml
@@ -0,0 +1,42 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/arm/amlogic/amlogic,meson-mx-secbus2.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Amlogic Meson8/Meson8b/Meson8m2 SECBUS2 register interface
+
+maintainers:
+ - Martin Blumenstingl <martin.blumenstingl@googlemail.com>
+
+description: |
+ The Meson8/Meson8b/Meson8m2 SoCs have a register bank called SECBUS2 which
+ contains registers for various IP blocks such as pin-controller bits for
+ the BSD_EN and TEST_N GPIOs as well as some AO ARC core control bits.
+ The registers can be accessed directly when not running in "secure mode".
+ When "secure mode" is enabled then these registers have to be accessed
+ through secure monitor calls.
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - amlogic,meson8-secbus2
+ - amlogic,meson8b-secbus2
+ - const: syscon
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ secbus2: system-controller@4000 {
+ compatible = "amlogic,meson8-secbus2", "syscon";
+ reg = <0x4000 0x2000>;
+ };
diff --git a/Documentation/devicetree/bindings/arm/arm,scmi.txt b/Documentation/devicetree/bindings/arm/arm,scmi.txt
index b5ce5b39bb9c..667d58e0a659 100644
--- a/Documentation/devicetree/bindings/arm/arm,scmi.txt
+++ b/Documentation/devicetree/bindings/arm/arm,scmi.txt
@@ -31,6 +31,14 @@ Optional properties:
- mbox-names: shall be "tx" or "rx" depending on mboxes entries.
+- interrupts : when using smc or hvc transports, this optional
+ property indicates that msg completion by the platform is indicated
+ by an interrupt rather than by the return of the smc call. This
+ should not be used except when the platform requires such behavior.
+
+- interrupt-names : if "interrupts" is present, interrupt-names must also
+ be present and have the value "a2p".
+
See Documentation/devicetree/bindings/mailbox/mailbox.txt for more details
about the generic mailbox controller and client driver bindings.
diff --git a/Documentation/devicetree/bindings/arm/atmel-sysregs.txt b/Documentation/devicetree/bindings/arm/atmel-sysregs.txt
index 62cd4e89817c..67719f15eb4c 100644
--- a/Documentation/devicetree/bindings/arm/atmel-sysregs.txt
+++ b/Documentation/devicetree/bindings/arm/atmel-sysregs.txt
@@ -1,7 +1,7 @@
Atmel system registers
Chipid required properties:
-- compatible: Should be "atmel,sama5d2-chipid"
+- compatible: Should be "atmel,sama5d2-chipid" or "microchip,sama7g5-chipid"
- reg : Should contain registers location and length
PIT Timer required properties:
diff --git a/Documentation/devicetree/bindings/arm/bcm/brcm,bcm4908.yaml b/Documentation/devicetree/bindings/arm/bcm/brcm,bcm4908.yaml
index 5fec063d9a13..e55731f43c84 100644
--- a/Documentation/devicetree/bindings/arm/bcm/brcm,bcm4908.yaml
+++ b/Documentation/devicetree/bindings/arm/bcm/brcm,bcm4908.yaml
@@ -19,6 +19,8 @@ properties:
oneOf:
- description: BCM4906 based boards
items:
+ - enum:
+ - netgear,r8000p
- const: brcm,bcm4906
- const: brcm,bcm4908
diff --git a/Documentation/devicetree/bindings/arm/cpus.yaml b/Documentation/devicetree/bindings/arm/cpus.yaml
index 14cd727d3c4b..26b886b20b27 100644
--- a/Documentation/devicetree/bindings/arm/cpus.yaml
+++ b/Documentation/devicetree/bindings/arm/cpus.yaml
@@ -169,6 +169,7 @@ properties:
- qcom,kryo385
- qcom,kryo468
- qcom,kryo485
+ - qcom,kryo685
- qcom,scorpion
enable-method:
@@ -232,7 +233,6 @@ properties:
by this cpu (see ./idle-states.yaml).
capacity-dmips-mhz:
- $ref: '/schemas/types.yaml#/definitions/uint32'
description:
u32 value representing CPU capacity (see ./cpu-capacity.txt) in
DMIPS/MHz, relative to highest capacity-dmips-mhz
diff --git a/Documentation/devicetree/bindings/arm/fsl.yaml b/Documentation/devicetree/bindings/arm/fsl.yaml
index 34000f7fbe02..297c87f45db8 100644
--- a/Documentation/devicetree/bindings/arm/fsl.yaml
+++ b/Documentation/devicetree/bindings/arm/fsl.yaml
@@ -210,6 +210,7 @@ properties:
- kiebackpeter,imx6q-tpc # K+P i.MX6 Quad TPC Board
- kontron,imx6q-samx6i # Kontron i.MX6 Dual/Quad SMARC Module
- kosagi,imx6q-novena # Kosagi Novena Dual/Quad
+ - kvg,vicut1q # Kverneland UT1Q board
- logicpd,imx6q-logicpd
- lwn,display5 # Liebherr Display5 i.MX6 Quad Board
- lwn,mccmon6 # Liebherr Monitor6 i.MX6 Quad Board
@@ -331,6 +332,7 @@ properties:
- fsl,imx6qp-sabreauto # i.MX6 Quad Plus SABRE Automotive Board
- fsl,imx6qp-sabresd # i.MX6 Quad Plus SABRE Smart Device Board
- karo,imx6qp-tx6qp # Ka-Ro electronics TX6QP-8037 Module
+ - kvg,vicutp # Kverneland UT1P board
- prt,prtwd3 # Protonic WD3 board
- wand,imx6qp-wandboard # Wandboard i.MX6 QuadPlus Board
- zii,imx6qp-zii-rdu2 # ZII RDU2+ Board
@@ -364,7 +366,12 @@ properties:
- fsl,imx6dl-sabresd # i.MX6 DualLite SABRE Smart Device Board
- karo,imx6dl-tx6dl # Ka-Ro electronics TX6U Modules
- kontron,imx6dl-samx6i # Kontron i.MX6 Solo SMARC Module
+ - kvg,victgo # Kverneland TGO
+ - kvg,vicut1 # Kverneland UT1 board
+ - ply,plybas # Plymovent BAS board
+ - ply,plym2m # Plymovent M2M board
- poslab,imx6dl-savageboard # Poslab SavageBoard Dual
+ - prt,prtmvt # Protonic MVT board
- prt,prtrvt # Protonic RVT board
- prt,prtvt7 # Protonic VT7 board
- rex,imx6dl-rex-basic # Rex Basic i.MX6 Dual Lite Board
@@ -488,6 +495,7 @@ properties:
- karo,imx6ul-tx6ul # Ka-Ro electronics TXUL-0010 Module
- kontron,imx6ul-n6310-som # Kontron N6310 SOM
- kontron,imx6ul-n6311-som # Kontron N6311 SOM
+ - prt,prti6g # Protonic PRTI6G Board
- technexion,imx6ul-pico-dwarf # TechNexion i.MX6UL Pico-Dwarf
- technexion,imx6ul-pico-hobbit # TechNexion i.MX6UL Pico-Hobbit
- technexion,imx6ul-pico-pi # TechNexion i.MX6UL Pico-Pi
@@ -670,8 +678,12 @@ properties:
items:
- enum:
- beacon,imx8mm-beacon-kit # i.MX8MM Beacon Development Kit
+ - boundary,imx8mm-nitrogen8mm # i.MX8MM Nitrogen Board
- fsl,imx8mm-ddr4-evk # i.MX8MM DDR4 EVK Board
- fsl,imx8mm-evk # i.MX8MM EVK Board
+ - gw,imx8mm-gw71xx-0x # i.MX8MM Gateworks Development Kit
+ - gw,imx8mm-gw72xx-0x # i.MX8MM Gateworks Development Kit
+ - gw,imx8mm-gw73xx-0x # i.MX8MM Gateworks Development Kit
- kontron,imx8mm-n801x-som # i.MX8MM Kontron SL (N801X) SOM
- variscite,var-som-mx8mm # i.MX8MM Variscite VAR-SOM-MX8MM module
- const: fsl,imx8mm
@@ -691,6 +703,7 @@ properties:
- description: i.MX8MN based Boards
items:
- enum:
+ - beacon,imx8mn-beacon-kit # i.MX8MN Beacon Development Kit
- fsl,imx8mn-ddr4-evk # i.MX8MN DDR4 EVK Board
- fsl,imx8mn-evk # i.MX8MN LPDDR4 EVK Board
- const: fsl,imx8mn
@@ -707,6 +720,12 @@ properties:
- fsl,imx8mp-evk # i.MX8MP EVK Board
- const: fsl,imx8mp
+ - description: PHYTEC phyCORE-i.MX8MP SoM based boards
+ items:
+ - const: phytec,imx8mp-phyboard-pollux-rdk # phyBOARD-Pollux RDK
+ - const: phytec,imx8mp-phycore-som # phyCORE-i.MX8MP SoM
+ - const: fsl,imx8mp
+
- description: i.MX8MQ based Boards
items:
- enum:
@@ -724,6 +743,7 @@ properties:
- enum:
- purism,librem5r2 # Purism Librem5 phone "Chestnut"
- purism,librem5r3 # Purism Librem5 phone "Dogwood"
+ - purism,librem5r4 # Purism Librem5 phone "Evergreen"
- const: purism,librem5
- const: fsl,imx8mq
@@ -834,10 +854,12 @@ properties:
Kontron SMARC-sAL28 board on the SMARC Eval Carrier 2.0
items:
- enum:
+ - kontron,sl28-var1-ads2
- kontron,sl28-var2-ads2
- kontron,sl28-var3-ads2
- kontron,sl28-var4-ads2
- enum:
+ - kontron,sl28-var1
- kontron,sl28-var2
- kontron,sl28-var3
- kontron,sl28-var4
@@ -848,6 +870,7 @@ properties:
Kontron SMARC-sAL28 board (on a generic/undefined carrier)
items:
- enum:
+ - kontron,sl28-var1
- kontron,sl28-var2
- kontron,sl28-var3
- kontron,sl28-var4
diff --git a/Documentation/devicetree/bindings/arm/mediatek.yaml b/Documentation/devicetree/bindings/arm/mediatek.yaml
index 53f0d4e3ea98..93b3bdf6eaeb 100644
--- a/Documentation/devicetree/bindings/arm/mediatek.yaml
+++ b/Documentation/devicetree/bindings/arm/mediatek.yaml
@@ -120,7 +120,9 @@ properties:
- const: mediatek,mt8183
- description: Google Krane (Lenovo IdeaPad Duet, 10e,...)
items:
- - const: google,krane-sku176
+ - enum:
+ - google,krane-sku0
+ - google,krane-sku176
- const: google,krane
- const: mediatek,mt8183
diff --git a/Documentation/devicetree/bindings/arm/msm/qcom,llcc.yaml b/Documentation/devicetree/bindings/arm/msm/qcom,llcc.yaml
index 0a9889debc7c..c299dc907f6c 100644
--- a/Documentation/devicetree/bindings/arm/msm/qcom,llcc.yaml
+++ b/Documentation/devicetree/bindings/arm/msm/qcom,llcc.yaml
@@ -24,6 +24,7 @@ properties:
- qcom,sc7180-llcc
- qcom,sdm845-llcc
- qcom,sm8150-llcc
+ - qcom,sm8250-llcc
reg:
items:
diff --git a/Documentation/devicetree/bindings/arm/qcom.yaml b/Documentation/devicetree/bindings/arm/qcom.yaml
index c97d4a580f47..174134f920e1 100644
--- a/Documentation/devicetree/bindings/arm/qcom.yaml
+++ b/Documentation/devicetree/bindings/arm/qcom.yaml
@@ -40,7 +40,9 @@ description: |
sdm630
sdm660
sdm845
+ sdx55
sm8250
+ sm8350
The 'board' element must be one of the following strings:
@@ -169,6 +171,11 @@ properties:
- items:
- enum:
+ - qcom,sdx55-mtp
+ - const: qcom,sdx55
+
+ - items:
+ - enum:
- qcom,ipq6018-cp01-c1
- const: qcom,ipq6018
@@ -178,6 +185,11 @@ properties:
- qcom,sm8250-mtp
- const: qcom,sm8250
+ - items:
+ - enum:
+ - qcom,sm8350-mtp
+ - const: qcom,sm8350
+
additionalProperties: true
...
diff --git a/Documentation/devicetree/bindings/arm/renesas.yaml b/Documentation/devicetree/bindings/arm/renesas.yaml
index fe11be65039a..5fd0696a9f91 100644
--- a/Documentation/devicetree/bindings/arm/renesas.yaml
+++ b/Documentation/devicetree/bindings/arm/renesas.yaml
@@ -130,6 +130,7 @@ properties:
- description: RZ/G2N (R8A774B1)
items:
- enum:
+ - beacon,beacon-rzg2n # Beacon EmbeddedWorks RZ/G2N Kit
- hoperun,hihope-rzg2n # HopeRun HiHope RZ/G2N platform
- const: renesas,r8a774b1
@@ -154,6 +155,7 @@ properties:
- description: RZ/G2H (R8A774E1)
items:
- enum:
+ - beacon,beacon-rzg2h # Beacon EmbeddedWorks RZ/G2H Kit
- hoperun,hihope-rzg2h # HopeRun HiHope RZ/G2H platform
- const: renesas,r8a774e1
diff --git a/Documentation/devicetree/bindings/arm/rockchip.yaml b/Documentation/devicetree/bindings/arm/rockchip.yaml
index ef4544ad6f82..8a2dd9f1cff2 100644
--- a/Documentation/devicetree/bindings/arm/rockchip.yaml
+++ b/Documentation/devicetree/bindings/arm/rockchip.yaml
@@ -467,6 +467,11 @@ properties:
- const: radxa,rockpi4
- const: rockchip,rk3399
+ - description: Radxa ROCK Pi E
+ items:
+ - const: radxa,rockpi-e
+ - const: rockchip,rk3328
+
- description: Radxa ROCK Pi N8
items:
- const: radxa,rockpi-n8
diff --git a/Documentation/devicetree/bindings/arm/sirf.yaml b/Documentation/devicetree/bindings/arm/sirf.yaml
deleted file mode 100644
index b25eb35d1b66..000000000000
--- a/Documentation/devicetree/bindings/arm/sirf.yaml
+++ /dev/null
@@ -1,30 +0,0 @@
-# SPDX-License-Identifier: GPL-2.0
-%YAML 1.2
----
-$id: http://devicetree.org/schemas/arm/sirf.yaml#
-$schema: http://devicetree.org/meta-schemas/core.yaml#
-
-title: CSR SiRFprimaII and SiRFmarco device tree bindings.
-
-maintainers:
- - Binghua Duan <binghua.duan@csr.com>
- - Barry Song <Baohua.Song@csr.com>
-
-properties:
- $nodename:
- const: '/'
- compatible:
- oneOf:
- - items:
- - const: sirf,atlas6-cb
- - const: sirf,atlas6
- - items:
- - const: sirf,atlas7-cb
- - const: sirf,atlas7
- - items:
- - const: sirf,prima2-cb
- - const: sirf,prima2
-
-additionalProperties: true
-
-...
diff --git a/Documentation/devicetree/bindings/arm/ste-u300.txt b/Documentation/devicetree/bindings/arm/ste-u300.txt
deleted file mode 100644
index d11d80006a19..000000000000
--- a/Documentation/devicetree/bindings/arm/ste-u300.txt
+++ /dev/null
@@ -1,46 +0,0 @@
-ST-Ericsson U300 Device Tree Bindings
-
-For various board the "board" node may contain specific properties
-that pertain to this particular board, such as board-specific GPIOs
-or board power regulator supplies.
-
-Required root node property:
-
-compatible="stericsson,u300";
-
-Required node: syscon
-This contains the system controller.
-- compatible: must be "stericsson,u300-syscon".
-- reg: the base address and size of the system controller.
-
-Boards with the U300 SoC include:
-
-S365 "Small Board U365":
-
-Required node: s365
-This contains the board-specific information.
-- compatible: must be "stericsson,s365".
-- vana15-supply: the regulator supplying the 1.5V to drive the
- board.
-- syscon: a pointer to the syscon node so we can access the
- syscon registers to set the board as self-powered.
-
-Example:
-
-/ {
- model = "ST-Ericsson U300";
- compatible = "stericsson,u300";
- #address-cells = <1>;
- #size-cells = <1>;
-
- s365 {
- compatible = "stericsson,s365";
- vana15-supply = <&ab3100_ldo_d_reg>;
- syscon = <&syscon>;
- };
-
- syscon: syscon@c0011000 {
- compatible = "stericsson,u300-syscon";
- reg = <0xc0011000 0x1000>;
- };
-};
diff --git a/Documentation/devicetree/bindings/arm/sunxi.yaml b/Documentation/devicetree/bindings/arm/sunxi.yaml
index 6db32fbf813f..08607c7ec1bf 100644
--- a/Documentation/devicetree/bindings/arm/sunxi.yaml
+++ b/Documentation/devicetree/bindings/arm/sunxi.yaml
@@ -657,7 +657,8 @@ properties:
- description: Pine64 PineCube
items:
- const: pine64,pinecube
- - const: allwinner,sun8i-s3
+ - const: sochip,s3
+ - const: allwinner,sun8i-v3
- description: Pine64 PineH64 model A
items:
@@ -683,23 +684,31 @@ properties:
- description: Pine64 PinePhone Developer Batch (1.0)
items:
- const: pine64,pinephone-1.0
+ - const: pine64,pinephone
- const: allwinner,sun50i-a64
- description: Pine64 PinePhone Braveheart (1.1)
items:
- const: pine64,pinephone-1.1
+ - const: pine64,pinephone
- const: allwinner,sun50i-a64
- description: Pine64 PinePhone (1.2)
items:
- const: pine64,pinephone-1.2
+ - const: pine64,pinephone
- const: allwinner,sun50i-a64
- - description: Pine64 PineTab
+ - description: Pine64 PineTab, Development Sample
items:
- const: pine64,pinetab
- const: allwinner,sun50i-a64
+ - description: Pine64 PineTab, Early Adopter's batch (and maybe later ones)
+ items:
+ - const: pine64,pinetab-early-adopter
+ - const: allwinner,sun50i-a64
+
- description: Pine64 SoPine Baseboard
items:
- const: pine64,sopine-baseboard
@@ -777,6 +786,12 @@ properties:
- const: sinlinx,sina33
- const: allwinner,sun8i-a33
+ - description: SL631 Action Camera with IMX179
+ items:
+ - const: allwinner,sl631-imx179
+ - const: allwinner,sl631
+ - const: allwinner,sun8i-v3
+
- description: Tanix TX6
items:
- const: oranth,tanix-tx6
diff --git a/Documentation/devicetree/bindings/arm/tegra.yaml b/Documentation/devicetree/bindings/arm/tegra.yaml
index c5fbf869aa93..b9f75e20fef5 100644
--- a/Documentation/devicetree/bindings/arm/tegra.yaml
+++ b/Documentation/devicetree/bindings/arm/tegra.yaml
@@ -120,10 +120,18 @@ properties:
items:
- const: nvidia,p3668-0000
- const: nvidia,tegra194
+ - description: Jetson Xavier NX (eMMC)
+ items:
+ - const: nvidia,p3668-0001
+ - const: nvidia,tegra194
- description: Jetson Xavier NX Developer Kit
items:
- const: nvidia,p3509-0000+p3668-0000
- const: nvidia,tegra194
+ - description: Jetson Xavier NX Developer Kit (eMMC)
+ items:
+ - const: nvidia,p3509-0000+p3668-0001
+ - const: nvidia,tegra194
- items:
- enum:
- nvidia,tegra234-vdk
diff --git a/Documentation/devicetree/bindings/arm/xilinx.yaml b/Documentation/devicetree/bindings/arm/xilinx.yaml
index e0c6787f6e94..f52c7e8ce654 100644
--- a/Documentation/devicetree/bindings/arm/xilinx.yaml
+++ b/Documentation/devicetree/bindings/arm/xilinx.yaml
@@ -22,6 +22,9 @@ properties:
- adapteva,parallella
- digilent,zynq-zybo
- digilent,zynq-zybo-z7
+ - ebang,ebaz4205
+ - myir,zynq-zturn-v5
+ - myir,zynq-zturn
- xlnx,zynq-cc108
- xlnx,zynq-zc702
- xlnx,zynq-zc706
@@ -91,6 +94,7 @@ properties:
items:
- enum:
- xlnx,zynqmp-zcu104-revA
+ - xlnx,zynqmp-zcu104-revC
- xlnx,zynqmp-zcu104-rev1.0
- const: xlnx,zynqmp-zcu104
- const: xlnx,zynqmp
@@ -107,7 +111,7 @@ properties:
items:
- enum:
- xlnx,zynqmp-zcu111-revA
- - xlnx,zynqmp-zcu11-rev1.0
+ - xlnx,zynqmp-zcu111-rev1.0
- const: xlnx,zynqmp-zcu111
- const: xlnx,zynqmp
diff --git a/Documentation/devicetree/bindings/arm/zte,sysctrl.txt b/Documentation/devicetree/bindings/arm/zte,sysctrl.txt
deleted file mode 100644
index 7e66b7f7ba96..000000000000
--- a/Documentation/devicetree/bindings/arm/zte,sysctrl.txt
+++ /dev/null
@@ -1,30 +0,0 @@
-ZTE sysctrl Registers
-
-Registers for 'zte,zx296702' SoC:
-
-System management required properties:
- - compatible = "zte,sysctrl"
-
-Low power management required properties:
- - compatible = "zte,zx296702-pcu"
-
-Bus matrix required properties:
- - compatible = "zte,zx-bus-matrix"
-
-
-Registers for 'zte,zx296718' SoC:
-
-System management required properties:
- - compatible = "zte,zx296718-aon-sysctrl"
- - compatible = "zte,zx296718-sysctrl"
-
-Example:
-aon_sysctrl: aon-sysctrl@116000 {
- compatible = "zte,zx296718-aon-sysctrl", "syscon";
- reg = <0x116000 0x1000>;
-};
-
-sysctrl: sysctrl@1463000 {
- compatible = "zte,zx296718-sysctrl", "syscon";
- reg = <0x1463000 0x1000>;
-};
diff --git a/Documentation/devicetree/bindings/arm/zte.yaml b/Documentation/devicetree/bindings/arm/zte.yaml
deleted file mode 100644
index 672f8129cd31..000000000000
--- a/Documentation/devicetree/bindings/arm/zte.yaml
+++ /dev/null
@@ -1,28 +0,0 @@
-# SPDX-License-Identifier: GPL-2.0
-%YAML 1.2
----
-$id: http://devicetree.org/schemas/arm/zte.yaml#
-$schema: http://devicetree.org/meta-schemas/core.yaml#
-
-title: ZTE platforms device tree bindings
-
-maintainers:
- - Jun Nie <jun.nie@linaro.org>
-
-properties:
- $nodename:
- const: '/'
- compatible:
- oneOf:
- - items:
- - enum:
- - zte,zx296702-ad1
- - const: zte,zx296702
- - items:
- - enum:
- - zte,zx296718-evb
- - const: zte,zx296718
-
-additionalProperties: true
-
-...
diff --git a/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml b/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml
index 32d33b983d66..3d719f468a5b 100644
--- a/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml
+++ b/Documentation/devicetree/bindings/bus/allwinner,sun8i-a23-rsb.yaml
@@ -21,7 +21,9 @@ properties:
oneOf:
- const: allwinner,sun8i-a23-rsb
- items:
- - const: allwinner,sun8i-a83t-rsb
+ - enum:
+ - allwinner,sun8i-a83t-rsb
+ - allwinner,sun50i-h616-rsb
- const: allwinner,sun8i-a23-rsb
reg:
diff --git a/Documentation/devicetree/bindings/c6x/clocks.txt b/Documentation/devicetree/bindings/c6x/clocks.txt
deleted file mode 100644
index a04f5fd30122..000000000000
--- a/Documentation/devicetree/bindings/c6x/clocks.txt
+++ /dev/null
@@ -1,40 +0,0 @@
-C6X PLL Clock Controllers
--------------------------
-
-This is a first-cut support for the SoC clock controllers. This is still
-under development and will probably change as the common device tree
-clock support is added to the kernel.
-
-Required properties:
-
-- compatible: "ti,c64x+pll"
- May also have SoC-specific value to support SoC-specific initialization
- in the driver. One of:
- "ti,c6455-pll"
- "ti,c6457-pll"
- "ti,c6472-pll"
- "ti,c6474-pll"
-
-- reg: base address and size of register area
-- clock-frequency: input clock frequency in hz
-
-
-Optional properties:
-
-- ti,c64x+pll-bypass-delay: CPU cycles to delay when entering bypass mode
-
-- ti,c64x+pll-reset-delay: CPU cycles to delay after PLL reset
-
-- ti,c64x+pll-lock-delay: CPU cycles to delay after PLL frequency change
-
-Example:
-
- clock-controller@29a0000 {
- compatible = "ti,c6472-pll", "ti,c64x+pll";
- reg = <0x029a0000 0x200>;
- clock-frequency = <25000000>;
-
- ti,c64x+pll-bypass-delay = <200>;
- ti,c64x+pll-reset-delay = <12000>;
- ti,c64x+pll-lock-delay = <80000>;
- };
diff --git a/Documentation/devicetree/bindings/c6x/dscr.txt b/Documentation/devicetree/bindings/c6x/dscr.txt
deleted file mode 100644
index 92672235de57..000000000000
--- a/Documentation/devicetree/bindings/c6x/dscr.txt
+++ /dev/null
@@ -1,127 +0,0 @@
-Device State Configuration Registers
-------------------------------------
-
-TI C6X SoCs contain a region of miscellaneous registers which provide various
-function for SoC control or status. Details vary considerably among from SoC
-to SoC with no two being alike.
-
-In general, the Device State Configuration Registers (DSCR) will provide one or
-more configuration registers often protected by a lock register where one or
-more key values must be written to a lock register in order to unlock the
-configuration register for writes. These configuration register may be used to
-enable (and disable in some cases) SoC pin drivers, select peripheral clock
-sources (internal or pin), etc. In some cases, a configuration register is
-write once or the individual bits are write once. In addition to device config,
-the DSCR block may provide registers which are used to reset peripherals,
-provide device ID information, provide ethernet MAC addresses, as well as other
-miscellaneous functions.
-
-For device state control (enable/disable), each device control is assigned an
-id which is used by individual device drivers to control the state as needed.
-
-Required properties:
-
-- compatible: must be "ti,c64x+dscr"
-- reg: register area base and size
-
-Optional properties:
-
- NOTE: These are optional in that not all SoCs will have all properties. For
- SoCs which do support a given property, leaving the property out of the
- device tree will result in reduced functionality or possibly driver
- failure.
-
-- ti,dscr-devstat
- offset of the devstat register
-
-- ti,dscr-silicon-rev
- offset, start bit, and bitsize of silicon revision field
-
-- ti,dscr-rmii-resets
- offset and bitmask of RMII reset field. May have multiple tuples if more
- than one ethernet port is available.
-
-- ti,dscr-locked-regs
- possibly multiple tuples describing registers which are write protected by
- a lock register. Each tuple consists of the register offset, lock register
- offsset, and the key value used to unlock the register.
-
-- ti,dscr-kick-regs
- offset and key values of two "kick" registers used to write protect other
- registers in DSCR. On SoCs using kick registers, the first key must be
- written to the first kick register and the second key must be written to
- the second register before other registers in the area are write-enabled.
-
-- ti,dscr-mac-fuse-regs
- MAC addresses are contained in two registers. Each element of a MAC address
- is contained in a single byte. This property has two tuples. Each tuple has
- a register offset and four cells representing bytes in the register from
- most significant to least. The value of these four cells is the MAC byte
- index (1-6) of the byte within the register. A value of 0 means the byte
- is unused in the MAC address.
-
-- ti,dscr-devstate-ctl-regs
- This property describes the bitfields used to control the state of devices.
- Each tuple describes a range of identical bitfields used to control one or
- more devices (one bitfield per device). The layout of each tuple is:
-
- start_id num_ids reg enable disable start_bit nbits
-
- Where:
- start_id is device id for the first device control in the range
- num_ids is the number of device controls in the range
- reg is the offset of the register holding the control bits
- enable is the value to enable a device
- disable is the value to disable a device (0xffffffff if cannot disable)
- start_bit is the bit number of the first bit in the range
- nbits is the number of bits per device control
-
-- ti,dscr-devstate-stat-regs
- This property describes the bitfields used to provide device state status
- for device states controlled by the DSCR. Each tuple describes a range of
- identical bitfields used to provide status for one or more devices (one
- bitfield per device). The layout of each tuple is:
-
- start_id num_ids reg enable disable start_bit nbits
-
- Where:
- start_id is device id for the first device status in the range
- num_ids is the number of devices covered by the range
- reg is the offset of the register holding the status bits
- enable is the value indicating device is enabled
- disable is the value indicating device is disabled
- start_bit is the bit number of the first bit in the range
- nbits is the number of bits per device status
-
-- ti,dscr-privperm
- Offset and default value for register used to set access privilege for
- some SoC devices.
-
-
-Example:
-
- device-state-config-regs@2a80000 {
- compatible = "ti,c64x+dscr";
- reg = <0x02a80000 0x41000>;
-
- ti,dscr-devstat = <0>;
- ti,dscr-silicon-rev = <8 28 0xf>;
- ti,dscr-rmii-resets = <0x40020 0x00040000>;
-
- ti,dscr-locked-regs = <0x40008 0x40004 0x0f0a0b00>;
- ti,dscr-devstate-ctl-regs =
- <0 12 0x40008 1 0 0 2
- 12 1 0x40008 3 0 30 2
- 13 2 0x4002c 1 0xffffffff 0 1>;
- ti,dscr-devstate-stat-regs =
- <0 10 0x40014 1 0 0 3
- 10 2 0x40018 1 0 0 3>;
-
- ti,dscr-mac-fuse-regs = <0x700 1 2 3 4
- 0x704 5 6 0 0>;
-
- ti,dscr-privperm = <0x41c 0xaaaaaaaa>;
-
- ti,dscr-kick-regs = <0x38 0x83E70B13
- 0x3c 0x95A4F1E0>;
- };
diff --git a/Documentation/devicetree/bindings/c6x/emifa.txt b/Documentation/devicetree/bindings/c6x/emifa.txt
deleted file mode 100644
index 0ff6e9b9a13f..000000000000
--- a/Documentation/devicetree/bindings/c6x/emifa.txt
+++ /dev/null
@@ -1,62 +0,0 @@
-External Memory Interface
--------------------------
-
-The emifa node describes a simple external bus controller found on some C6X
-SoCs. This interface provides external busses with a number of chip selects.
-
-Required properties:
-
-- compatible: must be "ti,c64x+emifa", "simple-bus"
-- reg: register area base and size
-- #address-cells: must be 2 (chip-select + offset)
-- #size-cells: must be 1
-- ranges: mapping from EMIFA space to parent space
-
-
-Optional properties:
-
-- ti,dscr-dev-enable: Device ID if EMIF is enabled/disabled from DSCR
-
-- ti,emifa-burst-priority:
- Number of memory transfers after which the EMIF will elevate the priority
- of the oldest command in the command FIFO. Setting this field to 255
- disables this feature, thereby allowing old commands to stay in the FIFO
- indefinitely.
-
-- ti,emifa-ce-config:
- Configuration values for each of the supported chip selects.
-
-Example:
-
- emifa@70000000 {
- compatible = "ti,c64x+emifa", "simple-bus";
- #address-cells = <2>;
- #size-cells = <1>;
- reg = <0x70000000 0x100>;
- ranges = <0x2 0x0 0xa0000000 0x00000008
- 0x3 0x0 0xb0000000 0x00400000
- 0x4 0x0 0xc0000000 0x10000000
- 0x5 0x0 0xD0000000 0x10000000>;
-
- ti,dscr-dev-enable = <13>;
- ti,emifa-burst-priority = <255>;
- ti,emifa-ce-config = <0x00240120
- 0x00240120
- 0x00240122
- 0x00240122>;
-
- flash@3,0 {
- #address-cells = <1>;
- #size-cells = <1>;
- compatible = "cfi-flash";
- reg = <0x3 0x0 0x400000>;
- bank-width = <1>;
- device-width = <1>;
- partition@0 {
- reg = <0x0 0x400000>;
- label = "NOR";
- };
- };
- };
-
-This shows a flash chip attached to chip select 3.
diff --git a/Documentation/devicetree/bindings/c6x/soc.txt b/Documentation/devicetree/bindings/c6x/soc.txt
deleted file mode 100644
index b1e4973b5769..000000000000
--- a/Documentation/devicetree/bindings/c6x/soc.txt
+++ /dev/null
@@ -1,28 +0,0 @@
-C6X System-on-Chip
-------------------
-
-Required properties:
-
-- compatible: "simple-bus"
-- #address-cells: must be 1
-- #size-cells: must be 1
-- ranges
-
-Optional properties:
-
-- model: specific SoC model
-
-- nodes for IP blocks within SoC
-
-
-Example:
-
- soc {
- compatible = "simple-bus";
- model = "tms320c6455";
- #address-cells = <1>;
- #size-cells = <1>;
- ranges;
-
- ...
- };
diff --git a/Documentation/devicetree/bindings/connector/usb-connector.yaml b/Documentation/devicetree/bindings/connector/usb-connector.yaml
index 4286ed767a0a..ce11b2027199 100644
--- a/Documentation/devicetree/bindings/connector/usb-connector.yaml
+++ b/Documentation/devicetree/bindings/connector/usb-connector.yaml
@@ -137,6 +137,18 @@ properties:
maxItems: 7
$ref: /schemas/types.yaml#/definitions/uint32-array
+ sink-vdos:
+ description: An array of u32 with each entry, a Vendor Defined Message Object (VDO),
+ providing additional information corresponding to the product, the detailed bit
+ definitions and the order of each VDO can be found in
+ "USB Power Delivery Specification Revision 3.0, Version 2.0 + ECNs 2020-12-10"
+ chapter 6.4.4.3.1 Discover Identity. User can specify the VDO array via
+ VDO_IDH/_CERT/_PRODUCT/_UFP/_DFP/_PCABLE/_ACABLE(1/2)/_VPD() defined in
+ dt-bindings/usb/pd.h.
+ minItems: 3
+ maxItems: 6
+ $ref: /schemas/types.yaml#/definitions/uint32-array
+
op-sink-microwatt:
description: Sink required operating power in microwatt, if source can't
offer the power, Capability Mismatch is set. Required for power sink and
diff --git a/Documentation/devicetree/bindings/display/bridge/sii902x.txt b/Documentation/devicetree/bindings/display/bridge/sii902x.txt
index 02c21b584741..3bc760cc31cb 100644
--- a/Documentation/devicetree/bindings/display/bridge/sii902x.txt
+++ b/Documentation/devicetree/bindings/display/bridge/sii902x.txt
@@ -40,7 +40,7 @@ Optional properties:
documents on how to describe the way the sii902x device is
connected to the rest of the audio system:
Documentation/devicetree/bindings/sound/simple-card.yaml
- Documentation/devicetree/bindings/sound/audio-graph-card.txt
+ Documentation/devicetree/bindings/sound/audio-graph-card.yaml
Note: In case of the audio-graph-card binding the used port
index should be 3.
diff --git a/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt b/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt
index 33977e15bebd..ed76332ec01e 100644
--- a/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt
+++ b/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt
@@ -23,7 +23,7 @@ connected to.
For a description of the display interface sink function blocks, see
Documentation/devicetree/bindings/display/mediatek/mediatek,dsi.txt and
-Documentation/devicetree/bindings/display/mediatek/mediatek,dpi.txt.
+Documentation/devicetree/bindings/display/mediatek/mediatek,dpi.yaml.
Required properties (all function blocks):
- compatible: "mediatek,<chip>-disp-<function>", one of
@@ -61,7 +61,7 @@ Required properties (DMA function blocks):
"mediatek,<chip>-disp-wdma"
the supported chips are mt2701, mt8167 and mt8173.
- larb: Should contain a phandle pointing to the local arbiter device as defined
- in Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
+ in Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.yaml
- iommus: Should point to the respective IOMMU block with master port as
argument, see Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
for details.
diff --git a/Documentation/devicetree/bindings/display/panel/panel-simple.yaml b/Documentation/devicetree/bindings/display/panel/panel-simple.yaml
index 27fffafe5b5c..3207608d1178 100644
--- a/Documentation/devicetree/bindings/display/panel/panel-simple.yaml
+++ b/Documentation/devicetree/bindings/display/panel/panel-simple.yaml
@@ -105,26 +105,27 @@ properties:
- dlc,dlc1010gig
# Emerging Display Technology Corp. 3.5" QVGA TFT LCD panel
- edt,et035012dm6
+ # Emerging Display Technology Corp. 5.7" VGA TFT LCD panel
+ - edt,et057090dhu
+ - edt,et070080dh6
# Emerging Display Technology Corp. 480x272 TFT Display with capacitive touch
- edt,etm043080dh6gp
# Emerging Display Technology Corp. 480x272 TFT Display
- edt,etm0430g0dh6
- # Emerging Display Technology Corp. 5.7" VGA TFT LCD panel
- - edt,et057090dhu
- # Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
- - edt,etm070080dh6
- # Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
- - edt,etm0700g0dh6
# Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
# Same as ETM0700G0DH6 but with inverted pixel clock.
- edt,etm070080bdh6
# Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
+ # Same timings as the ETM0700G0DH6, but with resistive touch.
+ - edt,etm070080dh6
+ # Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
# Same display as the ETM0700G0BDH6, but with changed hardware for the
# backlight and the touch interface.
- edt,etm070080edh6
+ - edt,etm0700g0bdh6
# Emerging Display Technology Corp. WVGA TFT Display with capacitive touch
- # Same timings as the ETM0700G0DH6, but with resistive touch.
- - edt,etm070080dh6
+ - edt,etm0700g0dh6
+ - edt,etm0700g0edh6
# Evervision Electronics Co. Ltd. VGG804821 5.0" WVGA TFT LCD Panel
- evervision,vgg804821
# Foxlink Group 5" WVGA TFT LCD panel
@@ -173,6 +174,8 @@ properties:
- koe,tx26d202vm0bwa
# Kaohsiung Opto-Electronics. TX31D200VM0BAA 12.3" HSXGA LVDS panel
- koe,tx31d200vm0baa
+ # Kyocera Corporation 7" WVGA (800x480) transmissive color TFT
+ - kyo,tcg070wvlq
# Kyocera Corporation 12.1" XGA (1024x768) TFT LCD panel
- kyo,tcg121xglp
# LeMaker BL035-RGB-002 3.5" QVGA TFT LCD panel
diff --git a/Documentation/devicetree/bindings/extcon/wlf,arizona.yaml b/Documentation/devicetree/bindings/extcon/wlf,arizona.yaml
index 5fe784f487c5..efdf59abb2e1 100644
--- a/Documentation/devicetree/bindings/extcon/wlf,arizona.yaml
+++ b/Documentation/devicetree/bindings/extcon/wlf,arizona.yaml
@@ -85,7 +85,6 @@ properties:
wlf,micd-timeout-ms:
description:
Timeout for microphone detection, specified in milliseconds.
- $ref: "/schemas/types.yaml#/definitions/uint32"
wlf,micd-force-micbias:
description:
diff --git a/Documentation/devicetree/bindings/firmware/qcom,scm.txt b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
index 78456437df5f..a884955f861e 100644
--- a/Documentation/devicetree/bindings/firmware/qcom,scm.txt
+++ b/Documentation/devicetree/bindings/firmware/qcom,scm.txt
@@ -22,6 +22,8 @@ Required properties:
* "qcom,scm-sc7180"
* "qcom,scm-sdm845"
* "qcom,scm-sm8150"
+ * "qcom,scm-sm8250"
+ * "qcom,scm-sm8350"
and:
* "qcom,scm"
- clocks: Specifies clocks needed by the SCM interface, if any:
diff --git a/Documentation/devicetree/bindings/gpio/mrvl-gpio.yaml b/Documentation/devicetree/bindings/gpio/mrvl-gpio.yaml
index 4db3b8a3332c..9cf6137dd524 100644
--- a/Documentation/devicetree/bindings/gpio/mrvl-gpio.yaml
+++ b/Documentation/devicetree/bindings/gpio/mrvl-gpio.yaml
@@ -82,8 +82,7 @@ properties:
'#gpio-cells':
const: 2
- gpio-ranges:
- maxItems: 1
+ gpio-ranges: true
interrupts: true
diff --git a/Documentation/devicetree/bindings/hwmon/adi,ltc2947.yaml b/Documentation/devicetree/bindings/hwmon/adi,ltc2947.yaml
index eef614962b10..bf04151b63d2 100644
--- a/Documentation/devicetree/bindings/hwmon/adi,ltc2947.yaml
+++ b/Documentation/devicetree/bindings/hwmon/adi,ltc2947.yaml
@@ -49,7 +49,6 @@ properties:
description:
This property controls the Accumulation Dead band which allows to set the
level of current below which no accumulation takes place.
- $ref: /schemas/types.yaml#/definitions/uint32
maximum: 255
default: 0
diff --git a/Documentation/devicetree/bindings/hwmon/baikal,bt1-pvt.yaml b/Documentation/devicetree/bindings/hwmon/baikal,bt1-pvt.yaml
index 00a6511354e6..5d3ce641fcde 100644
--- a/Documentation/devicetree/bindings/hwmon/baikal,bt1-pvt.yaml
+++ b/Documentation/devicetree/bindings/hwmon/baikal,bt1-pvt.yaml
@@ -73,11 +73,9 @@ properties:
description: |
Temperature sensor trimming factor. It can be used to manually adjust the
temperature measurements within 7.130 degrees Celsius.
- maxItems: 1
- items:
- default: 0
- minimum: 0
- maximum: 7130
+ default: 0
+ minimum: 0
+ maximum: 7130
additionalProperties: false
diff --git a/Documentation/devicetree/bindings/hwmon/ti,tmp513.yaml b/Documentation/devicetree/bindings/hwmon/ti,tmp513.yaml
index 8020d739a078..1502b22c77cc 100644
--- a/Documentation/devicetree/bindings/hwmon/ti,tmp513.yaml
+++ b/Documentation/devicetree/bindings/hwmon/ti,tmp513.yaml
@@ -52,7 +52,6 @@ properties:
ti,bus-range-microvolt:
description: |
This is the operating range of the bus voltage in microvolt
- $ref: /schemas/types.yaml#/definitions/uint32
enum: [16000000, 32000000]
default: 32000000
diff --git a/Documentation/devicetree/bindings/i2c/i2c-gpio.yaml b/Documentation/devicetree/bindings/i2c/i2c-gpio.yaml
index cc3aa2a5e70b..ff99344788ab 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-gpio.yaml
+++ b/Documentation/devicetree/bindings/i2c/i2c-gpio.yaml
@@ -39,11 +39,9 @@ properties:
i2c-gpio,delay-us:
description: delay between GPIO operations (may depend on each platform)
- $ref: /schemas/types.yaml#/definitions/uint32
i2c-gpio,timeout-ms:
description: timeout to get data
- $ref: /schemas/types.yaml#/definitions/uint32
# Deprecated properties, do not use in new device tree sources:
gpios:
diff --git a/Documentation/devicetree/bindings/i2c/snps,designware-i2c.yaml b/Documentation/devicetree/bindings/i2c/snps,designware-i2c.yaml
index c22b66b6219e..d9293c57f573 100644
--- a/Documentation/devicetree/bindings/i2c/snps,designware-i2c.yaml
+++ b/Documentation/devicetree/bindings/i2c/snps,designware-i2c.yaml
@@ -66,21 +66,18 @@ properties:
default: 400000
i2c-sda-hold-time-ns:
- maxItems: 1
description: |
The property should contain the SDA hold time in nanoseconds. This option
is only supported in hardware blocks version 1.11a or newer or on
Microsemi SoCs.
i2c-scl-falling-time-ns:
- maxItems: 1
description: |
The property should contain the SCL falling time in nanoseconds.
This value is used to compute the tLOW period.
default: 300
i2c-sda-falling-time-ns:
- maxItems: 1
description: |
The property should contain the SDA falling time in nanoseconds.
This value is used to compute the tHIGH period.
diff --git a/Documentation/devicetree/bindings/iio/accel/bosch,bma255.yaml b/Documentation/devicetree/bindings/iio/accel/bosch,bma255.yaml
index 6eef3480ea8f..c2efbb813ca2 100644
--- a/Documentation/devicetree/bindings/iio/accel/bosch,bma255.yaml
+++ b/Documentation/devicetree/bindings/iio/accel/bosch,bma255.yaml
@@ -16,8 +16,8 @@ description:
properties:
compatible:
enum:
- - bosch,bmc150
- - bosch,bmi055
+ - bosch,bmc150_accel
+ - bosch,bmi055_accel
- bosch,bma255
- bosch,bma250e
- bosch,bma222
diff --git a/Documentation/devicetree/bindings/iio/accel/kionix,kxcjk1013.yaml b/Documentation/devicetree/bindings/iio/accel/kionix,kxcjk1013.yaml
index 5667d09dfe6a..fbb714431e3d 100644
--- a/Documentation/devicetree/bindings/iio/accel/kionix,kxcjk1013.yaml
+++ b/Documentation/devicetree/bindings/iio/accel/kionix,kxcjk1013.yaml
@@ -20,6 +20,9 @@ properties:
reg:
maxItems: 1
+ vdd-supply: true
+ vddio-supply: true
+
mount-matrix:
description: an optional 3x3 mounting rotation matrix.
diff --git a/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml b/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml
index e0cc3b2e8957..22b7ed3723f6 100644
--- a/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/adi,ad7192.yaml
@@ -80,7 +80,7 @@ properties:
type: boolean
bipolar:
- description: see Documentation/devicetree/bindings/iio/adc/adc.txt
+ description: see Documentation/devicetree/bindings/iio/adc/adc.yaml
type: boolean
required:
diff --git a/Documentation/devicetree/bindings/iio/adc/maxim,max9611.yaml b/Documentation/devicetree/bindings/iio/adc/maxim,max9611.yaml
index 9475a9e6e920..95774a55629d 100644
--- a/Documentation/devicetree/bindings/iio/adc/maxim,max9611.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/maxim,max9611.yaml
@@ -23,7 +23,6 @@ properties:
maxItems: 1
shunt-resistor-micro-ohms:
- $ref: /schemas/types.yaml#/definitions/uint32
description: |
Value in micro Ohms of the shunt resistor connected between the RS+ and
RS- inputs, across which the current is measured. Value needed to compute
diff --git a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml
index 28417b31b558..517e32976c30 100644
--- a/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/st,stm32-adc.yaml
@@ -246,7 +246,6 @@ patternProperties:
Resolution (bits) to use for conversions:
- can be 6, 8, 10 or 12 on stm32f4
- can be 8, 10, 12, 14 or 16 on stm32h7 and stm32mp1
- $ref: /schemas/types.yaml#/definitions/uint32
st,adc-channels:
description: |
diff --git a/Documentation/devicetree/bindings/iio/adc/ti,palmas-gpadc.yaml b/Documentation/devicetree/bindings/iio/adc/ti,palmas-gpadc.yaml
index 692dacd0fee5..7b895784e008 100644
--- a/Documentation/devicetree/bindings/iio/adc/ti,palmas-gpadc.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/ti,palmas-gpadc.yaml
@@ -42,7 +42,6 @@ properties:
const: 1
ti,channel0-current-microamp:
- $ref: /schemas/types.yaml#/definitions/uint32
description: Channel 0 current in uA.
enum:
- 0
@@ -51,7 +50,6 @@ properties:
- 20
ti,channel3-current-microamp:
- $ref: /schemas/types.yaml#/definitions/uint32
description: Channel 3 current in uA.
enum:
- 0
diff --git a/Documentation/devicetree/bindings/iio/adc/x-powers,axp209-adc.yaml b/Documentation/devicetree/bindings/iio/adc/x-powers,axp209-adc.yaml
index 5ccbb1f81960..e759a5da708d 100644
--- a/Documentation/devicetree/bindings/iio/adc/x-powers,axp209-adc.yaml
+++ b/Documentation/devicetree/bindings/iio/adc/x-powers,axp209-adc.yaml
@@ -46,10 +46,14 @@ description: |
properties:
compatible:
- enum:
- - x-powers,axp209-adc
- - x-powers,axp221-adc
- - x-powers,axp813-adc
+ oneOf:
+ - const: x-powers,axp209-adc
+ - const: x-powers,axp221-adc
+ - const: x-powers,axp813-adc
+
+ - items:
+ - const: x-powers,axp803-adc
+ - const: x-powers,axp813-adc
"#io-channel-cells":
const: 1
diff --git a/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt b/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt
index e0e0755cabd8..f42e18078376 100644
--- a/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt
+++ b/Documentation/devicetree/bindings/iio/adc/xilinx-xadc.txt
@@ -1,13 +1,22 @@
Xilinx XADC device driver
-This binding document describes the bindings for both of them since the
-bindings are very similar. The Xilinx XADC is a ADC that can be found in the
-series 7 FPGAs from Xilinx. The XADC has a DRP interface for communication.
-Currently two different frontends for the DRP interface exist. One that is only
-available on the ZYNQ family as a hardmacro in the SoC portion of the ZYNQ. The
-other one is available on all series 7 platforms and is a softmacro with a AXI
-interface. This binding document describes the bindings for both of them since
-the bindings are very similar.
+This binding document describes the bindings for the Xilinx 7 Series XADC as well
+as the UltraScale/UltraScale+ System Monitor.
+
+The Xilinx XADC is an ADC that can be found in the Series 7 FPGAs from Xilinx.
+The XADC has a DRP interface for communication. Currently two different
+frontends for the DRP interface exist. One that is only available on the ZYNQ
+family as a hardmacro in the SoC portion of the ZYNQ. The other one is available
+on all series 7 platforms and is a softmacro with a AXI interface. This binding
+document describes the bindings for both of them since the bindings are very
+similar.
+
+The Xilinx System Monitor is an ADC that is found in the UltraScale and
+UltraScale+ FPGAs from Xilinx. The System Monitor provides a DRP interface for
+communication. Xilinx provides a standard IP core that can be used to access the
+System Monitor through an AXI interface in the FPGA fabric. This IP core is
+called the Xilinx System Management Wizard. This document describes the bindings
+for this IP.
Required properties:
- compatible: Should be one of
@@ -15,11 +24,14 @@ Required properties:
configuration interface to interface to the XADC hardmacro.
* "xlnx,axi-xadc-1.00.a": When using the axi-xadc pcore to
interface to the XADC hardmacro.
+ * "xlnx,system-management-wiz-1.3": When using the
+ Xilinx System Management Wizard fabric IP core to access the
+ UltraScale and UltraScale+ System Monitor.
- reg: Address and length of the register set for the device
- interrupts: Interrupt for the XADC control interface.
- clocks: When using the ZYNQ this must be the ZYNQ PCAP clock,
- when using the AXI-XADC pcore this must be the clock that provides the
- clock to the AXI bus interface of the core.
+ when using the axi-xadc or the axi-system-management-wizard this must be
+ the clock that provides the clock to the AXI bus interface of the core.
Optional properties:
- xlnx,external-mux:
@@ -110,3 +122,20 @@ Examples:
};
};
};
+
+ adc@80000000 {
+ compatible = "xlnx,system-management-wiz-1.3";
+ reg = <0x80000000 0x1000>;
+ interrupts = <0 81 4>;
+ interrupt-parent = <&gic>;
+ clocks = <&fpga1_clk>;
+
+ xlnx,channels {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ channel@0 {
+ reg = <0>;
+ xlnx,bipolar;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/dac/adi,ad5758.yaml b/Documentation/devicetree/bindings/iio/dac/adi,ad5758.yaml
index 626ccb6fe21e..fd4edca34a28 100644
--- a/Documentation/devicetree/bindings/iio/dac/adi,ad5758.yaml
+++ b/Documentation/devicetree/bindings/iio/dac/adi,ad5758.yaml
@@ -46,31 +46,42 @@ properties:
two properties must be present:
adi,range-microvolt:
- $ref: /schemas/types.yaml#/definitions/int32-array
description: |
Voltage output range specified as <minimum, maximum>
- enum:
- - [[0, 5000000]]
- - [[0, 10000000]]
- - [[-5000000, 5000000]]
- - [[-10000000, 10000000]]
+ oneOf:
+ - items:
+ - const: 0
+ - enum: [5000000, 10000000]
+ - items:
+ - const: -5000000
+ - const: 5000000
+ - items:
+ - const: -10000000
+ - const: 10000000
adi,range-microamp:
- $ref: /schemas/types.yaml#/definitions/int32-array
description: |
Current output range specified as <minimum, maximum>
- enum:
- - [[0, 20000]]
- - [[0, 24000]]
- - [[4, 24000]]
- - [[-20000, 20000]]
- - [[-24000, 24000]]
- - [[-1000, 22000]]
+ oneOf:
+ - items:
+ - const: 0
+ - enum: [20000, 24000]
+ - items:
+ - const: 4
+ - const: 24000
+ - items:
+ - const: -20000
+ - const: 20000
+ - items:
+ - const: -24000
+ - const: 24000
+ - items:
+ - const: -1000
+ - const: 22000
reset-gpios: true
adi,dc-dc-ilim-microamp:
- $ref: /schemas/types.yaml#/definitions/uint32
enum: [150000, 200000, 250000, 300000, 350000, 400000]
description: |
The dc-to-dc converter current limit.
diff --git a/Documentation/devicetree/bindings/iio/dac/adi,ad5766.yaml b/Documentation/devicetree/bindings/iio/dac/adi,ad5766.yaml
new file mode 100644
index 000000000000..d5c54813ce87
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/dac/adi,ad5766.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+# Copyright 2020 Analog Devices Inc.
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/dac/adi,ad5766.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Analog Devices AD5766 DAC device driver
+
+maintainers:
+ - Cristian Pop <cristian.pop@analog.com>
+
+description: |
+ Bindings for the Analog Devices AD5766 current DAC device. Datasheet can be
+ found here:
+ https://www.analog.com/media/en/technical-documentation/data-sheets/ad5766-5767.pdf
+
+properties:
+ compatible:
+ enum:
+ - adi,ad5766
+ - adi,ad5767
+
+ output-range-microvolts:
+ description: Select converter output range.
+
+ reg:
+ maxItems: 1
+
+ spi-max-frequency:
+ maximum: 1000000
+
+ spi-cpol: true
+
+ reset-gpios:
+ description: GPIO spec for the RESET pin. As the line is active low, it
+ should be marked GPIO_ACTIVE_LOW.
+ maxItems: 1
+
+required:
+ - compatible
+ - output-range-microvolts
+ - reg
+ - spi-max-frequency
+ - spi-cpol
+
+additionalProperties: false
+
+examples:
+ - |
+ spi {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ad5766@0 {
+ compatible = "adi,ad5766";
+ output-range-microvolts = <(-5000) 5000>;
+ reg = <0>;
+ spi-cpol;
+ spi-max-frequency = <1000000>;
+ reset-gpios = <&gpio 22 0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/iio/dac/microchip,mcp4725.yaml b/Documentation/devicetree/bindings/iio/dac/microchip,mcp4725.yaml
index 271998610ceb..5f5b578316bc 100644
--- a/Documentation/devicetree/bindings/iio/dac/microchip,mcp4725.yaml
+++ b/Documentation/devicetree/bindings/iio/dac/microchip,mcp4725.yaml
@@ -39,20 +39,39 @@ properties:
allOf:
- if:
- not:
- properties:
- compatible:
- contains:
- const: microchip,mcp4726
+ properties:
+ compatible:
+ contains:
+ const: microchip,mcp4725
then:
properties:
vref-supply: false
+ required:
+ - vdd-supply
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: microchip,mcp4726
+ then:
+ anyOf:
+ - required:
+ - vdd-supply
+ - required:
+ - vref-supply
+
+ - if:
+ not:
+ required:
+ - vref-supply
+ then:
+ properties:
microchip,vref-buffered: false
required:
- compatible
- reg
- - vdd-supply
additionalProperties: false
diff --git a/Documentation/devicetree/bindings/iio/gyroscope/bosch,bmg160.yaml b/Documentation/devicetree/bindings/iio/gyroscope/bosch,bmg160.yaml
index 0466483be6bb..b6bbc312a7cf 100644
--- a/Documentation/devicetree/bindings/iio/gyroscope/bosch,bmg160.yaml
+++ b/Documentation/devicetree/bindings/iio/gyroscope/bosch,bmg160.yaml
@@ -19,6 +19,9 @@ properties:
reg:
maxItems: 1
+ vdd-supply: true
+ vddio-supply: true
+
interrupts:
minItems: 1
description:
diff --git a/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.txt b/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.txt
deleted file mode 100644
index 233fe207aded..000000000000
--- a/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.txt
+++ /dev/null
@@ -1,45 +0,0 @@
-Invensense MPU-3050 Gyroscope device tree bindings
-
-Required properties:
- - compatible : should be "invensense,mpu3050"
- - reg : the I2C address of the sensor
-
-Optional properties:
- - interrupts : interrupt mapping for the trigger interrupt from the
- internal oscillator. The following IRQ modes are supported:
- IRQ_TYPE_EDGE_RISING, IRQ_TYPE_EDGE_FALLING, IRQ_TYPE_LEVEL_HIGH and
- IRQ_TYPE_LEVEL_LOW. The driver should detect and configure the hardware
- for the desired interrupt type.
- - vdd-supply : supply regulator for the main power voltage.
- - vlogic-supply : supply regulator for the signal voltage.
- - mount-matrix : see iio/mount-matrix.txt
-
-Optional subnodes:
- - The MPU-3050 will pass through and forward the I2C signals from the
- incoming I2C bus, alternatively drive traffic to a slave device (usually
- an accelerometer) on its own initiative. Therefore is supports a subnode
- i2c gate node. For details see: i2c/i2c-gate.txt
-
-Example:
-
-mpu3050@68 {
- compatible = "invensense,mpu3050";
- reg = <0x68>;
- interrupt-parent = <&foo>;
- interrupts = <12 IRQ_TYPE_EDGE_FALLING>;
- vdd-supply = <&bar>;
- vlogic-supply = <&baz>;
-
- /* External I2C interface */
- i2c-gate {
- #address-cells = <1>;
- #size-cells = <0>;
-
- fnord@18 {
- compatible = "fnord";
- reg = <0x18>;
- interrupt-parent = <&foo>;
- interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.yaml b/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.yaml
new file mode 100644
index 000000000000..7e2accc3d5ce
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/gyroscope/invensense,mpu3050.yaml
@@ -0,0 +1,70 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/gyroscope/invensense,mpu3050.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Invensense MPU-3050 Gyroscope
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+properties:
+ compatible:
+ const: invensense,mpu3050
+
+ reg:
+ maxItems: 1
+
+ vdd-supply: true
+
+ vlogic-supply: true
+
+ interrupts:
+ minItems: 1
+ description:
+ Interrupt mapping for the trigger interrupt from the internal oscillator.
+
+ mount-matrix: true
+
+ i2c-gate:
+ $ref: /schemas/i2c/i2c-controller.yaml
+ unevaluatedProperties: false
+ description: |
+ The MPU-3050 will pass through and forward the I2C signals from the
+ incoming I2C bus, alternatively drive traffic to a slave device (usually
+ an accelerometer) on its own initiative. Therefore is supports an
+ i2c-gate subnode.
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ gyroscope@68 {
+ compatible = "invensense,mpu3050";
+ reg = <0x68>;
+ interrupt-parent = <&foo>;
+ interrupts = <12 IRQ_TYPE_EDGE_FALLING>;
+ vdd-supply = <&bar>;
+ vlogic-supply = <&baz>;
+
+ i2c-gate {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ magnetometer@c {
+ compatible = "ak,ak8975";
+ reg = <0x0c>;
+ };
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/health/maxim,max30100.yaml b/Documentation/devicetree/bindings/iio/health/maxim,max30100.yaml
index 64b862637039..967778fb0ce8 100644
--- a/Documentation/devicetree/bindings/iio/health/maxim,max30100.yaml
+++ b/Documentation/devicetree/bindings/iio/health/maxim,max30100.yaml
@@ -21,7 +21,6 @@ properties:
description: Connected to ADC_RDY pin.
maxim,led-current-microamp:
- $ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 2
maxItems: 2
description: |
diff --git a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt b/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
deleted file mode 100644
index f2f64749e818..000000000000
--- a/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
+++ /dev/null
@@ -1,67 +0,0 @@
-InvenSense MPU-6050 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking Device
-
-http://www.invensense.com/mems/gyro/mpu6050.html
-
-Required properties:
- - compatible : should be one of
- "invensense,mpu6000"
- "invensense,mpu6050"
- "invensense,mpu6500"
- "invensense,mpu6515"
- "invensense,mpu9150"
- "invensense,mpu9250"
- "invensense,mpu9255"
- "invensense,icm20608"
- "invensense,icm20609"
- "invensense,icm20689"
- "invensense,icm20602"
- "invensense,icm20690"
- "invensense,iam20680"
- - reg : the I2C address of the sensor
- - interrupts: interrupt mapping for IRQ. It should be configured with flags
- IRQ_TYPE_LEVEL_HIGH, IRQ_TYPE_EDGE_RISING, IRQ_TYPE_LEVEL_LOW or
- IRQ_TYPE_EDGE_FALLING.
-
- Refer to interrupt-controller/interrupts.txt for generic interrupt client node
- bindings.
-
-Optional properties:
- - vdd-supply: regulator phandle for VDD supply
- - vddio-supply: regulator phandle for VDDIO supply
- - mount-matrix: an optional 3x3 mounting rotation matrix
- - i2c-gate node. These devices also support an auxiliary i2c bus. This is
- simple enough to be described using the i2c-gate binding. See
- i2c/i2c-gate.txt for more details.
-
-Example:
- mpu6050@68 {
- compatible = "invensense,mpu6050";
- reg = <0x68>;
- interrupt-parent = <&gpio1>;
- interrupts = <18 IRQ_TYPE_EDGE_RISING>;
- mount-matrix = "-0.984807753012208", /* x0 */
- "0", /* y0 */
- "-0.173648177666930", /* z0 */
- "0", /* x1 */
- "-1", /* y1 */
- "0", /* z1 */
- "-0.173648177666930", /* x2 */
- "0", /* y2 */
- "0.984807753012208"; /* z2 */
- };
-
-
- mpu9250@68 {
- compatible = "invensense,mpu9250";
- reg = <0x68>;
- interrupt-parent = <&gpio3>;
- interrupts = <21 IRQ_TYPE_LEVEL_HIGH>;
- i2c-gate {
- #address-cells = <1>;
- #size-cells = <0>;
- ax8975@c {
- compatible = "ak,ak8975";
- reg = <0x0c>;
- };
- };
- };
diff --git a/Documentation/devicetree/bindings/iio/imu/invensense,mpu6050.yaml b/Documentation/devicetree/bindings/iio/imu/invensense,mpu6050.yaml
new file mode 100644
index 000000000000..edbc2921aabd
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/imu/invensense,mpu6050.yaml
@@ -0,0 +1,104 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/imu/invensense,mpu6050.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: InvenSense MPU-6050 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking Device
+
+maintainers:
+ - Jean-Baptiste Maneyrol <jmaneyrol@invensense.com>
+
+description: |
+ These devices support both I2C and SPI bus interfaces.
+
+properties:
+ compatible:
+ enum:
+ - invensense,iam20680
+ - invensense,icm20608
+ - invensense,icm20609
+ - invensense,icm20689
+ - invensense,icm20602
+ - invensense,icm20690
+ - invensense,mpu6000
+ - invensense,mpu6050
+ - invensense,mpu6500
+ - invensense,mpu6515
+ - invensense,mpu6880
+ - invensense,mpu9150
+ - invensense,mpu9250
+ - invensense,mpu9255
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ spi-max-frequency: true
+
+ vdd-supply: true
+ vddio-supply: true
+
+ mount-matrix: true
+
+ i2c-gate:
+ $ref: /schemas/i2c/i2c-controller.yaml
+ unevaluatedProperties: false
+ description: |
+ These devices also support an auxiliary i2c bus via an i2c-gate.
+
+allOf:
+ - if:
+ not:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - invensense,mpu9150
+ - invensense,mpu9250
+ - invensense,mpu9255
+ then:
+ properties:
+ i2c-gate: false
+
+additionalProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ imu@68 {
+ compatible = "invensense,mpu9250";
+ reg = <0x68>;
+ interrupt-parent = <&gpio3>;
+ interrupts = <21 IRQ_TYPE_LEVEL_HIGH>;
+ mount-matrix = "-0.984807753012208", /* x0 */
+ "0", /* y0 */
+ "-0.173648177666930", /* z0 */
+ "0", /* x1 */
+ "-1", /* y1 */
+ "0", /* z1 */
+ "-0.173648177666930", /* x2 */
+ "0", /* y2 */
+ "0.984807753012208"; /* z2 */
+ i2c-gate {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ magnetometer@c {
+ compatible = "ak,ak8975";
+ reg = <0x0c>;
+ };
+ };
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/iio/magnetometer/bosch,bmc150_magn.yaml b/Documentation/devicetree/bindings/iio/magnetometer/bosch,bmc150_magn.yaml
index cdef7aeba708..2867ab6bf9b0 100644
--- a/Documentation/devicetree/bindings/iio/magnetometer/bosch,bmc150_magn.yaml
+++ b/Documentation/devicetree/bindings/iio/magnetometer/bosch,bmc150_magn.yaml
@@ -30,6 +30,9 @@ properties:
reg:
maxItems: 1
+ vdd-supply: true
+ vddio-supply: true
+
interrupts:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/iio/magnetometer/yamaha,yas530.yaml b/Documentation/devicetree/bindings/iio/magnetometer/yamaha,yas530.yaml
new file mode 100644
index 000000000000..4b0ef1ef5445
--- /dev/null
+++ b/Documentation/devicetree/bindings/iio/magnetometer/yamaha,yas530.yaml
@@ -0,0 +1,112 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/iio/magnetometer/yamaha,yas530.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Yamaha YAS530 family of magnetometer sensors
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+description:
+ The Yamaha YAS530 magnetometers is a line of 3-axis magnetometers
+ first introduced by Yamaha in 2009 with the YAS530. They are successors
+ of Yamaha's first magnetometer YAS529. Over the years this magnetometer
+ has been miniaturized and appeared in a number of different variants.
+
+properties:
+ $nodename:
+ pattern: '^magnetometer@[0-9a-f]+$'
+
+ compatible:
+ items:
+ - enum:
+ - yamaha,yas530
+ - yamaha,yas532
+ - yamaha,yas533
+ - yamaha,yas535
+ - yamaha,yas536
+ - yamaha,yas537
+ - yamaha,yas539
+
+ reg:
+ maxItems: 1
+
+ reset-gpios:
+ maxItems: 1
+ description: The YAS530 sensor has a RSTN pin used to reset
+ the logic inside the sensor. This GPIO line should connect
+ to that pin and be marked as GPIO_ACTIVE_LOW.
+
+ interrupts:
+ maxItems: 1
+ description: Interrupt for INT pin for interrupt generation.
+ The polarity, whether the interrupt is active on the rising
+ or the falling edge, is software-configurable in the hardware.
+
+ vdd-supply:
+ description: An optional regulator providing core power supply
+ on the VDD pin, typically 1.8 V or 3.0 V.
+
+ iovdd-supply:
+ description: An optional regulator providing I/O power supply
+ for the I2C interface on the IOVDD pin, typically 1.8 V.
+
+ mount-matrix:
+ description: An optional 3x3 mounting rotation matrix.
+
+allOf:
+ - if:
+ not:
+ properties:
+ compatible:
+ items:
+ const: yamaha,yas530
+ then:
+ properties:
+ reset-gpios: false
+
+ - if:
+ properties:
+ compatible:
+ items:
+ const: yamaha,yas539
+ then:
+ properties:
+ interrupts: false
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/gpio/gpio.h>
+ i2c-0 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ magnetometer@2e {
+ compatible = "yamaha,yas530";
+ reg = <0x2e>;
+ vdd-supply = <&ldo1_reg>;
+ iovdd-supply = <&ldo2_reg>;
+ reset-gpios = <&gpio6 12 GPIO_ACTIVE_LOW>;
+ interrupts = <&gpio6 13 IRQ_TYPE_EDGE_RISING>;
+ };
+ };
+
+ i2c-1 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ magnetometer@2e {
+ compatible = "yamaha,yas539";
+ reg = <0x2e>;
+ vdd-supply = <&ldo1_reg>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/input/adc-keys.txt b/Documentation/devicetree/bindings/input/adc-keys.txt
index e551814629b4..6c8be6a9ace2 100644
--- a/Documentation/devicetree/bindings/input/adc-keys.txt
+++ b/Documentation/devicetree/bindings/input/adc-keys.txt
@@ -5,7 +5,8 @@ Required properties:
- compatible: "adc-keys"
- io-channels: Phandle to an ADC channel
- io-channel-names = "buttons";
- - keyup-threshold-microvolt: Voltage at which all the keys are considered up.
+ - keyup-threshold-microvolt: Voltage above or equal to which all the keys are
+ considered up.
Optional properties:
- poll-interval: Poll interval time in milliseconds
@@ -17,7 +18,12 @@ Each button (key) is represented as a sub-node of "adc-keys":
Required subnode-properties:
- label: Descriptive name of the key.
- linux,code: Keycode to emit.
- - press-threshold-microvolt: Voltage ADC input when this key is pressed.
+ - press-threshold-microvolt: voltage above or equal to which this key is
+ considered pressed.
+
+No two values of press-threshold-microvolt may be the same.
+All values of press-threshold-microvolt must be less than
+keyup-threshold-microvolt.
Example:
@@ -47,3 +53,15 @@ Example:
press-threshold-microvolt = <500000>;
};
};
+
++--------------------------------+------------------------+
+| 2.000.000 <= value | no key pressed |
++--------------------------------+------------------------+
+| 1.500.000 <= value < 2.000.000 | KEY_VOLUMEUP pressed |
++--------------------------------+------------------------+
+| 1.000.000 <= value < 1.500.000 | KEY_VOLUMEDOWN pressed |
++--------------------------------+------------------------+
+| 500.000 <= value < 1.000.000 | KEY_ENTER pressed |
++--------------------------------+------------------------+
+| value < 500.000 | no key pressed |
++--------------------------------+------------------------+
diff --git a/Documentation/devicetree/bindings/input/touchscreen/goodix.yaml b/Documentation/devicetree/bindings/input/touchscreen/goodix.yaml
index da5b0d87e16d..93f2ce3130ae 100644
--- a/Documentation/devicetree/bindings/input/touchscreen/goodix.yaml
+++ b/Documentation/devicetree/bindings/input/touchscreen/goodix.yaml
@@ -26,6 +26,7 @@ properties:
- goodix,gt927
- goodix,gt9271
- goodix,gt928
+ - goodix,gt9286
- goodix,gt967
reg:
diff --git a/Documentation/devicetree/bindings/input/touchscreen/touchscreen.yaml b/Documentation/devicetree/bindings/input/touchscreen/touchscreen.yaml
index a771a15f053f..046ace461cc9 100644
--- a/Documentation/devicetree/bindings/input/touchscreen/touchscreen.yaml
+++ b/Documentation/devicetree/bindings/input/touchscreen/touchscreen.yaml
@@ -70,11 +70,9 @@ properties:
touchscreen-x-mm:
description: horizontal length in mm of the touchscreen
- $ref: /schemas/types.yaml#/definitions/uint32
touchscreen-y-mm:
description: vertical length in mm of the touchscreen
- $ref: /schemas/types.yaml#/definitions/uint32
dependencies:
touchscreen-size-x: [ touchscreen-size-y ]
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun6i-a31-r-intc.yaml b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun6i-a31-r-intc.yaml
new file mode 100644
index 000000000000..4db24b8a9ffe
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun6i-a31-r-intc.yaml
@@ -0,0 +1,67 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/interrupt-controller/allwinner,sun6i-a31-r-intc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Allwinner A31 NMI/Wakeup Interrupt Controller Device Tree Bindings
+
+maintainers:
+ - Chen-Yu Tsai <wens@csie.org>
+ - Maxime Ripard <mripard@kernel.org>
+
+allOf:
+ - $ref: /schemas/interrupt-controller.yaml#
+
+properties:
+ "#interrupt-cells":
+ const: 3
+ description:
+ The first cell is GIC_SPI (0), the second cell is the IRQ number, and
+ the third cell is the trigger type as defined in interrupt.txt in this
+ directory.
+
+ compatible:
+ oneOf:
+ - const: allwinner,sun6i-a31-r-intc
+ - items:
+ - enum:
+ - allwinner,sun8i-a83t-r-intc
+ - allwinner,sun8i-h3-r-intc
+ - allwinner,sun50i-a64-r-intc
+ - const: allwinner,sun6i-a31-r-intc
+ - const: allwinner,sun50i-h6-r-intc
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+ description:
+ The GIC interrupt labeled as "External NMI".
+
+ interrupt-controller: true
+
+required:
+ - "#interrupt-cells"
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-controller
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ r_intc: interrupt-controller@1f00c00 {
+ compatible = "allwinner,sun50i-a64-r-intc",
+ "allwinner,sun6i-a31-r-intc";
+ interrupt-controller;
+ #interrupt-cells = <3>;
+ reg = <0x01f00c00 0x400>;
+ interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml
index 8acca0ae3129..7fc9ad5ef38c 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml
+++ b/Documentation/devicetree/bindings/interrupt-controller/allwinner,sun7i-a20-sc-nmi.yaml
@@ -22,23 +22,16 @@ properties:
compatible:
oneOf:
- - const: allwinner,sun6i-a31-r-intc
- const: allwinner,sun6i-a31-sc-nmi
deprecated: true
- const: allwinner,sun7i-a20-sc-nmi
- items:
- - const: allwinner,sun8i-a83t-r-intc
- - const: allwinner,sun6i-a31-r-intc
+ - const: allwinner,sun8i-v3s-nmi
+ - const: allwinner,sun9i-a80-nmi
- const: allwinner,sun9i-a80-nmi
- items:
- - const: allwinner,sun50i-a64-r-intc
- - const: allwinner,sun6i-a31-r-intc
- - items:
- const: allwinner,sun50i-a100-nmi
- const: allwinner,sun9i-a80-nmi
- - items:
- - const: allwinner,sun50i-h6-r-intc
- - const: allwinner,sun6i-a31-r-intc
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/interrupt-controller/qcom,pdc.txt b/Documentation/devicetree/bindings/interrupt-controller/qcom,pdc.txt
index 1df293953327..e9afb48182c7 100644
--- a/Documentation/devicetree/bindings/interrupt-controller/qcom,pdc.txt
+++ b/Documentation/devicetree/bindings/interrupt-controller/qcom,pdc.txt
@@ -20,6 +20,8 @@ Properties:
Definition: Should contain "qcom,<soc>-pdc" and "qcom,pdc"
- "qcom,sc7180-pdc": For SC7180
- "qcom,sdm845-pdc": For SDM845
+ - "qcom,sdm8250-pdc": For SM8250
+ - "qcom,sdm8350-pdc": For SM8350
- reg:
Usage: required
diff --git a/Documentation/devicetree/bindings/interrupt-controller/realtek,rtl-intc.yaml b/Documentation/devicetree/bindings/interrupt-controller/realtek,rtl-intc.yaml
new file mode 100644
index 000000000000..9e76fff20323
--- /dev/null
+++ b/Documentation/devicetree/bindings/interrupt-controller/realtek,rtl-intc.yaml
@@ -0,0 +1,57 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/interrupt-controller/realtek,rtl-intc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Realtek RTL SoC interrupt controller devicetree bindings
+
+maintainers:
+ - Birger Koblitz <mail@birger-koblitz.de>
+ - Bert Vermeulen <bert@biot.com>
+ - John Crispin <john@phrozen.org>
+
+properties:
+ compatible:
+ const: realtek,rtl-intc
+
+ "#interrupt-cells":
+ const: 1
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-controller: true
+
+ "#address-cells":
+ const: 0
+
+ interrupt-map:
+ description: Describes mapping from SoC interrupts to CPU interrupts
+
+required:
+ - compatible
+ - reg
+ - "#interrupt-cells"
+ - interrupt-controller
+ - "#address-cells"
+ - interrupt-map
+
+additionalProperties: false
+
+examples:
+ - |
+ intc: interrupt-controller@3000 {
+ compatible = "realtek,rtl-intc";
+ #interrupt-cells = <1>;
+ interrupt-controller;
+ reg = <0x3000 0x20>;
+ #address-cells = <0>;
+ interrupt-map =
+ <31 &cpuintc 2>,
+ <30 &cpuintc 1>,
+ <29 &cpuintc 5>;
+ };
diff --git a/Documentation/devicetree/bindings/interrupt-controller/sigma,smp8642-intc.txt b/Documentation/devicetree/bindings/interrupt-controller/sigma,smp8642-intc.txt
deleted file mode 100644
index 355c18a3a4d3..000000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/sigma,smp8642-intc.txt
+++ /dev/null
@@ -1,48 +0,0 @@
-Sigma Designs SMP86xx/SMP87xx secondary interrupt controller
-
-Required properties:
-- compatible: should be "sigma,smp8642-intc"
-- reg: physical address of MMIO region
-- ranges: address space mapping of child nodes
-- interrupt-controller: boolean
-- #address-cells: should be <1>
-- #size-cells: should be <1>
-
-One child node per control block with properties:
-- reg: address of registers for this control block
-- interrupt-controller: boolean
-- #interrupt-cells: should be <2>, interrupt index and flags per interrupts.txt
-- interrupts: interrupt spec of primary interrupt controller
-
-Example:
-
-interrupt-controller@6e000 {
- compatible = "sigma,smp8642-intc";
- reg = <0x6e000 0x400>;
- ranges = <0x0 0x6e000 0x400>;
- interrupt-parent = <&gic>;
- interrupt-controller;
- #address-cells = <1>;
- #size-cells = <1>;
-
- irq0: interrupt-controller@0 {
- reg = <0x000 0x100>;
- interrupt-controller;
- #interrupt-cells = <2>;
- interrupts = <GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>;
- };
-
- irq1: interrupt-controller@100 {
- reg = <0x100 0x100>;
- interrupt-controller;
- #interrupt-cells = <2>;
- interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>;
- };
-
- irq2: interrupt-controller@300 {
- reg = <0x300 0x100>;
- interrupt-controller;
- #interrupt-cells = <2>;
- interrupts = <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>;
- };
-};
diff --git a/Documentation/devicetree/bindings/interrupt-controller/ti,c64x+megamod-pic.txt b/Documentation/devicetree/bindings/interrupt-controller/ti,c64x+megamod-pic.txt
deleted file mode 100644
index ee3f9c351501..000000000000
--- a/Documentation/devicetree/bindings/interrupt-controller/ti,c64x+megamod-pic.txt
+++ /dev/null
@@ -1,103 +0,0 @@
-C6X Interrupt Chips
--------------------
-
-* C64X+ Core Interrupt Controller
-
- The core interrupt controller provides 16 prioritized interrupts to the
- C64X+ core. Priority 0 and 1 are used for reset and NMI respectively.
- Priority 2 and 3 are reserved. Priority 4-15 are used for interrupt
- sources coming from outside the core.
-
- Required properties:
- --------------------
- - compatible: Should be "ti,c64x+core-pic";
- - #interrupt-cells: <1>
-
- Interrupt Specifier Definition
- ------------------------------
- Single cell specifying the core interrupt priority level (4-15) where
- 4 is highest priority and 15 is lowest priority.
-
- Example
- -------
- core_pic: interrupt-controller@0 {
- interrupt-controller;
- #interrupt-cells = <1>;
- compatible = "ti,c64x+core-pic";
- };
-
-
-
-* C64x+ Megamodule Interrupt Controller
-
- The megamodule PIC consists of four interrupt mupliplexers each of which
- combine up to 32 interrupt inputs into a single interrupt output which
- may be cascaded into the core interrupt controller. The megamodule PIC
- has a total of 12 outputs cascading into the core interrupt controller.
- One for each core interrupt priority level. In addition to the combined
- interrupt sources, individual megamodule interrupts may be cascaded to
- the core interrupt controller. When an individual interrupt is cascaded,
- it is no longer handled through a megamodule interrupt combiner and is
- considered to have the core interrupt controller as the parent.
-
- Required properties:
- --------------------
- - compatible: "ti,c64x+megamod-pic"
- - interrupt-controller
- - #interrupt-cells: <1>
- - reg: base address and size of register area
- - interrupts: This should have four cells; one for each interrupt combiner.
- The cells contain the core priority interrupt to which the
- corresponding combiner output is wired.
-
- Optional properties:
- --------------------
- - ti,c64x+megamod-pic-mux: Array of 12 cells correspnding to the 12 core
- priority interrupts. The first cell corresponds to
- core priority 4 and the last cell corresponds to
- core priority 15. The value of each cell is the
- megamodule interrupt source which is MUXed to
- the core interrupt corresponding to the cell
- position. Allowed values are 4 - 127. Mapping for
- interrupts 0 - 3 (combined interrupt sources) are
- ignored.
-
- Interrupt Specifier Definition
- ------------------------------
- Single cell specifying the megamodule interrupt source (4-127). Note that
- interrupts mapped directly to the core with "ti,c64x+megamod-pic-mux" will
- use the core interrupt controller as their parent and the specifier will
- be the core priority level, not the megamodule interrupt number.
-
- Examples
- --------
- megamod_pic: interrupt-controller@1800000 {
- compatible = "ti,c64x+megamod-pic";
- interrupt-controller;
- #interrupt-cells = <1>;
- reg = <0x1800000 0x1000>;
- interrupt-parent = <&core_pic>;
- interrupts = < 12 13 14 15 >;
- };
-
- This is a minimal example where all individual interrupts go through a
- combiner. Combiner-0 is mapped to core interrupt 12, combiner-1 is mapped
- to interrupt 13, etc.
-
-
- megamod_pic: interrupt-controller@1800000 {
- compatible = "ti,c64x+megamod-pic";
- interrupt-controller;
- #interrupt-cells = <1>;
- reg = <0x1800000 0x1000>;
- interrupt-parent = <&core_pic>;
- interrupts = < 12 13 14 15 >;
- ti,c64x+megamod-pic-mux = < 0 0 0 0
- 32 0 0 0
- 0 0 0 0 >;
- };
-
- This the same as the first example except that megamodule interrupt 32 is
- mapped directly to core priority interrupt 8. The node using this interrupt
- must set the core controller as its interrupt parent and use 8 in the
- interrupt specifier value.
diff --git a/Documentation/devicetree/bindings/leds/richtek,rt8515.yaml b/Documentation/devicetree/bindings/leds/richtek,rt8515.yaml
new file mode 100644
index 000000000000..68c328eec03b
--- /dev/null
+++ b/Documentation/devicetree/bindings/leds/richtek,rt8515.yaml
@@ -0,0 +1,111 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/leds/richtek,rt8515.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Richtek RT8515 1.5A dual channel LED driver
+
+maintainers:
+ - Linus Walleij <linus.walleij@linaro.org>
+
+description: |
+ The Richtek RT8515 is a dual channel (two mode) LED driver that
+ supports driving a white LED in flash or torch mode. The maximum
+ current for each mode is defined in hardware using two resistors
+ RFS and RTS.
+
+properties:
+ compatible:
+ const: richtek,rt8515
+
+ enf-gpios:
+ maxItems: 1
+ description: A connection to the 'ENF' (enable flash) pin.
+
+ ent-gpios:
+ maxItems: 1
+ description: A connection to the 'ENT' (enable torch) pin.
+
+ richtek,rfs-ohms:
+ minimum: 7680
+ maximum: 367000
+ description: The resistance value of the RFS resistor. This
+ resistors limits the maximum flash current. This must be set
+ for the property flash-max-microamp to work, the RFS resistor
+ defines the range of the dimmer setting (brightness) of the
+ flash LED.
+
+ richtek,rts-ohms:
+ minimum: 7680
+ maximum: 367000
+ description: The resistance value of the RTS resistor. This
+ resistors limits the maximum torch current. This must be set
+ for the property torch-max-microamp to work, the RTS resistor
+ defines the range of the dimmer setting (brightness) of the
+ torch LED.
+
+ led:
+ type: object
+ $ref: common.yaml#
+ properties:
+ function: true
+ color: true
+ flash-max-timeout-us: true
+
+ flash-max-microamp:
+ maximum: 700000
+ description: The maximum current for flash mode
+ is hardwired to the component using the RFS resistor to
+ ground. The maximum hardware current setting is calculated
+ according to the formula Imax = 5500 / RFS. The lowest
+ allowed resistance value is 7.86 kOhm giving an absolute
+ maximum current of 700mA. By setting this attribute in
+ the device tree, you can further restrict the maximum
+ current below the hardware limit. This requires the RFS
+ to be defined as it defines the maximum range.
+
+ led-max-microamp:
+ maximum: 700000
+ description: The maximum current for torch mode
+ is hardwired to the component using the RTS resistor to
+ ground. The maximum hardware current setting is calculated
+ according to the formula Imax = 5500 / RTS. The lowest
+ allowed resistance value is 7.86 kOhm giving an absolute
+ maximum current of 700mA. By setting this attribute in
+ the device tree, you can further restrict the maximum
+ current below the hardware limit. This requires the RTS
+ to be defined as it defines the maximum range.
+
+ additionalProperties: false
+
+required:
+ - compatible
+ - ent-gpios
+ - enf-gpios
+ - led
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/leds/common.h>
+
+ led-controller {
+ compatible = "richtek,rt8515";
+ enf-gpios = <&gpio4 12 GPIO_ACTIVE_HIGH>;
+ ent-gpios = <&gpio4 13 GPIO_ACTIVE_HIGH>;
+ richtek,rfs-ohms = <16000>;
+ richtek,rts-ohms = <100000>;
+
+ led {
+ function = LED_FUNCTION_FLASH;
+ color = <LED_COLOR_ID_WHITE>;
+ flash-max-timeout-us = <250000>;
+ flash-max-microamp = <150000>;
+ led-max-microamp = <25000>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml b/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
index 6a56214c6cfd..b80980b1908e 100644
--- a/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
+++ b/Documentation/devicetree/bindings/media/allwinner,sun8i-h3-deinterlace.yaml
@@ -20,6 +20,9 @@ properties:
oneOf:
- const: allwinner,sun8i-h3-deinterlace
- items:
+ - const: allwinner,sun8i-r40-deinterlace
+ - const: allwinner,sun8i-h3-deinterlace
+ - items:
- const: allwinner,sun50i-a64-deinterlace
- const: allwinner,sun8i-h3-deinterlace
diff --git a/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.yaml b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.yaml
index 49bff738aca5..52eab686a177 100644
--- a/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.yaml
+++ b/Documentation/devicetree/bindings/media/marvell,mmp2-ccic.yaml
@@ -23,6 +23,9 @@ properties:
interrupts:
maxItems: 1
+ power-domains:
+ maxItems: 1
+
port:
type: object
additionalProperties: false
@@ -75,6 +78,7 @@ additionalProperties: false
examples:
- |
#include <dt-bindings/clock/marvell,mmp2.h>
+ #include <dt-bindings/power/marvell,mmp2.h>
camera@d420a000 {
compatible = "marvell,mmp2-ccic";
@@ -84,6 +88,7 @@ examples:
clock-names = "axi";
#clock-cells = <0>;
clock-output-names = "mclk";
+ power-domains = <&soc_clocks MMP3_POWER_DOMAIN_CAMERA>;
port {
camera0_0: endpoint {
diff --git a/Documentation/devicetree/bindings/media/mediatek-jpeg-decoder.txt b/Documentation/devicetree/bindings/media/mediatek-jpeg-decoder.txt
index 044b11913c49..cf60c5acc0e4 100644
--- a/Documentation/devicetree/bindings/media/mediatek-jpeg-decoder.txt
+++ b/Documentation/devicetree/bindings/media/mediatek-jpeg-decoder.txt
@@ -16,7 +16,7 @@ Required properties:
- power-domains: a phandle to the power domain, see
Documentation/devicetree/bindings/power/power_domain.txt for details.
- mediatek,larb: must contain the local arbiters in the current Socs, see
- Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
+ Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.yaml
for details.
- iommus: should point to the respective IOMMU block with master port as
argument, see Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
diff --git a/Documentation/devicetree/bindings/media/mediatek-jpeg-encoder.txt b/Documentation/devicetree/bindings/media/mediatek-jpeg-encoder.txt
index 736be7cad385..acfb50375b8a 100644
--- a/Documentation/devicetree/bindings/media/mediatek-jpeg-encoder.txt
+++ b/Documentation/devicetree/bindings/media/mediatek-jpeg-encoder.txt
@@ -14,7 +14,7 @@ Required properties:
- power-domains: a phandle to the power domain, see
Documentation/devicetree/bindings/power/power_domain.txt for details.
- mediatek,larb: must contain the local arbiters in the current SoCs, see
- Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
+ Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.yaml
for details.
- iommus: should point to the respective IOMMU block with master port as
argument, see Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
diff --git a/Documentation/devicetree/bindings/media/mediatek-mdp.txt b/Documentation/devicetree/bindings/media/mediatek-mdp.txt
index 0d03e3ae2be2..f4798d04e925 100644
--- a/Documentation/devicetree/bindings/media/mediatek-mdp.txt
+++ b/Documentation/devicetree/bindings/media/mediatek-mdp.txt
@@ -28,7 +28,7 @@ Required properties (DMA function blocks, child node):
argument, see Documentation/devicetree/bindings/iommu/mediatek,iommu.txt
for details.
- mediatek,larb: must contain the local arbiters in the current Socs, see
- Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt
+ Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.yaml
for details.
Example:
diff --git a/Documentation/devicetree/bindings/memory-controllers/renesas,rpc-if.yaml b/Documentation/devicetree/bindings/memory-controllers/renesas,rpc-if.yaml
index 6d6ba608fd22..990489fdd2ac 100644
--- a/Documentation/devicetree/bindings/memory-controllers/renesas,rpc-if.yaml
+++ b/Documentation/devicetree/bindings/memory-controllers/renesas,rpc-if.yaml
@@ -26,10 +26,14 @@ properties:
compatible:
items:
- enum:
+ - renesas,r8a774a1-rpc-if # RZ/G2M
+ - renesas,r8a774b1-rpc-if # RZ/G2N
+ - renesas,r8a774c0-rpc-if # RZ/G2E
+ - renesas,r8a774e1-rpc-if # RZ/G2H
- renesas,r8a77970-rpc-if # R-Car V3M
- renesas,r8a77980-rpc-if # R-Car V3H
- renesas,r8a77995-rpc-if # R-Car D3
- - const: renesas,rcar-gen3-rpc-if # a generic R-Car gen3 device
+ - const: renesas,rcar-gen3-rpc-if # a generic R-Car gen3 or RZ/G2 device
reg:
items:
diff --git a/Documentation/devicetree/bindings/mmc/mmc-controller.yaml b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
index 186f04ba9357..e674bba52ee9 100644
--- a/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
+++ b/Documentation/devicetree/bindings/mmc/mmc-controller.yaml
@@ -259,7 +259,6 @@ properties:
waiting for I/O signalling and card power supply to be stable,
regardless of whether pwrseq-simple is used. Default to 10ms if
no available.
- $ref: /schemas/types.yaml#/definitions/uint32
default: 10
supports-cqe:
diff --git a/Documentation/devicetree/bindings/mmc/mmc-pwrseq-simple.yaml b/Documentation/devicetree/bindings/mmc/mmc-pwrseq-simple.yaml
index 6cd57863c1db..226fb191913d 100644
--- a/Documentation/devicetree/bindings/mmc/mmc-pwrseq-simple.yaml
+++ b/Documentation/devicetree/bindings/mmc/mmc-pwrseq-simple.yaml
@@ -41,13 +41,11 @@ properties:
description:
Delay in ms after powering the card and de-asserting the
reset-gpios (if any).
- $ref: /schemas/types.yaml#/definitions/uint32
power-off-delay-us:
description:
Delay in us after asserting the reset-gpios (if any)
during power off of the card.
- $ref: /schemas/types.yaml#/definitions/uint32
required:
- compatible
diff --git a/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml b/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml
index 1f133f4a2924..0467441d7037 100644
--- a/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml
+++ b/Documentation/devicetree/bindings/net/amlogic,meson-dwmac.yaml
@@ -74,17 +74,60 @@ allOf:
Any configuration is ignored when the phy-mode is set to "rmii".
amlogic,rx-delay-ns:
+ deprecated: true
enum:
- 0
- 2
default: 0
description:
- The internal RGMII RX clock delay (provided by this IP block) in
- nanoseconds. When phy-mode is set to "rgmii" then the RX delay
- should be explicitly configured. When the phy-mode is set to
- either "rgmii-id" or "rgmii-rxid" the RX clock delay is already
- provided by the PHY. Any configuration is ignored when the
- phy-mode is set to "rmii".
+ The internal RGMII RX clock delay in nanoseconds. Deprecated, use
+ rx-internal-delay-ps instead.
+
+ rx-internal-delay-ps:
+ default: 0
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - amlogic,meson8b-dwmac
+ - amlogic,meson8m2-dwmac
+ - amlogic,meson-gxbb-dwmac
+ - amlogic,meson-axg-dwmac
+ then:
+ properties:
+ rx-internal-delay-ps:
+ enum:
+ - 0
+ - 2000
+
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - amlogic,meson-g12a-dwmac
+ then:
+ properties:
+ rx-internal-delay-ps:
+ enum:
+ - 0
+ - 200
+ - 400
+ - 600
+ - 800
+ - 1000
+ - 1200
+ - 1400
+ - 1600
+ - 1800
+ - 2000
+ - 2200
+ - 2400
+ - 2600
+ - 2800
+ - 3000
properties:
compatible:
diff --git a/Documentation/devicetree/bindings/net/brcm,bcm4908-enet.yaml b/Documentation/devicetree/bindings/net/brcm,bcm4908-enet.yaml
new file mode 100644
index 000000000000..79c38ea14237
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/brcm,bcm4908-enet.yaml
@@ -0,0 +1,48 @@
+# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/brcm,bcm4908-enet.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Broadcom BCM4908 Ethernet controller
+
+description: Broadcom's Ethernet controller integrated into BCM4908 family SoCs
+
+maintainers:
+ - Rafał Miłecki <rafal@milecki.pl>
+
+allOf:
+ - $ref: ethernet-controller.yaml#
+
+properties:
+ compatible:
+ const: brcm,bcm4908-enet
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ description: RX interrupt
+
+ interrupt-names:
+ const: rx
+
+required:
+ - reg
+ - interrupts
+ - interrupt-names
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ ethernet@80002000 {
+ compatible = "brcm,bcm4908-enet";
+ reg = <0x80002000 0x1000>;
+
+ interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "rx";
+ };
diff --git a/Documentation/devicetree/bindings/net/brcm,bcm7445-switch-v4.0.txt b/Documentation/devicetree/bindings/net/brcm,bcm7445-switch-v4.0.txt
index 97ca62b0e14d..d0935d2afef8 100644
--- a/Documentation/devicetree/bindings/net/brcm,bcm7445-switch-v4.0.txt
+++ b/Documentation/devicetree/bindings/net/brcm,bcm7445-switch-v4.0.txt
@@ -1,108 +1,13 @@
* Broadcom Starfighter 2 integrated swich
-Required properties:
+See dsa/brcm,bcm7445-switch-v4.0.yaml for the documentation.
-- compatible: should be one of
- "brcm,bcm7445-switch-v4.0"
- "brcm,bcm7278-switch-v4.0"
- "brcm,bcm7278-switch-v4.8"
-- reg: addresses and length of the register sets for the device, must be 6
- pairs of register addresses and lengths
-- interrupts: interrupts for the devices, must be two interrupts
-- #address-cells: must be 1, see dsa/dsa.txt
-- #size-cells: must be 0, see dsa/dsa.txt
-
-Deprecated binding required properties:
+*Deprecated* binding required properties:
- dsa,mii-bus: phandle to the MDIO bus controller, see dsa/dsa.txt
- dsa,ethernet: phandle to the CPU network interface controller, see dsa/dsa.txt
- #address-cells: must be 2, see dsa/dsa.txt
-Subnodes:
-
-The integrated switch subnode should be specified according to the binding
-described in dsa/dsa.txt.
-
-Optional properties:
-
-- reg-names: litteral names for the device base register addresses, when present
- must be: "core", "reg", "intrl2_0", "intrl2_1", "fcb", "acb"
-
-- interrupt-names: litternal names for the device interrupt lines, when present
- must be: "switch_0" and "switch_1"
-
-- brcm,num-gphy: specify the maximum number of integrated gigabit PHYs in the
- switch
-
-- brcm,num-rgmii-ports: specify the maximum number of RGMII interfaces supported
- by the switch
-
-- brcm,fcb-pause-override: boolean property, if present indicates that the switch
- supports Failover Control Block pause override capability
-
-- brcm,acb-packets-inflight: boolean property, if present indicates that the switch
- Admission Control Block supports reporting the number of packets in-flight in a
- switch queue
-
-- resets: a single phandle and reset identifier pair. See
- Documentation/devicetree/bindings/reset/reset.txt for details.
-
-- reset-names: If the "reset" property is specified, this property should have
- the value "switch" to denote the switch reset line.
-
-- clocks: when provided, the first phandle is to the switch's main clock and
- is valid for both BCM7445 and BCM7278. The second phandle is only applicable
- to BCM7445 and is to support dividing the switch core clock.
-
-- clock-names: when provided, the first phandle must be "sw_switch", and the
- second must be named "sw_switch_mdiv".
-
-Port subnodes:
-
-Optional properties:
-
-- brcm,use-bcm-hdr: boolean property, if present, indicates that the switch
- port has Broadcom tags enabled (per-packet metadata)
-
-Example:
-
-switch_top@f0b00000 {
- compatible = "simple-bus";
- #size-cells = <1>;
- #address-cells = <1>;
- ranges = <0 0xf0b00000 0x40804>;
-
- ethernet_switch@0 {
- compatible = "brcm,bcm7445-switch-v4.0";
- #size-cells = <0>;
- #address-cells = <1>;
- reg = <0x0 0x40000
- 0x40000 0x110
- 0x40340 0x30
- 0x40380 0x30
- 0x40400 0x34
- 0x40600 0x208>;
- reg-names = "core", "reg", intrl2_0", "intrl2_1",
- "fcb, "acb";
- interrupts = <0 0x18 0
- 0 0x19 0>;
- brcm,num-gphy = <1>;
- brcm,num-rgmii-ports = <2>;
- brcm,fcb-pause-override;
- brcm,acb-packets-inflight;
-
- ports {
- #address-cells = <1>;
- #size-cells = <0>;
-
- port@0 {
- label = "gphy";
- reg = <0>;
- };
- };
- };
-};
-
Example using the old DSA DeviceTree binding:
switch_top@f0b00000 {
@@ -132,7 +37,7 @@ switch_top@f0b00000 {
switch@0 {
reg = <0 0>;
#size-cells = <0>;
- #address-cells <1>;
+ #address-cells = <1>;
port@0 {
label = "gphy";
diff --git a/Documentation/devicetree/bindings/net/btusb.txt b/Documentation/devicetree/bindings/net/btusb.txt
index b1ad6ee68e90..f546b1f7dd6d 100644
--- a/Documentation/devicetree/bindings/net/btusb.txt
+++ b/Documentation/devicetree/bindings/net/btusb.txt
@@ -4,7 +4,7 @@ Generic Bluetooth controller over USB (btusb driver)
Required properties:
- compatible : should comply with the format "usbVID,PID" specified in
- Documentation/devicetree/bindings/usb/usb-device.txt
+ Documentation/devicetree/bindings/usb/usb-device.yaml
At the time of writing, the only OF supported devices
(more may be added later) are:
@@ -38,7 +38,7 @@ Following example uses irq pin number 3 of gpio0 for out of band wake-on-bt:
compatible = "usb1286,204e";
reg = <1>;
interrupt-parent = <&gpio0>;
- interrupt-name = "wakeup";
+ interrupt-names = "wakeup";
interrupts = <3 IRQ_TYPE_LEVEL_LOW>;
};
};
diff --git a/Documentation/devicetree/bindings/net/can/fsl,flexcan.yaml b/Documentation/devicetree/bindings/net/can/fsl,flexcan.yaml
index 0d2df30f19db..fe6a949a2eab 100644
--- a/Documentation/devicetree/bindings/net/can/fsl,flexcan.yaml
+++ b/Documentation/devicetree/bindings/net/can/fsl,flexcan.yaml
@@ -110,6 +110,16 @@ properties:
description:
Enable CAN remote wakeup.
+ fsl,scu-index:
+ description: |
+ The scu index of CAN instance.
+ For SoCs with SCU support, need setup stop mode via SCU firmware, so this
+ property can help indicate a resource. It supports up to 3 CAN instances
+ now.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ minimum: 0
+ maximum: 2
+
required:
- compatible
- reg
@@ -137,4 +147,5 @@ examples:
clocks = <&clks 1>, <&clks 2>;
clock-names = "ipg", "per";
fsl,stop-mode = <&gpr 0x34 28>;
+ fsl,scu-index = /bits/ 8 <1>;
};
diff --git a/Documentation/devicetree/bindings/net/dsa/arrow,xrs700x.yaml b/Documentation/devicetree/bindings/net/dsa/arrow,xrs700x.yaml
new file mode 100644
index 000000000000..3f01b65f3b22
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/dsa/arrow,xrs700x.yaml
@@ -0,0 +1,73 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/dsa/arrow,xrs700x.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Arrow SpeedChips XRS7000 Series Switch Device Tree Bindings
+
+allOf:
+ - $ref: dsa.yaml#
+
+maintainers:
+ - George McCollister <george.mccollister@gmail.com>
+
+description:
+ The Arrow SpeedChips XRS7000 Series of single chip gigabit Ethernet switches
+ are designed for critical networking applications. They have up to three
+ RGMII ports and one RMII port and are managed via i2c or mdio.
+
+properties:
+ compatible:
+ oneOf:
+ - enum:
+ - arrow,xrs7003e
+ - arrow,xrs7003f
+ - arrow,xrs7004e
+ - arrow,xrs7004f
+
+ reg:
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+unevaluatedProperties: false
+
+examples:
+ - |
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ switch@8 {
+ compatible = "arrow,xrs7004e";
+ reg = <0x8>;
+
+ ethernet-ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ ethernet-port@1 {
+ reg = <1>;
+ label = "lan0";
+ phy-handle = <&swphy0>;
+ phy-mode = "rgmii-id";
+ };
+ ethernet-port@2 {
+ reg = <2>;
+ label = "lan1";
+ phy-handle = <&swphy1>;
+ phy-mode = "rgmii-id";
+ };
+ ethernet-port@3 {
+ reg = <3>;
+ label = "cpu";
+ ethernet = <&fec1>;
+ fixed-link {
+ speed = <1000>;
+ full-duplex;
+ };
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/dsa/brcm,sf2.yaml b/Documentation/devicetree/bindings/net/dsa/brcm,sf2.yaml
new file mode 100644
index 000000000000..d730fe5a4355
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/dsa/brcm,sf2.yaml
@@ -0,0 +1,173 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/net/dsa/brcm,sf2.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Broadcom Starfighter 2 integrated swich
+
+maintainers:
+ - Florian Fainelli <f.fainelli@gmail.com>
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - brcm,bcm4908-switch
+ - brcm,bcm7278-switch-v4.0
+ - brcm,bcm7278-switch-v4.8
+ - brcm,bcm7445-switch-v4.0
+
+ reg:
+ minItems: 6
+ maxItems: 6
+
+ reg-names:
+ items:
+ - const: core
+ - const: reg
+ - const: intrl2_0
+ - const: intrl2_1
+ - const: fcb
+ - const: acb
+
+ interrupts:
+ minItems: 2
+ maxItems: 2
+
+ interrupt-names:
+ items:
+ - const: switch_0
+ - const: switch_1
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: switch
+
+ clocks:
+ minItems: 1
+ maxItems: 2
+ items:
+ - description: switch's main clock
+ - description: dividing of the switch core clock
+
+ clock-names:
+ minItems: 1
+ maxItems: 2
+ items:
+ - const: sw_switch
+ - const: sw_switch_mdiv
+
+ brcm,num-gphy:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: maximum number of integrated gigabit PHYs in the switch
+
+ brcm,num-rgmii-ports:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: maximum number of RGMII interfaces supported by the switch
+
+ brcm,fcb-pause-override:
+ description: if present indicates that the switch supports Failover Control
+ Block pause override capability
+ type: boolean
+
+ brcm,acb-packets-inflight:
+ description: if present indicates that the switch Admission Control Block
+ supports reporting the number of packets in-flight in a switch queue
+ type: boolean
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+ ports:
+ type: object
+
+ properties:
+ brcm,use-bcm-hdr:
+ description: if present, indicates that the switch port has Broadcom
+ tags enabled (per-packet metadata)
+ type: boolean
+
+required:
+ - reg
+ - interrupts
+ - "#address-cells"
+ - "#size-cells"
+
+allOf:
+ - $ref: "dsa.yaml#"
+ - if:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - brcm,bcm7278-switch-v4.0
+ - brcm,bcm7278-switch-v4.8
+ then:
+ properties:
+ clocks:
+ minItems: 1
+ maxItems: 1
+ clock-names:
+ minItems: 1
+ maxItems: 1
+ required:
+ - clocks
+ - clock-names
+ - if:
+ properties:
+ compatible:
+ contains:
+ const: brcm,bcm7445-switch-v4.0
+ then:
+ properties:
+ clocks:
+ minItems: 2
+ maxItems: 2
+ clock-names:
+ minItems: 2
+ maxItems: 2
+ required:
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ switch@f0b00000 {
+ compatible = "brcm,bcm7445-switch-v4.0";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ reg = <0xf0b00000 0x40000>,
+ <0xf0b40000 0x110>,
+ <0xf0b40340 0x30>,
+ <0xf0b40380 0x30>,
+ <0xf0b40400 0x34>,
+ <0xf0b40600 0x208>;
+ reg-names = "core", "reg", "intrl2_0", "intrl2_1",
+ "fcb", "acb";
+ interrupts = <0 0x18 0>,
+ <0 0x19 0>;
+ clocks = <&sw_switch>, <&sw_switch_mdiv>;
+ clock-names = "sw_switch", "sw_switch_mdiv";
+ brcm,num-gphy = <1>;
+ brcm,num-rgmii-ports = <2>;
+ brcm,fcb-pause-override;
+ brcm,acb-packets-inflight;
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ port@0 {
+ label = "gphy";
+ reg = <0>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/dsa/mt7530.txt b/Documentation/devicetree/bindings/net/dsa/mt7530.txt
index 560369efad6c..de04626a8e9d 100644
--- a/Documentation/devicetree/bindings/net/dsa/mt7530.txt
+++ b/Documentation/devicetree/bindings/net/dsa/mt7530.txt
@@ -76,6 +76,12 @@ phy-mode must be set, see also example 2 below!
* mt7621: phy-mode = "rgmii-txid";
* mt7623: phy-mode = "rgmii";
+Optional properties:
+
+- gpio-controller: Boolean; if defined, MT7530's LED controller will run on
+ GPIO mode.
+- #gpio-cells: Must be 2 if gpio-controller is defined.
+
See Documentation/devicetree/bindings/net/dsa/dsa.txt for a list of additional
required, optional properties and how the integrated switch subnodes must
be specified.
diff --git a/Documentation/devicetree/bindings/net/ethernet-controller.yaml b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
index 0965f6515f9e..f599c1d9c961 100644
--- a/Documentation/devicetree/bindings/net/ethernet-controller.yaml
+++ b/Documentation/devicetree/bindings/net/ethernet-controller.yaml
@@ -89,6 +89,7 @@ properties:
- trgmii
- 1000base-x
- 2500base-x
+ - 5gbase-r
- rxaui
- xaui
@@ -122,7 +123,6 @@ properties:
such as flow control thresholds.
rx-internal-delay-ps:
- $ref: /schemas/types.yaml#/definitions/uint32
description: |
RGMII Receive Clock Delay defined in pico seconds.
This is used for controllers that have configurable RX internal delays.
@@ -140,7 +140,6 @@ properties:
is used for components that can have configurable fifo sizes.
tx-internal-delay-ps:
- $ref: /schemas/types.yaml#/definitions/uint32
description: |
RGMII Transmit Clock Delay defined in pico seconds.
This is used for controllers that have configurable TX internal delays.
diff --git a/Documentation/devicetree/bindings/net/marvell-pp2.txt b/Documentation/devicetree/bindings/net/marvell-pp2.txt
index b78397669320..ce15c173f43f 100644
--- a/Documentation/devicetree/bindings/net/marvell-pp2.txt
+++ b/Documentation/devicetree/bindings/net/marvell-pp2.txt
@@ -1,5 +1,6 @@
* Marvell Armada 375 Ethernet Controller (PPv2.1)
Marvell Armada 7K/8K Ethernet Controller (PPv2.2)
+ Marvell CN913X Ethernet Controller (PPv2.3)
Required properties:
@@ -12,10 +13,11 @@ Required properties:
- common controller registers
- LMS registers
- one register area per Ethernet port
- For "marvell,armada-7k-pp2", must contain the following register
+ For "marvell,armada-7k-pp2" used by 7K/8K and CN913X, must contain the following register
sets:
- packet processor registers
- networking interfaces registers
+ - CM3 address space used for TX Flow Control
- clocks: pointers to the reference clocks for this device, consequently:
- main controller clock (for both armada-375-pp2 and armada-7k-pp2)
@@ -81,7 +83,7 @@ Example for marvell,armada-7k-pp2:
cpm_ethernet: ethernet@0 {
compatible = "marvell,armada-7k-pp22";
- reg = <0x0 0x100000>, <0x129000 0xb000>;
+ reg = <0x0 0x100000>, <0x129000 0xb000>, <0x220000 0x800>;
clocks = <&cpm_syscon0 1 3>, <&cpm_syscon0 1 9>,
<&cpm_syscon0 1 5>, <&cpm_syscon0 1 6>, <&cpm_syscon0 1 18>;
clock-names = "pp_clk", "gop_clk", "mg_clk", "mg_core_clk", "axi_clk";
diff --git a/Documentation/devicetree/bindings/net/qca,ar803x.yaml b/Documentation/devicetree/bindings/net/qca,ar803x.yaml
index 64b3357ade8a..b3d4013b7ca6 100644
--- a/Documentation/devicetree/bindings/net/qca,ar803x.yaml
+++ b/Documentation/devicetree/bindings/net/qca,ar803x.yaml
@@ -28,6 +28,10 @@ properties:
$ref: /schemas/types.yaml#/definitions/uint32
enum: [0, 1, 2]
+ qca,disable-smarteee:
+ description: Disable Atheros SmartEEE feature.
+ type: boolean
+
qca,keep-pll-enabled:
description: |
If set, keep the PLL enabled even if there is no link. Useful if you
@@ -36,6 +40,18 @@ properties:
Only supported on the AR8031.
type: boolean
+ qca,smarteee-tw-us-100m:
+ description: EEE Tw parameter for 100M links.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ minimum: 1
+ maximum: 255
+
+ qca,smarteee-tw-us-1g:
+ description: EEE Tw parameter for gigabit links.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ minimum: 1
+ maximum: 255
+
vddio-supply:
description: |
RGMII I/O voltage regulator (see regulator/regulator.yaml).
diff --git a/Documentation/devicetree/bindings/net/qcom,ipa.yaml b/Documentation/devicetree/bindings/net/qcom,ipa.yaml
index 8a2d12644675..8f86084bf12e 100644
--- a/Documentation/devicetree/bindings/net/qcom,ipa.yaml
+++ b/Documentation/devicetree/bindings/net/qcom,ipa.yaml
@@ -113,13 +113,6 @@ properties:
performing early IPA initialization, including loading and
validating firwmare used by the GSI.
- modem-remoteproc:
- $ref: /schemas/types.yaml#/definitions/phandle
- description:
- This defines the phandle to the remoteproc node representing
- the modem subsystem. This is requied so the IPA driver can
- receive and act on notifications of modem up/down events.
-
memory-region:
maxItems: 1
description:
@@ -135,7 +128,6 @@ required:
- interrupts
- interconnects
- qcom,smem-states
- - modem-remoteproc
oneOf:
- required:
@@ -147,7 +139,7 @@ additionalProperties: false
examples:
- |
- #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/qcom,rpmh.h>
#include <dt-bindings/interconnect/qcom,sdm845.h>
@@ -168,7 +160,6 @@ examples:
compatible = "qcom,sdm845-ipa";
modem-init;
- modem-remoteproc = <&mss_pil>;
iommus = <&apps_smmu 0x720 0x3>;
reg = <0x1e40000 0x7000>,
@@ -178,8 +169,8 @@ examples:
"ipa-shared",
"gsi";
- interrupts-extended = <&intc 0 311 IRQ_TYPE_EDGE_RISING>,
- <&intc 0 432 IRQ_TYPE_LEVEL_HIGH>,
+ interrupts-extended = <&intc GIC_SPI 311 IRQ_TYPE_EDGE_RISING>,
+ <&intc GIC_SPI 432 IRQ_TYPE_LEVEL_HIGH>,
<&ipa_smp2p_in 0 IRQ_TYPE_EDGE_RISING>,
<&ipa_smp2p_in 1 IRQ_TYPE_EDGE_RISING>;
interrupt-names = "ipa",
diff --git a/Documentation/devicetree/bindings/net/renesas,etheravb.yaml b/Documentation/devicetree/bindings/net/renesas,etheravb.yaml
index de9dd574a2f9..91ba96d43c6c 100644
--- a/Documentation/devicetree/bindings/net/renesas,etheravb.yaml
+++ b/Documentation/devicetree/bindings/net/renesas,etheravb.yaml
@@ -40,6 +40,7 @@ properties:
- renesas,etheravb-r8a77980 # R-Car V3H
- renesas,etheravb-r8a77990 # R-Car E3
- renesas,etheravb-r8a77995 # R-Car D3
+ - renesas,etheravb-r8a779a0 # R-Car V3U
- const: renesas,etheravb-rcar-gen3 # R-Car Gen3 and RZ/G2
reg: true
@@ -170,6 +171,7 @@ allOf:
- renesas,etheravb-r8a77965
- renesas,etheravb-r8a77970
- renesas,etheravb-r8a77980
+ - renesas,etheravb-r8a779a0
then:
required:
- tx-internal-delay-ps
diff --git a/Documentation/devicetree/bindings/net/snps,dwmac.yaml b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
index dfbf5fe4547a..0642b0f59491 100644
--- a/Documentation/devicetree/bindings/net/snps,dwmac.yaml
+++ b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
@@ -212,7 +212,6 @@ properties:
Triplet of delays. The 1st cell is reset pre-delay in micro
seconds. The 2nd cell is reset pulse in micro seconds. The 3rd
cell is reset post-delay in micro seconds.
- $ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 3
maxItems: 3
diff --git a/Documentation/devicetree/bindings/net/ti,k3-am654-cpsw-nuss.yaml b/Documentation/devicetree/bindings/net/ti,k3-am654-cpsw-nuss.yaml
index c47b58f3e3f6..3fae9a5f0c6a 100644
--- a/Documentation/devicetree/bindings/net/ti,k3-am654-cpsw-nuss.yaml
+++ b/Documentation/devicetree/bindings/net/ti,k3-am654-cpsw-nuss.yaml
@@ -4,7 +4,7 @@
$id: http://devicetree.org/schemas/net/ti,k3-am654-cpsw-nuss.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
-title: The TI AM654x/J721E SoC Gigabit Ethernet MAC (Media Access Controller) Device Tree Bindings
+title: The TI AM654x/J721E/AM642x SoC Gigabit Ethernet MAC (Media Access Controller) Device Tree Bindings
maintainers:
- Grygorii Strashko <grygorii.strashko@ti.com>
@@ -13,19 +13,16 @@ maintainers:
description:
The TI AM654x/J721E SoC Gigabit Ethernet MAC (CPSW2G NUSS) has two ports
(one external) and provides Ethernet packet communication for the device.
- CPSW2G NUSS features - the Reduced Gigabit Media Independent Interface (RGMII),
- Reduced Media Independent Interface (RMII), the Management Data
- Input/Output (MDIO) interface for physical layer device (PHY) management,
- new version of Common Platform Time Sync (CPTS), updated Address Lookup
- Engine (ALE).
- One external Ethernet port (port 1) with selectable RGMII/RMII interfaces and
- an internal Communications Port Programming Interface (CPPI5) (Host port 0).
+ The TI AM642x SoC Gigabit Ethernet MAC (CPSW3G NUSS) has three ports
+ (two external) and provides Ethernet packet communication and switching.
+
+ The internal Communications Port Programming Interface (CPPI5) (Host port 0).
Host Port 0 CPPI Packet Streaming Interface interface supports 8 TX channels
- and one RX channels and operating by TI AM654x/J721E NAVSS Unified DMA
- Peripheral Root Complex (UDMA-P) controller.
- The CPSW2G NUSS is integrated into device MCU domain named MCU_CPSW0.
+ and one RX channels and operating by NAVSS Unified DMA Peripheral Root
+ Complex (UDMA-P) controller.
- Additional features
+ CPSWxG features
+ updated Address Lookup Engine (ALE).
priority level Quality Of Service (QOS) support (802.1p)
Support for Audio/Video Bridging (P802.1Qav/D6.0)
Support for IEEE 1588 Clock Synchronization (2008 Annex D, Annex E and Annex F)
@@ -38,10 +35,18 @@ description:
VLAN support, 802.1Q compliant, Auto add port VLAN for untagged frames on
ingress, Auto VLAN removal on egress and auto pad to minimum frame size.
RX/TX csum offload
+ Management Data Input/Output (MDIO) interface for PHYs management
+ RMII/RGMII Interfaces support
+ new version of Common Platform Time Sync (CPTS)
+
+ The CPSWxG NUSS is integrated into
+ device MCU domain named MCU_CPSW0 on AM654x/J721E SoC.
+ device MAIN domain named CPSW0 on AM642x SoC.
Specifications can be found at
- http://www.ti.com/lit/ug/spruid7e/spruid7e.pdf
- http://www.ti.com/lit/ug/spruil1a/spruil1a.pdf
+ https://www.ti.com/lit/pdf/spruid7
+ https://www.ti.com/lit/zip/spruil1
+ https://www.ti.com/lit/pdf/spruim2
properties:
"#address-cells": true
@@ -51,11 +56,12 @@ properties:
oneOf:
- const: ti,am654-cpsw-nuss
- const: ti,j721e-cpsw-nuss
+ - const: ti,am642-cpsw-nuss
reg:
maxItems: 1
description:
- The physical base address and size of full the CPSW2G NUSS IO range
+ The physical base address and size of full the CPSWxG NUSS IO range
reg-names:
items:
@@ -66,12 +72,16 @@ properties:
dma-coherent: true
clocks:
- description: CPSW2G NUSS functional clock
+ description: CPSWxG NUSS functional clock
clock-names:
items:
- const: fck
+ assigned-clock-parents: true
+
+ assigned-clocks: true
+
power-domains:
maxItems: 1
@@ -99,16 +109,16 @@ properties:
const: 0
patternProperties:
- port@1:
+ port@[1-2]:
type: object
- description: CPSW2G NUSS external ports
+ description: CPSWxG NUSS external ports
$ref: ethernet-controller.yaml#
properties:
reg:
- items:
- - const: 1
+ minimum: 1
+ maximum: 2
description: CPSW port number
phys:
diff --git a/Documentation/devicetree/bindings/net/ti,k3-am654-cpts.yaml b/Documentation/devicetree/bindings/net/ti,k3-am654-cpts.yaml
index 9b7117920d90..ce43a1c58a57 100644
--- a/Documentation/devicetree/bindings/net/ti,k3-am654-cpts.yaml
+++ b/Documentation/devicetree/bindings/net/ti,k3-am654-cpts.yaml
@@ -73,6 +73,13 @@ properties:
items:
- const: cpts
+ assigned-clock-parents: true
+
+ assigned-clocks: true
+
+ power-domains:
+ maxItems: 1
+
ti,cpts-ext-ts-inputs:
$ref: /schemas/types.yaml#/definitions/uint32
maximum: 8
diff --git a/Documentation/devicetree/bindings/net/toshiba,visconti-dwmac.yaml b/Documentation/devicetree/bindings/net/toshiba,visconti-dwmac.yaml
new file mode 100644
index 000000000000..59724d18e6f3
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/toshiba,visconti-dwmac.yaml
@@ -0,0 +1,85 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/net/toshiba,visconti-dwmac.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Toshiba Visconti DWMAC Ethernet controller
+
+maintainers:
+ - Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
+
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - toshiba,visconti-dwmac
+ required:
+ - compatible
+
+allOf:
+ - $ref: "snps,dwmac.yaml#"
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - enum:
+ - toshiba,visconti-dwmac
+ - const: snps,dwmac-4.20a
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: main clock
+ - description: PHY reference clock
+
+ clock-names:
+ items:
+ - const: stmmaceth
+ - const: phy_ref_clk
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+
+unevaluatedProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ soc {
+ #address-cells = <2>;
+ #size-cells = <2>;
+
+ piether: ethernet@28000000 {
+ compatible = "toshiba,visconti-dwmac", "snps,dwmac-4.20a";
+ reg = <0 0x28000000 0 0x10000>;
+ interrupts = <GIC_SPI 156 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "macirq";
+ clocks = <&clk300mhz>, <&clk125mhz>;
+ clock-names = "stmmaceth", "phy_ref_clk";
+ snps,txpbl = <4>;
+ snps,rxpbl = <4>;
+ snps,tso;
+ phy-mode = "rgmii-id";
+ phy-handle = <&phy0>;
+
+ mdio0 {
+ #address-cells = <0x1>;
+ #size-cells = <0x0>;
+ compatible = "snps,dwmac-mdio";
+
+ phy0: ethernet-phy@1 {
+ device_type = "ethernet-phy";
+ reg = <0x1>;
+ };
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/net/xilinx_axienet.txt b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
index 7360617cdedb..2cd452419ed0 100644
--- a/Documentation/devicetree/bindings/net/xilinx_axienet.txt
+++ b/Documentation/devicetree/bindings/net/xilinx_axienet.txt
@@ -38,6 +38,10 @@ Optional properties:
1 to enable partial TX checksum offload,
2 to enable full TX checksum offload
- xlnx,rxcsum : Same values as xlnx,txcsum but for RX checksum offload
+- xlnx,switch-x-sgmii : Boolean to indicate the Ethernet core is configured to
+ support both 1000BaseX and SGMII modes. If set, the phy-mode
+ should be set to match the mode selected on core reset (i.e.
+ by the basex_or_sgmii core input line).
- clocks : AXI bus clock for the device. Refer to common clock bindings.
Used to calculate MDIO clock divisor. If not specified, it is
auto-detected from the CPU clock (but only on platforms where
diff --git a/Documentation/devicetree/bindings/power/brcm,bcm-pmb.yaml b/Documentation/devicetree/bindings/power/brcm,bcm-pmb.yaml
new file mode 100644
index 000000000000..40b08d83c80b
--- /dev/null
+++ b/Documentation/devicetree/bindings/power/brcm,bcm-pmb.yaml
@@ -0,0 +1,50 @@
+# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/power/brcm,bcm-pmb.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Broadcom PMB (Power Management Bus) controller
+
+description: This document describes Broadcom's PMB controller. It supports
+ powering various types of connected devices (e.g. PCIe, USB, SATA).
+
+maintainers:
+ - Rafał Miłecki <rafal@milecki.pl>
+
+properties:
+ compatible:
+ enum:
+ - brcm,bcm4908-pmb
+
+ reg:
+ description: register space of one or more buses
+ maxItems: 1
+
+ big-endian:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description: Flag to use for block working in big endian mode.
+
+ "#power-domain-cells":
+ description: cell specifies device ID (see bcm-pmb.h)
+ const: 1
+
+required:
+ - reg
+ - "#power-domain-cells"
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/soc/bcm-pmb.h>
+
+ pmb: power-controller@802800e0 {
+ compatible = "brcm,bcm4908-pmb";
+ reg = <0x802800e0 0x40>;
+ #power-domain-cells = <1>;
+ };
+
+ foo {
+ power-domains = <&pmb BCM_PMB_PCIE0>;
+ };
diff --git a/Documentation/devicetree/bindings/power/mediatek,power-controller.yaml b/Documentation/devicetree/bindings/power/mediatek,power-controller.yaml
index d14cb9bac849..f234a756c193 100644
--- a/Documentation/devicetree/bindings/power/mediatek,power-controller.yaml
+++ b/Documentation/devicetree/bindings/power/mediatek,power-controller.yaml
@@ -23,6 +23,7 @@ properties:
compatible:
enum:
+ - mediatek,mt8167-power-controller
- mediatek,mt8173-power-controller
- mediatek,mt8183-power-controller
- mediatek,mt8192-power-controller
@@ -59,6 +60,7 @@ patternProperties:
reg:
description: |
Power domain index. Valid values are defined in:
+ "include/dt-bindings/power/mt8167-power.h" - for MT8167 type power domain.
"include/dt-bindings/power/mt8173-power.h" - for MT8173 type power domain.
"include/dt-bindings/power/mt8183-power.h" - for MT8183 type power domain.
"include/dt-bindings/power/mt8192-power.h" - for MT8192 type power domain.
@@ -82,6 +84,9 @@ patternProperties:
be specified by order, adding first the BASIC clocks followed by the
SUSBSYS clocks.
+ domain-supply:
+ description: domain regulator supply.
+
mediatek,infracfg:
$ref: /schemas/types.yaml#/definitions/phandle
description: phandle to the device containing the INFRACFG register range.
@@ -130,6 +135,9 @@ patternProperties:
be specified by order, adding first the BASIC clocks followed by the
SUSBSYS clocks.
+ domain-supply:
+ description: domain regulator supply.
+
mediatek,infracfg:
$ref: /schemas/types.yaml#/definitions/phandle
description: phandle to the device containing the INFRACFG register range.
@@ -178,6 +186,9 @@ patternProperties:
be specified by order, adding first the BASIC clocks followed by the
SUSBSYS clocks.
+ domain-supply:
+ description: domain regulator supply.
+
mediatek,infracfg:
$ref: /schemas/types.yaml#/definitions/phandle
description: phandle to the device containing the INFRACFG register range.
diff --git a/Documentation/devicetree/bindings/power/qcom,rpmpd.yaml b/Documentation/devicetree/bindings/power/qcom,rpmpd.yaml
index 64825128ee97..1ea21acbbd55 100644
--- a/Documentation/devicetree/bindings/power/qcom,rpmpd.yaml
+++ b/Documentation/devicetree/bindings/power/qcom,rpmpd.yaml
@@ -19,6 +19,7 @@ properties:
- qcom,msm8916-rpmpd
- qcom,msm8939-rpmpd
- qcom,msm8976-rpmpd
+ - qcom,msm8994-rpmpd
- qcom,msm8996-rpmpd
- qcom,msm8998-rpmpd
- qcom,qcs404-rpmpd
diff --git a/Documentation/devicetree/bindings/power/supply/battery.yaml b/Documentation/devicetree/bindings/power/supply/battery.yaml
index 0c7e2e44793b..c3b4b7543591 100644
--- a/Documentation/devicetree/bindings/power/supply/battery.yaml
+++ b/Documentation/devicetree/bindings/power/supply/battery.yaml
@@ -83,21 +83,18 @@ properties:
for each of the battery capacity lookup table.
operating-range-celsius:
- $ref: /schemas/types.yaml#/definitions/uint32-array
description: operating temperature range of a battery
items:
- description: minimum temperature at which battery can operate
- description: maximum temperature at which battery can operate
ambient-celsius:
- $ref: /schemas/types.yaml#/definitions/uint32-array
description: safe range of ambient temperature
items:
- description: alert when ambient temperature is lower than this value
- description: alert when ambient temperature is higher than this value
alert-celsius:
- $ref: /schemas/types.yaml#/definitions/uint32-array
description: safe range of battery temperature
items:
- description: alert when battery temperature is lower than this value
diff --git a/Documentation/devicetree/bindings/power/supply/bq2515x.yaml b/Documentation/devicetree/bindings/power/supply/bq2515x.yaml
index 75a56773be4a..813d6afde606 100644
--- a/Documentation/devicetree/bindings/power/supply/bq2515x.yaml
+++ b/Documentation/devicetree/bindings/power/supply/bq2515x.yaml
@@ -50,7 +50,6 @@ properties:
maxItems: 1
input-current-limit-microamp:
- $ref: /schemas/types.yaml#/definitions/uint32
description: Maximum input current in micro Amps.
minimum: 50000
maximum: 500000
diff --git a/Documentation/devicetree/bindings/regulator/dlg,da9121.yaml b/Documentation/devicetree/bindings/regulator/dlg,da9121.yaml
index 6f2164f7bc57..228018c87bea 100644
--- a/Documentation/devicetree/bindings/regulator/dlg,da9121.yaml
+++ b/Documentation/devicetree/bindings/regulator/dlg,da9121.yaml
@@ -62,7 +62,6 @@ properties:
description: IRQ line information.
dlg,irq-polling-delay-passive-ms:
- $ref: "/schemas/types.yaml#/definitions/uint32"
minimum: 1000
maximum: 10000
description: |
diff --git a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
index d3d0dc13dd8b..8850c01bd470 100644
--- a/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
+++ b/Documentation/devicetree/bindings/regulator/fixed-regulator.yaml
@@ -72,11 +72,9 @@ properties:
startup-delay-us:
description: startup time in microseconds
- $ref: /schemas/types.yaml#/definitions/uint32
off-on-delay-us:
description: off delay time in microseconds
- $ref: /schemas/types.yaml#/definitions/uint32
enable-active-high:
description:
diff --git a/Documentation/devicetree/bindings/reset/brcm,bcm4908-misc-pcie-reset.yaml b/Documentation/devicetree/bindings/reset/brcm,bcm4908-misc-pcie-reset.yaml
new file mode 100644
index 000000000000..88aebb370838
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/brcm,bcm4908-misc-pcie-reset.yaml
@@ -0,0 +1,39 @@
+# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/reset/brcm,bcm4908-misc-pcie-reset.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Broadcom MISC block PCIe reset controller
+
+description: This document describes reset controller handling PCIe PERST#
+ signals. On BCM4908 it's a part of the MISC block.
+
+maintainers:
+ - Rafał Miłecki <rafal@milecki.pl>
+
+properties:
+ compatible:
+ const: brcm,bcm4908-misc-pcie-reset
+
+ reg:
+ maxItems: 1
+
+ "#reset-cells":
+ description: PCIe core id
+ const: 1
+
+required:
+ - compatible
+ - reg
+ - "#reset-cells"
+
+additionalProperties: false
+
+examples:
+ - |
+ reset-controller@ff802644 {
+ compatible = "brcm,bcm4908-misc-pcie-reset";
+ reg = <0xff802644 0x04>;
+ #reset-cells = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.txt b/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.txt
deleted file mode 100644
index 2df4bddeb688..000000000000
--- a/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.txt
+++ /dev/null
@@ -1,44 +0,0 @@
-Hisilicon System Reset Controller
-======================================
-
-Please also refer to reset.txt in this directory for common reset
-controller binding usage.
-
-The reset controller registers are part of the system-ctl block on
-hi3660 and hi3670 SoCs.
-
-Required properties:
-- compatible: should be one of the following:
- "hisilicon,hi3660-reset" for HI3660
- "hisilicon,hi3670-reset", "hisilicon,hi3660-reset" for HI3670
-- hisi,rst-syscon: phandle of the reset's syscon.
-- #reset-cells : Specifies the number of cells needed to encode a
- reset source. The type shall be a <u32> and the value shall be 2.
-
- Cell #1 : offset of the reset assert control
- register from the syscon register base
- offset + 4: deassert control register
- offset + 8: status control register
- Cell #2 : bit position of the reset in the reset control register
-
-Example:
- iomcu: iomcu@ffd7e000 {
- compatible = "hisilicon,hi3660-iomcu", "syscon";
- reg = <0x0 0xffd7e000 0x0 0x1000>;
- };
-
- iomcu_rst: iomcu_rst_controller {
- compatible = "hisilicon,hi3660-reset";
- hisi,rst-syscon = <&iomcu>;
- #reset-cells = <2>;
- };
-
-Specifying reset lines connected to IP modules
-==============================================
-example:
-
- i2c0: i2c@..... {
- ...
- resets = <&iomcu_rst 0x20 3>; /* offset: 0x20; bit: 3 */
- ...
- };
diff --git a/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.yaml b/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.yaml
new file mode 100644
index 000000000000..9bf40952e5b7
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/hisilicon,hi3660-reset.yaml
@@ -0,0 +1,77 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/reset/hisilicon,hi3660-reset.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Hisilicon System Reset Controller
+
+maintainers:
+ - Wei Xu <xuwei5@hisilicon.com>
+
+description: |
+ Please also refer to reset.txt in this directory for common reset
+ controller binding usage.
+ The reset controller registers are part of the system-ctl block on
+ hi3660 and hi3670 SoCs.
+
+properties:
+ compatible:
+ oneOf:
+ - items:
+ - const: hisilicon,hi3660-reset
+ - items:
+ - const: hisilicon,hi3670-reset
+ - const: hisilicon,hi3660-reset
+
+ hisilicon,rst-syscon:
+ description: phandle of the reset's syscon.
+ $ref: /schemas/types.yaml#/definitions/phandle
+
+ '#reset-cells':
+ description: |
+ Specifies the number of cells needed to encode a reset source.
+ Cell #1 : offset of the reset assert control register from the syscon
+ register base
+ offset + 4: deassert control register
+ offset + 8: status control register
+ Cell #2 : bit position of the reset in the reset control register
+ const: 2
+
+required:
+ - compatible
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/clock/hi3660-clock.h>
+
+ iomcu: iomcu@ffd7e000 {
+ compatible = "hisilicon,hi3660-iomcu", "syscon";
+ reg = <0xffd7e000 0x1000>;
+ };
+
+ iomcu_rst: iomcu_rst_controller {
+ compatible = "hisilicon,hi3660-reset";
+ hisilicon,rst-syscon = <&iomcu>;
+ #reset-cells = <2>;
+ };
+
+ /* Specifying reset lines connected to IP modules */
+ i2c@ffd71000 {
+ compatible = "snps,designware-i2c";
+ reg = <0xffd71000 0x1000>;
+ interrupts = <GIC_SPI 118 IRQ_TYPE_LEVEL_HIGH>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ clock-frequency = <400000>;
+ clocks = <&crg_ctrl HI3660_CLK_GATE_I2C0>;
+ resets = <&iomcu_rst 0x20 3>;
+ pinctrl-names = "default";
+ pinctrl-0 = <&i2c0_pmx_func &i2c0_cfg_func>;
+ status = "disabled";
+ };
+...
diff --git a/Documentation/devicetree/bindings/reset/sirf,rstc.txt b/Documentation/devicetree/bindings/reset/sirf,rstc.txt
deleted file mode 100644
index 0505de742d30..000000000000
--- a/Documentation/devicetree/bindings/reset/sirf,rstc.txt
+++ /dev/null
@@ -1,42 +0,0 @@
-CSR SiRFSoC Reset Controller
-======================================
-
-Please also refer to reset.txt in this directory for common reset
-controller binding usage.
-
-Required properties:
-- compatible: Should be "sirf,prima2-rstc" or "sirf,marco-rstc"
-- reg: should be register base and length as documented in the
- datasheet
-- #reset-cells: 1, see below
-
-example:
-
-rstc: reset-controller@88010000 {
- compatible = "sirf,prima2-rstc";
- reg = <0x88010000 0x1000>;
- #reset-cells = <1>;
-};
-
-Specifying reset lines connected to IP modules
-==============================================
-
-The reset controller(rstc) manages various reset sources. This module provides
-reset signals for most blocks in system. Those device nodes should specify the
-reset line on the rstc in their resets property, containing a phandle to the
-rstc device node and a RESET_INDEX specifying which module to reset, as described
-in reset.txt.
-
-For SiRFSoC, RESET_INDEX is just reset_bit defined in SW_RST0 and SW_RST1 registers.
-For modules whose rest_bit is in SW_RST0, its RESET_INDEX is 0~31. For modules whose
-rest_bit is in SW_RST1, its RESET_INDEX is 32~63.
-
-example:
-
-vpp@90020000 {
- compatible = "sirf,prima2-vpp";
- reg = <0x90020000 0x10000>;
- interrupts = <31>;
- clocks = <&clks 35>;
- resets = <&rstc 6>;
-};
diff --git a/Documentation/devicetree/bindings/reset/zte,zx2967-reset.txt b/Documentation/devicetree/bindings/reset/zte,zx2967-reset.txt
deleted file mode 100644
index b015508f9780..000000000000
--- a/Documentation/devicetree/bindings/reset/zte,zx2967-reset.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-ZTE zx2967 SoCs Reset Controller
-=======================================
-
-Please also refer to reset.txt in this directory for common reset
-controller binding usage.
-
-Required properties:
-- compatible: should be one of the following.
- * zte,zx296718-reset
-- reg: physical base address of the controller and length of memory mapped
- region.
-- #reset-cells: must be 1.
-
-example:
-
- reset: reset-controller@1461060 {
- compatible = "zte,zx296718-reset";
- reg = <0x01461060 0x8>;
- #reset-cells = <1>;
- };
diff --git a/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml b/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
index 37c2a601c3fa..b1b0ee769b71 100644
--- a/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
+++ b/Documentation/devicetree/bindings/rtc/allwinner,sun6i-a31-rtc.yaml
@@ -128,7 +128,6 @@ required:
- compatible
- reg
- interrupts
- - clocks
- clock-output-names
additionalProperties: false
diff --git a/Documentation/devicetree/bindings/rtc/rtc.yaml b/Documentation/devicetree/bindings/rtc/rtc.yaml
index d30dc045aac6..0ec3551f12dd 100644
--- a/Documentation/devicetree/bindings/rtc/rtc.yaml
+++ b/Documentation/devicetree/bindings/rtc/rtc.yaml
@@ -27,7 +27,6 @@ properties:
1: chargeable
quartz-load-femtofarads:
- $ref: /schemas/types.yaml#/definitions/uint32
description:
The capacitive load of the quartz(x-tal), expressed in femto
Farad (fF). The default value shall be listed (if optional),
@@ -47,7 +46,6 @@ properties:
deprecated: true
trickle-resistor-ohms:
- $ref: /schemas/types.yaml#/definitions/uint32
description:
Selected resistor for trickle charger. Should be given
if trickle charger should be enabled.
diff --git a/Documentation/devicetree/bindings/serial/fsl-imx-uart.yaml b/Documentation/devicetree/bindings/serial/fsl-imx-uart.yaml
index 9702c07a6b6c..2b06c6ce4a75 100644
--- a/Documentation/devicetree/bindings/serial/fsl-imx-uart.yaml
+++ b/Documentation/devicetree/bindings/serial/fsl-imx-uart.yaml
@@ -7,7 +7,7 @@ $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale i.MX Universal Asynchronous Receiver/Transmitter (UART)
maintainers:
- - Fabio Estevam <fabio.estevam@nxp.com>
+ - Fabio Estevam <festevam@gmail.com>
allOf:
- $ref: "serial.yaml"
diff --git a/Documentation/devicetree/bindings/serial/fsl-mxs-auart.yaml b/Documentation/devicetree/bindings/serial/fsl-mxs-auart.yaml
index ce1d89496342..14c7594c88c6 100644
--- a/Documentation/devicetree/bindings/serial/fsl-mxs-auart.yaml
+++ b/Documentation/devicetree/bindings/serial/fsl-mxs-auart.yaml
@@ -7,7 +7,7 @@ $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Freescale MXS Application UART (AUART)
maintainers:
- - Fabio Estevam <fabio.estevam@nxp.com>
+ - Fabio Estevam <festevam@gmail.com>
allOf:
- $ref: "serial.yaml"
diff --git a/Documentation/devicetree/bindings/serial/pl011.yaml b/Documentation/devicetree/bindings/serial/pl011.yaml
index c23c93b400f0..1f8e9f2644b6 100644
--- a/Documentation/devicetree/bindings/serial/pl011.yaml
+++ b/Documentation/devicetree/bindings/serial/pl011.yaml
@@ -19,7 +19,6 @@ select:
contains:
enum:
- arm,pl011
- - zte,zx296702-uart
required:
- compatible
@@ -30,7 +29,6 @@ properties:
- const: arm,pl011
- const: arm,primecell
- items:
- - const: zte,zx296702-uart
- const: arm,primecell
reg:
@@ -88,14 +86,12 @@ properties:
description:
Rate at which poll occurs when auto-poll is set.
default 100ms.
- $ref: /schemas/types.yaml#/definitions/uint32
default: 100
poll-timeout-ms:
description:
Poll timeout when auto-poll is set, default
3000ms.
- $ref: /schemas/types.yaml#/definitions/uint32
default: 3000
required:
diff --git a/Documentation/devicetree/bindings/serial/renesas,hscif.yaml b/Documentation/devicetree/bindings/serial/renesas,hscif.yaml
index c139c5edb93e..512a84942f78 100644
--- a/Documentation/devicetree/bindings/serial/renesas,hscif.yaml
+++ b/Documentation/devicetree/bindings/serial/renesas,hscif.yaml
@@ -51,6 +51,7 @@ properties:
- renesas,hscif-r8a77980 # R-Car V3H
- renesas,hscif-r8a77990 # R-Car E3
- renesas,hscif-r8a77995 # R-Car D3
+ - renesas,hscif-r8a779a0 # R-Car V3U
- const: renesas,rcar-gen3-hscif # R-Car Gen3 and RZ/G2
- const: renesas,hscif # generic HSCIF compatible UART
diff --git a/Documentation/devicetree/bindings/serial/sirf-uart.txt b/Documentation/devicetree/bindings/serial/sirf-uart.txt
deleted file mode 100644
index 1e48bbbeecc6..000000000000
--- a/Documentation/devicetree/bindings/serial/sirf-uart.txt
+++ /dev/null
@@ -1,34 +0,0 @@
-* CSR SiRFprimaII/atlasVI Universal Synchronous Asynchronous Receiver/Transmitter *
-
-Required properties:
-- compatible : Should be "sirf,prima2-uart", "sirf, prima2-usp-uart",
- "sirf,atlas7-uart" or "sirf,atlas7-usp-uart".
-- reg : Offset and length of the register set for the device
-- interrupts : Should contain uart interrupt
-- fifosize : Should define hardware rx/tx fifo size
-- clocks : Should contain uart clock number
-
-Optional properties:
-- uart-has-rtscts: we have hardware flow controller pins in hardware
-- rts-gpios: RTS pin for USP-based UART if uart-has-rtscts is true
-- cts-gpios: CTS pin for USP-based UART if uart-has-rtscts is true
-
-Example:
-
-uart0: uart@b0050000 {
- cell-index = <0>;
- compatible = "sirf,prima2-uart";
- reg = <0xb0050000 0x1000>;
- interrupts = <17>;
- fifosize = <128>;
- clocks = <&clks 13>;
-};
-
-On the board-specific dts, we can put rts-gpios and cts-gpios like
-
-usp@b0090000 {
- compatible = "sirf,prima2-usp-uart";
- uart-has-rtscts;
- rts-gpios = <&gpio 15 0>;
- cts-gpios = <&gpio 46 0>;
-};
diff --git a/Documentation/devicetree/bindings/serial/st,stm32-uart.yaml b/Documentation/devicetree/bindings/serial/st,stm32-uart.yaml
index 06d5f251ec88..8631678283f9 100644
--- a/Documentation/devicetree/bindings/serial/st,stm32-uart.yaml
+++ b/Documentation/devicetree/bindings/serial/st,stm32-uart.yaml
@@ -50,11 +50,14 @@ properties:
minItems: 1
maxItems: 2
- cts-gpios:
- maxItems: 1
-
- rts-gpios:
- maxItems: 1
+# cts-gpios and rts-gpios properties can be used instead of 'uart-has-rtscts'
+# or 'st,hw-flow-ctrl' (deprecated) for making use of any gpio pins for flow
+# control instead of dedicated pins.
+#
+# It should be noted that both cts-gpios/rts-gpios and 'uart-has-rtscts' or
+# 'st,hw-flow-ctrl' (deprecated) properties cannot co-exist in a design.
+ cts-gpios: true
+ rts-gpios: true
wakeup-source: true
diff --git a/Documentation/devicetree/bindings/soc/imx/imx8m-soc.yaml b/Documentation/devicetree/bindings/soc/imx/imx8m-soc.yaml
new file mode 100644
index 000000000000..effcc72f9425
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/imx/imx8m-soc.yaml
@@ -0,0 +1,86 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/soc/imx/imx8m-soc.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP i.MX8M Series SoC
+
+maintainers:
+ - Alice Guo <alice.guo@nxp.com>
+
+description: |
+ NXP i.MX8M series SoCs contain fuse entries from which SoC Unique ID can be
+ obtained.
+
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - fsl,imx8mm
+ - fsl,imx8mn
+ - fsl,imx8mp
+ - fsl,imx8mq
+ required:
+ - compatible
+
+patternProperties:
+ "^soc@[0-9a-f]+$":
+ type: object
+ properties:
+ compatible:
+ items:
+ - enum:
+ - fsl,imx8mm-soc
+ - fsl,imx8mn-soc
+ - fsl,imx8mp-soc
+ - fsl,imx8mq-soc
+ - const: simple-bus
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 1
+
+ ranges: true
+
+ dma-ranges: true
+
+ nvmem-cells:
+ maxItems: 1
+ description: Phandle to the SOC Unique ID provided by a nvmem node
+
+ nvmem-cell-names:
+ const: soc_unique_id
+
+ required:
+ - compatible
+ - nvmem-cells
+ - nvmem-cell-names
+
+ additionalProperties:
+ type: object
+
+additionalProperties: true
+
+examples:
+ - |
+ / {
+ model = "FSL i.MX8MM EVK board";
+ compatible = "fsl,imx8mm-evk", "fsl,imx8mm";
+ #address-cells = <2>;
+ #size-cells = <2>;
+
+ soc@0 {
+ compatible = "fsl,imx8mm-soc", "simple-bus";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges = <0x0 0x0 0x0 0x3e000000>;
+ nvmem-cells = <&imx8mm_uid>;
+ nvmem-cell-names = "soc_unique_id";
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt
index 953add19e937..19c059e44681 100644
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,aoss-qmp.txt
@@ -20,6 +20,7 @@ power-domains.
"qcom,sdm845-aoss-qmp"
"qcom,sm8150-aoss-qmp"
"qcom,sm8250-aoss-qmp"
+ "qcom,sm8350-aoss-qmp"
- reg:
Usage: required
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt b/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
deleted file mode 100644
index 9326cdf6e1b1..000000000000
--- a/Documentation/devicetree/bindings/soc/qcom/qcom,smem.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-Qualcomm Shared Memory Manager binding
-
-This binding describes the Qualcomm Shared Memory Manager, used to share data
-between various subsystems and OSes in Qualcomm platforms.
-
-- compatible:
- Usage: required
- Value type: <stringlist>
- Definition: must be:
- "qcom,smem"
-
-- memory-region:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: handle to memory reservation for main SMEM memory region.
-
-- qcom,rpm-msg-ram:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: handle to RPM message memory resource
-
-- hwlocks:
- Usage: required
- Value type: <prop-encoded-array>
- Definition: reference to a hwspinlock used to protect allocations from
- the shared memory
-
-= EXAMPLE
-The following example shows the SMEM setup for MSM8974, with a main SMEM region
-at 0xfa00000 and the RPM message ram at 0xfc428000:
-
- reserved-memory {
- #address-cells = <1>;
- #size-cells = <1>;
- ranges;
-
- smem_region: smem@fa00000 {
- reg = <0xfa00000 0x200000>;
- no-map;
- };
- };
-
- smem@fa00000 {
- compatible = "qcom,smem";
-
- memory-region = <&smem_region>;
- qcom,rpm-msg-ram = <&rpm_msg_ram>;
-
- hwlocks = <&tcsr_mutex 3>;
- };
-
- soc {
- rpm_msg_ram: memory@fc428000 {
- compatible = "qcom,rpm-msg-ram";
- reg = <0xfc428000 0x4000>;
- };
- };
diff --git a/Documentation/devicetree/bindings/soc/qcom/qcom,smem.yaml b/Documentation/devicetree/bindings/soc/qcom/qcom,smem.yaml
new file mode 100644
index 000000000000..f7e17713b3d8
--- /dev/null
+++ b/Documentation/devicetree/bindings/soc/qcom/qcom,smem.yaml
@@ -0,0 +1,72 @@
+# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: "http://devicetree.org/schemas/soc/qcom/qcom,smem.yaml#"
+$schema: "http://devicetree.org/meta-schemas/core.yaml#"
+
+title: Qualcomm Shared Memory Manager binding
+
+maintainers:
+ - Andy Gross <agross@kernel.org>
+ - Bjorn Andersson <bjorn.andersson@linaro.org>
+
+description: |
+ This binding describes the Qualcomm Shared Memory Manager, used to share data
+ between various subsystems and OSes in Qualcomm platforms.
+
+properties:
+ compatible:
+ const: qcom,smem
+
+ memory-region:
+ maxItems: 1
+ description: handle to memory reservation for main SMEM memory region.
+
+ hwlocks:
+ maxItems: 1
+
+ qcom,rpm-msg-ram:
+ $ref: /schemas/types.yaml#/definitions/phandle
+ description: handle to RPM message memory resource
+
+required:
+ - compatible
+ - memory-region
+ - hwlocks
+
+additionalProperties: false
+
+examples:
+ - |
+ reserved-memory {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ smem_region: smem@fa00000 {
+ reg = <0xfa00000 0x200000>;
+ no-map;
+ };
+ };
+
+ smem {
+ compatible = "qcom,smem";
+
+ memory-region = <&smem_region>;
+ qcom,rpm-msg-ram = <&rpm_msg_ram>;
+
+ hwlocks = <&tcsr_mutex 3>;
+ };
+
+ soc {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ rpm_msg_ram: sram@fc428000 {
+ compatible = "qcom,rpm-msg-ram";
+ reg = <0xfc428000 0x4000>;
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/soc/ti/ti,pruss.yaml b/Documentation/devicetree/bindings/soc/ti/ti,pruss.yaml
index 037c51b2f972..dbc62821c60b 100644
--- a/Documentation/devicetree/bindings/soc/ti/ti,pruss.yaml
+++ b/Documentation/devicetree/bindings/soc/ti/ti,pruss.yaml
@@ -81,6 +81,9 @@ properties:
ranges:
maxItems: 1
+ dma-ranges:
+ maxItems: 1
+
power-domains:
description: |
This property is as per sci-pm-domain.txt.
@@ -278,6 +281,9 @@ patternProperties:
that is common to all the PRU cores. This should be represented as an
interrupt-controller node.
+ allOf:
+ - $ref: /schemas/interrupt-controller/ti,pruss-intc.yaml#
+
type: object
mdio@[a-f0-9]+$:
@@ -299,6 +305,9 @@ patternProperties:
present on K3 SoCs have additional auxiliary PRU cores with slightly
different IP integration.
+ allOf:
+ - $ref: /schemas/remoteproc/ti,pru-rproc.yaml#
+
type: object
required:
@@ -371,6 +380,36 @@ examples:
reg = <0x32000 0x58>;
};
+ pruss_intc: interrupt-controller@20000 {
+ compatible = "ti,pruss-intc";
+ reg = <0x20000 0x2000>;
+ interrupt-controller;
+ #interrupt-cells = <3>;
+ interrupts = <20 21 22 23 24 25 26 27>;
+ interrupt-names = "host_intr0", "host_intr1",
+ "host_intr2", "host_intr3",
+ "host_intr4", "host_intr5",
+ "host_intr6", "host_intr7";
+ };
+
+ pru0: pru@34000 {
+ compatible = "ti,am3356-pru";
+ reg = <0x34000 0x2000>,
+ <0x22000 0x400>,
+ <0x22400 0x100>;
+ reg-names = "iram", "control", "debug";
+ firmware-name = "am335x-pru0-fw";
+ };
+
+ pru1: pru@38000 {
+ compatible = "ti,am3356-pru";
+ reg = <0x38000 0x2000>,
+ <0x24000 0x400>,
+ <0x24400 0x100>;
+ reg-names = "iram", "control", "debug";
+ firmware-name = "am335x-pru1-fw";
+ };
+
pruss_mdio: mdio@32400 {
compatible = "ti,davinci_mdio";
reg = <0x32400 0x90>;
@@ -425,6 +464,43 @@ examples:
reg = <0x32000 0x58>;
};
+ pruss1_intc: interrupt-controller@20000 {
+ compatible = "ti,pruss-intc";
+ reg = <0x20000 0x2000>;
+ interrupt-controller;
+ #interrupt-cells = <3>;
+ interrupts = <GIC_SPI 20 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 21 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 22 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 23 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 24 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 26 IRQ_TYPE_LEVEL_HIGH>,
+ <GIC_SPI 27 IRQ_TYPE_LEVEL_HIGH>;
+ interrupt-names = "host_intr0", "host_intr1",
+ "host_intr2", "host_intr3",
+ "host_intr4",
+ "host_intr6", "host_intr7";
+ ti,irqs-reserved = /bits/ 8 <0x20>; /* BIT(5) */
+ };
+
+ pru1_0: pru@34000 {
+ compatible = "ti,am4376-pru";
+ reg = <0x34000 0x3000>,
+ <0x22000 0x400>,
+ <0x22400 0x100>;
+ reg-names = "iram", "control", "debug";
+ firmware-name = "am437x-pru1_0-fw";
+ };
+
+ pru1_1: pru@38000 {
+ compatible = "ti,am4376-pru";
+ reg = <0x38000 0x3000>,
+ <0x24000 0x400>,
+ <0x24400 0x100>;
+ reg-names = "iram", "control", "debug";
+ firmware-name = "am437x-pru1_1-fw";
+ };
+
pruss1_mdio: mdio@32400 {
compatible = "ti,davinci_mdio";
reg = <0x32400 0x90>;
diff --git a/Documentation/devicetree/bindings/soc/zte/pd-2967xx.txt b/Documentation/devicetree/bindings/soc/zte/pd-2967xx.txt
deleted file mode 100644
index 7629de1c2c72..000000000000
--- a/Documentation/devicetree/bindings/soc/zte/pd-2967xx.txt
+++ /dev/null
@@ -1,19 +0,0 @@
-* ZTE zx2967 family Power Domains
-
-zx2967 family includes support for multiple power domains which are used
-to gate power to one or more peripherals on the processor.
-
-Required Properties:
- - compatible: should be one of the following.
- * zte,zx296718-pcu - for zx296718 power domain.
- - reg: physical base address of the controller and length of memory mapped
- region.
- - #power-domain-cells: Must be 1.
-
-Example:
-
- pcu_domain: pcu@117000 {
- compatible = "zte,zx296718-pcu";
- reg = <0x00117000 0x1000>;
- #power-domain-cells = <1>;
- };
diff --git a/Documentation/devicetree/bindings/sound/mt8192-mt6359-rt1015-rt5682.yaml b/Documentation/devicetree/bindings/sound/mt8192-mt6359-rt1015-rt5682.yaml
index bf8c8ba25009..54650823b29a 100644
--- a/Documentation/devicetree/bindings/sound/mt8192-mt6359-rt1015-rt5682.yaml
+++ b/Documentation/devicetree/bindings/sound/mt8192-mt6359-rt1015-rt5682.yaml
@@ -7,8 +7,8 @@ $schema: http://devicetree.org/meta-schemas/core.yaml#
title: Mediatek MT8192 with MT6359, RT1015 and RT5682 ASoC sound card driver
maintainers:
- - Jiaxin Yu <jiaxin.yu@mediatek.com>
- - Shane Chien <shane.chien@mediatek.com>
+ - Jiaxin Yu <jiaxin.yu@mediatek.com>
+ - Shane Chien <shane.chien@mediatek.com>
description:
This binding describes the MT8192 sound card.
diff --git a/Documentation/devicetree/bindings/sound/sgtl5000.yaml b/Documentation/devicetree/bindings/sound/sgtl5000.yaml
index d116c174b545..70b4a8831073 100644
--- a/Documentation/devicetree/bindings/sound/sgtl5000.yaml
+++ b/Documentation/devicetree/bindings/sound/sgtl5000.yaml
@@ -41,14 +41,12 @@ properties:
values of 2k, 4k or 8k. If set to 0 it will be off. If this node is not
mentioned or if the value is unknown, then micbias resistor is set to
4k.
- $ref: "/schemas/types.yaml#/definitions/uint32"
enum: [ 0, 2, 4, 8 ]
micbias-voltage-m-volts:
description: The bias voltage to be used in mVolts. The voltage can take
values from 1.25V to 3V by 250mV steps. If this node is not mentioned
or the value is unknown, then the value is set to 1.25V.
- $ref: "/schemas/types.yaml#/definitions/uint32"
enum: [ 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000 ]
lrclk-strength:
diff --git a/Documentation/devicetree/bindings/spi/spi-zynq-qspi.txt b/Documentation/devicetree/bindings/spi/spi-zynq-qspi.txt
deleted file mode 100644
index 16b734ad3102..000000000000
--- a/Documentation/devicetree/bindings/spi/spi-zynq-qspi.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-Xilinx Zynq QSPI controller Device Tree Bindings
--------------------------------------------------------------------
-
-Required properties:
-- compatible : Should be "xlnx,zynq-qspi-1.0".
-- reg : Physical base address and size of QSPI registers map.
-- interrupts : Property with a value describing the interrupt
- number.
-- clock-names : List of input clock names - "ref_clk", "pclk"
- (See clock bindings for details).
-- clocks : Clock phandles (see clock bindings for details).
-
-Optional properties:
-- num-cs : Number of chip selects used.
-
-Example:
- qspi: spi@e000d000 {
- compatible = "xlnx,zynq-qspi-1.0";
- reg = <0xe000d000 0x1000>;
- interrupt-parent = <&intc>;
- interrupts = <0 19 4>;
- clock-names = "ref_clk", "pclk";
- clocks = <&clkc 10>, <&clkc 43>;
- num-cs = <1>;
- };
diff --git a/Documentation/devicetree/bindings/spi/xlnx,zynq-qspi.yaml b/Documentation/devicetree/bindings/spi/xlnx,zynq-qspi.yaml
new file mode 100644
index 000000000000..1f1c40a9f320
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/xlnx,zynq-qspi.yaml
@@ -0,0 +1,59 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/spi/xlnx,zynq-qspi.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Xilinx Zynq QSPI controller
+
+description:
+ The Xilinx Zynq QSPI controller is used to access multi-bit serial flash
+ memory devices.
+
+allOf:
+ - $ref: "spi-controller.yaml#"
+
+maintainers:
+ - Michal Simek <michal.simek@xilinx.com>
+
+# Everything else is described in the common file
+properties:
+ compatible:
+ const: xlnx,zynq-qspi-1.0
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ items:
+ - description: reference clock
+ - description: peripheral clock
+
+ clock-names:
+ items:
+ - const: ref_clk
+ - const: pclk
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+unevaluatedProperties: false
+
+examples:
+ - |
+ spi@e000d000 {
+ compatible = "xlnx,zynq-qspi-1.0";
+ reg = <0xe000d000 0x1000>;
+ interrupt-parent = <&intc>;
+ interrupts = <0 19 4>;
+ clock-names = "ref_clk", "pclk";
+ clocks = <&clkc 10>, <&clkc 43>;
+ num-cs = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/sram/allwinner,sun4i-a10-system-control.yaml b/Documentation/devicetree/bindings/sram/allwinner,sun4i-a10-system-control.yaml
index b66a07e21d1e..1c426c211e36 100644
--- a/Documentation/devicetree/bindings/sram/allwinner,sun4i-a10-system-control.yaml
+++ b/Documentation/devicetree/bindings/sram/allwinner,sun4i-a10-system-control.yaml
@@ -49,6 +49,7 @@ properties:
- items:
- const: allwinner,suniv-f1c100s-system-control
- const: allwinner,sun4i-a10-system-control
+ - const: allwinner,sun50i-h616-system-control
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/sram/sram.yaml b/Documentation/devicetree/bindings/sram/sram.yaml
index 19d116ff9ddc..6d65771e979c 100644
--- a/Documentation/devicetree/bindings/sram/sram.yaml
+++ b/Documentation/devicetree/bindings/sram/sram.yaml
@@ -72,6 +72,8 @@ patternProperties:
- allwinner,sun4i-a10-sram-d
- allwinner,sun9i-a80-smp-sram
- allwinner,sun50i-a64-sram-c
+ - amlogic,meson8-ao-arc-sram
+ - amlogic,meson8b-ao-arc-sram
- amlogic,meson8-smp-sram
- amlogic,meson8b-smp-sram
- amlogic,meson-gxbb-scp-shmem
diff --git a/Documentation/devicetree/bindings/timer/nuvoton,npcm7xx-timer.txt b/Documentation/devicetree/bindings/timer/nuvoton,npcm7xx-timer.txt
index ea22dfe485be..97258f1a1505 100644
--- a/Documentation/devicetree/bindings/timer/nuvoton,npcm7xx-timer.txt
+++ b/Documentation/devicetree/bindings/timer/nuvoton,npcm7xx-timer.txt
@@ -6,8 +6,7 @@ timer counters.
Required properties:
- compatible : "nuvoton,npcm750-timer" for Poleg NPCM750.
- reg : Offset and length of the register set for the device.
-- interrupts : Contain the timer interrupt with flags for
- falling edge.
+- interrupts : Contain the timer interrupt of timer 0.
- clocks : phandle of timer reference clock (usually a 25 MHz clock).
Example:
diff --git a/Documentation/devicetree/bindings/timer/stericsson-u300-apptimer.txt b/Documentation/devicetree/bindings/timer/stericsson-u300-apptimer.txt
deleted file mode 100644
index 9499bc8ee9e3..000000000000
--- a/Documentation/devicetree/bindings/timer/stericsson-u300-apptimer.txt
+++ /dev/null
@@ -1,18 +0,0 @@
-ST-Ericsson U300 apptimer
-
-Required properties:
-
-- compatible : should be "stericsson,u300-apptimer"
-- reg : Specifies base physical address and size of the registers.
-- interrupts : A list of 4 interrupts; one for each subtimer. These
- are, in order: OS (operating system), DD (device driver) both
- adopted for EPOC/Symbian with two specific IRQs for these tasks,
- then GP1 and GP2, which are general-purpose timers.
-
-Example:
-
-timer {
- compatible = "stericsson,u300-apptimer";
- reg = <0xc0014000 0x1000>;
- interrupts = <24 25 26 27>;
-};
diff --git a/Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt b/Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt
deleted file mode 100644
index d96c1e283e73..000000000000
--- a/Documentation/devicetree/bindings/timer/ti,c64x+timer64.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-Timer64
--------
-
-The timer64 node describes C6X event timers.
-
-Required properties:
-
-- compatible: must be "ti,c64x+timer64"
-- reg: base address and size of register region
-- interrupts: interrupt id
-
-Optional properties:
-
-- ti,dscr-dev-enable: Device ID used to enable timer IP through DSCR interface.
-
-- ti,core-mask: on multi-core SoCs, bitmask of cores allowed to use this timer.
-
-Example:
- timer0: timer@25e0000 {
- compatible = "ti,c64x+timer64";
- ti,core-mask = < 0x01 >;
- reg = <0x25e0000 0x40>;
- interrupt-parent = <&megamod_pic>;
- interrupts = < 16 >;
- };
diff --git a/Documentation/devicetree/bindings/trivial-devices.yaml b/Documentation/devicetree/bindings/trivial-devices.yaml
index bdc2dc318178..a327130d1faa 100644
--- a/Documentation/devicetree/bindings/trivial-devices.yaml
+++ b/Documentation/devicetree/bindings/trivial-devices.yaml
@@ -148,15 +148,13 @@ properties:
- maxim,max31730
# mCube 3-axis 8-bit digital accelerometer
- mcube,mc3230
- # MEMSIC magnetometer
- - memsic,mmc35240
- # MEMSIC 2-axis 8-bit digital accelerometer
- - memsic,mxc6225
# Measurement Specialities I2C temperature and humidity sensor
- meas,htu21
# Measurement Specialities I2C pressure and temperature sensor
- meas,ms5637
# Measurement Specialities I2C pressure and temperature sensor
+ - meas,ms5803
+ # Measurement Specialities I2C pressure and temperature sensor
- meas,ms5805
# Measurement Specialities I2C pressure and temperature sensor
- meas,ms5837
@@ -166,6 +164,10 @@ properties:
- meas,ms8607-temppressure
# Measurement Specialties temperature sensor
- meas,tsys01
+ # MEMSIC magnetometer
+ - memsic,mmc35240
+ # MEMSIC 2-axis 8-bit digital accelerometer
+ - memsic,mxc6225
# Microchip differential I2C ADC, 1 Channel, 18 bit
- microchip,mcp3421
# Microchip differential I2C ADC, 2 Channel, 18 bit
diff --git a/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml b/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
index c0058332b967..e349fa5de606 100644
--- a/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
+++ b/Documentation/devicetree/bindings/usb/amlogic,meson-g12a-usb-ctrl.yaml
@@ -79,7 +79,9 @@ properties:
patternProperties:
"^usb@[0-9a-f]+$":
- type: object
+ oneOf:
+ - $ref: dwc2.yaml#
+ - $ref: snps,dwc3.yaml#
additionalProperties: false
@@ -229,6 +231,6 @@ examples:
interrupts = <30>;
dr_mode = "host";
snps,dis_u2_susphy_quirk;
- snps,quirk-frame-length-adjustment;
+ snps,quirk-frame-length-adjustment = <0x20>;
};
};
diff --git a/Documentation/devicetree/bindings/usb/dwc3-st.txt b/Documentation/devicetree/bindings/usb/dwc3-st.txt
index df0e02e1ee43..bf73de0d5b4a 100644
--- a/Documentation/devicetree/bindings/usb/dwc3-st.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3-st.txt
@@ -31,13 +31,13 @@ See: Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
Sub-nodes:
The dwc3 core should be added as subnode to ST DWC3 glue as shown in the
example below. The DT binding details of dwc3 can be found in:
-Documentation/devicetree/bindings/usb/dwc3.txt
+Documentation/devicetree/bindings/usb/snps,dwc3.yaml
NB: The dr_mode property described in [1] is NOT optional for this driver, as the default value
is "otg", which isn't supported by this SoC. Valid dr_mode values for dwc3-st are either "host"
or "device".
-[1] Documentation/devicetree/bindings/usb/generic.txt
+[1] Documentation/devicetree/bindings/usb/usb-drd.yaml
Example:
diff --git a/Documentation/devicetree/bindings/usb/dwc3-xilinx.txt b/Documentation/devicetree/bindings/usb/dwc3-xilinx.txt
index 4aae5b2cef56..a668f43bedf5 100644
--- a/Documentation/devicetree/bindings/usb/dwc3-xilinx.txt
+++ b/Documentation/devicetree/bindings/usb/dwc3-xilinx.txt
@@ -19,7 +19,7 @@ Example device node:
#address-cells = <0x2>;
#size-cells = <0x1>;
compatible = "xlnx,zynqmp-dwc3";
- clock-names = "bus_clk" "ref_clk";
+ clock-names = "bus_clk", "ref_clk";
clocks = <&clk125>, <&clk125>;
ranges;
diff --git a/Documentation/devicetree/bindings/usb/dwc3.txt b/Documentation/devicetree/bindings/usb/dwc3.txt
deleted file mode 100644
index 1aae2b6160c1..000000000000
--- a/Documentation/devicetree/bindings/usb/dwc3.txt
+++ /dev/null
@@ -1,128 +0,0 @@
-synopsys DWC3 CORE
-
-DWC3- USB3 CONTROLLER. Complies to the generic USB binding properties
- as described in 'usb/generic.txt'
-
-Required properties:
- - compatible: must be "snps,dwc3"
- - reg : Address and length of the register set for the device
- - interrupts: Interrupts used by the dwc3 controller.
- - clock-names: list of clock names. Ideally should be "ref",
- "bus_early", "suspend" but may be less or more.
- - clocks: list of phandle and clock specifier pairs corresponding to
- entries in the clock-names property.
-
-Exception for clocks:
- clocks are optional if the parent node (i.e. glue-layer) is compatible to
- one of the following:
- "cavium,octeon-7130-usb-uctl"
- "qcom,dwc3"
- "samsung,exynos5250-dwusb3"
- "samsung,exynos5433-dwusb3"
- "samsung,exynos7-dwusb3"
- "sprd,sc9860-dwc3"
- "st,stih407-dwc3"
- "ti,am437x-dwc3"
- "ti,dwc3"
- "ti,keystone-dwc3"
- "rockchip,rk3399-dwc3"
- "xlnx,zynqmp-dwc3"
-
-Optional properties:
- - usb-phy : array of phandle for the PHY device. The first element
- in the array is expected to be a handle to the USB2/HS PHY and
- the second element is expected to be a handle to the USB3/SS PHY
- - phys: from the *Generic PHY* bindings
- - phy-names: from the *Generic PHY* bindings; supported names are "usb2-phy"
- or "usb3-phy".
- - resets: set of phandle and reset specifier pairs
- - snps,usb2-lpm-disable: indicate if we don't want to enable USB2 HW LPM
- - snps,usb3_lpm_capable: determines if platform is USB3 LPM capable
- - snps,dis-start-transfer-quirk: when set, disable isoc START TRANSFER command
- failure SW work-around for DWC_usb31 version 1.70a-ea06
- and prior.
- - snps,disable_scramble_quirk: true when SW should disable data scrambling.
- Only really useful for FPGA builds.
- - snps,has-lpm-erratum: true when DWC3 was configured with LPM Erratum enabled
- - snps,lpm-nyet-threshold: LPM NYET threshold
- - snps,u2exit_lfps_quirk: set if we want to enable u2exit lfps quirk
- - snps,u2ss_inp3_quirk: set if we enable P3 OK for U2/SS Inactive quirk
- - snps,req_p1p2p3_quirk: when set, the core will always request for
- P1/P2/P3 transition sequence.
- - snps,del_p1p2p3_quirk: when set core will delay P1/P2/P3 until a certain
- amount of 8B10B errors occur.
- - snps,del_phy_power_chg_quirk: when set core will delay PHY power change
- from P0 to P1/P2/P3.
- - snps,lfps_filter_quirk: when set core will filter LFPS reception.
- - snps,rx_detect_poll_quirk: when set core will disable a 400us delay to start
- Polling LFPS after RX.Detect.
- - snps,tx_de_emphasis_quirk: when set core will set Tx de-emphasis value.
- - snps,tx_de_emphasis: the value driven to the PHY is controlled by the
- LTSSM during USB3 Compliance mode.
- - snps,dis_u3_susphy_quirk: when set core will disable USB3 suspend phy.
- - snps,dis_u2_susphy_quirk: when set core will disable USB2 suspend phy.
- - snps,dis_enblslpm_quirk: when set clears the enblslpm in GUSB2PHYCFG,
- disabling the suspend signal to the PHY.
- - snps,dis-u1-entry-quirk: set if link entering into U1 needs to be disabled.
- - snps,dis-u2-entry-quirk: set if link entering into U2 needs to be disabled.
- - snps,dis_rxdet_inp3_quirk: when set core will disable receiver detection
- in PHY P3 power state.
- - snps,dis-u2-freeclk-exists-quirk: when set, clear the u2_freeclk_exists
- in GUSB2PHYCFG, specify that USB2 PHY doesn't provide
- a free-running PHY clock.
- - snps,dis-del-phy-power-chg-quirk: when set core will change PHY power
- from P0 to P1/P2/P3 without delay.
- - snps,dis-tx-ipgap-linecheck-quirk: when set, disable u2mac linestate check
- during HS transmit.
- - snps,parkmode-disable-ss-quirk: when set, all SuperSpeed bus instances in
- park mode are disabled.
- - snps,dis_metastability_quirk: when set, disable metastability workaround.
- CAUTION: use only if you are absolutely sure of it.
- - snps,dis-split-quirk: when set, change the way URBs are handled by the
- driver. Needed to avoid -EPROTO errors with usbhid
- on some devices (Hikey 970).
- - snps,is-utmi-l1-suspend: true when DWC3 asserts output signal
- utmi_l1_suspend_n, false when asserts utmi_sleep_n
- - snps,hird-threshold: HIRD threshold
- - snps,hsphy_interface: High-Speed PHY interface selection between "utmi" for
- UTMI+ and "ulpi" for ULPI when the DWC_USB3_HSPHY_INTERFACE has value 3.
- - snps,quirk-frame-length-adjustment: Value for GFLADJ_30MHZ field of GFLADJ
- register for post-silicon frame length adjustment when the
- fladj_30mhz_sdbnd signal is invalid or incorrect.
- - snps,rx-thr-num-pkt-prd: periodic ESS RX packet threshold count - host mode
- only. Set this and rx-max-burst-prd to a valid,
- non-zero value 1-16 (DWC_usb31 programming guide
- section 1.2.4) to enable periodic ESS RX threshold.
- - snps,rx-max-burst-prd: max periodic ESS RX burst size - host mode only. Set
- this and rx-thr-num-pkt-prd to a valid, non-zero value
- 1-16 (DWC_usb31 programming guide section 1.2.4) to
- enable periodic ESS RX threshold.
- - snps,tx-thr-num-pkt-prd: periodic ESS TX packet threshold count - host mode
- only. Set this and tx-max-burst-prd to a valid,
- non-zero value 1-16 (DWC_usb31 programming guide
- section 1.2.3) to enable periodic ESS TX threshold.
- - snps,tx-max-burst-prd: max periodic ESS TX burst size - host mode only. Set
- this and tx-thr-num-pkt-prd to a valid, non-zero value
- 1-16 (DWC_usb31 programming guide section 1.2.3) to
- enable periodic ESS TX threshold.
-
- - <DEPRECATED> tx-fifo-resize: determines if the FIFO *has* to be reallocated.
- - snps,incr-burst-type-adjustment: Value for INCR burst type of GSBUSCFG0
- register, undefined length INCR burst type enable and INCRx type.
- When just one value, which means INCRX burst mode enabled. When
- more than one value, which means undefined length INCR burst type
- enabled. The values can be 1, 4, 8, 16, 32, 64, 128 and 256.
-
- - in addition all properties from usb-xhci.txt from the current directory are
- supported as well
-
-
-This is usually a subnode to DWC3 glue to which it is connected.
-
-dwc3@4a030000 {
- compatible = "snps,dwc3";
- reg = <0x4a030000 0xcfff>;
- interrupts = <0 92 4>
- usb-phy = <&usb2_phy>, <&usb3,phy>;
- snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
-};
diff --git a/Documentation/devicetree/bindings/usb/exynos-usb.txt b/Documentation/devicetree/bindings/usb/exynos-usb.txt
index 6aae1544f240..f7ae79825d7d 100644
--- a/Documentation/devicetree/bindings/usb/exynos-usb.txt
+++ b/Documentation/devicetree/bindings/usb/exynos-usb.txt
@@ -93,7 +93,7 @@ Sub-nodes:
The dwc3 core should be added as subnode to Exynos dwc3 glue.
- dwc3 :
The binding details of dwc3 can be found in:
- Documentation/devicetree/bindings/usb/dwc3.txt
+ Documentation/devicetree/bindings/usb/snps,dwc3.yaml
Example:
usb@12000000 {
diff --git a/Documentation/devicetree/bindings/usb/fsl,imx8mp-dwc3.yaml b/Documentation/devicetree/bindings/usb/fsl,imx8mp-dwc3.yaml
new file mode 100644
index 000000000000..cb4c6f6d3a33
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/fsl,imx8mp-dwc3.yaml
@@ -0,0 +1,105 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright (c) 2020 NXP
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/fsl,imx8mp-dwc3.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NXP iMX8MP Soc USB Controller
+
+maintainers:
+ - Li Jun <jun.li@nxp.com>
+
+properties:
+ compatible:
+ const: fsl,imx8mp-dwc3
+
+ reg:
+ maxItems: 1
+ description: Address and length of the register set for the wrapper of
+ dwc3 core on the SOC.
+
+ "#address-cells":
+ enum: [ 1, 2 ]
+
+ "#size-cells":
+ enum: [ 1, 2 ]
+
+ dma-ranges:
+ description:
+ See section 2.3.9 of the DeviceTree Specification.
+
+ ranges: true
+
+ interrupts:
+ maxItems: 1
+ description: The interrupt that is asserted when a wakeup event is
+ received.
+
+ clocks:
+ description:
+ A list of phandle and clock-specifier pairs for the clocks
+ listed in clock-names.
+ items:
+ - description: system hsio root clock.
+ - description: suspend clock, used for usb wakeup logic.
+
+ clock-names:
+ items:
+ - const: hsio
+ - const: suspend
+
+# Required child node:
+
+patternProperties:
+ "^dwc3@[0-9a-f]+$":
+ type: object
+ description:
+ A child node must exist to represent the core DWC3 IP block
+ The content of the node is defined in dwc3.txt.
+
+required:
+ - compatible
+ - reg
+ - "#address-cells"
+ - "#size-cells"
+ - dma-ranges
+ - ranges
+ - clocks
+ - clock-names
+ - interrupts
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/imx8mp-clock.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ usb3_0: usb@32f10100 {
+ compatible = "fsl,imx8mp-dwc3";
+ reg = <0x32f10100 0x8>;
+ clocks = <&clk IMX8MP_CLK_HSIO_ROOT>,
+ <&clk IMX8MP_CLK_USB_ROOT>;
+ clock-names = "hsio", "suspend";
+ interrupts = <GIC_SPI 148 IRQ_TYPE_LEVEL_HIGH>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ dma-ranges = <0x40000000 0x40000000 0xc0000000>;
+ ranges;
+
+ dwc3@38100000 {
+ compatible = "snps,dwc3";
+ reg = <0x38100000 0x10000>;
+ clocks = <&clk IMX8MP_CLK_HSIO_AXI>,
+ <&clk IMX8MP_CLK_USB_CORE_REF>,
+ <&clk IMX8MP_CLK_USB_ROOT>;
+ clock-names = "bus_early", "ref", "suspend";
+ assigned-clocks = <&clk IMX8MP_CLK_HSIO_AXI>;
+ assigned-clock-parents = <&clk IMX8MP_SYS_PLL2_500M>;
+ assigned-clock-rates = <500000000>;
+ interrupts = <GIC_SPI 40 IRQ_TYPE_LEVEL_HIGH>;
+ phys = <&usb3_phy0>, <&usb3_phy0>;
+ phy-names = "usb2-phy", "usb3-phy";
+ snps,dis-u2-freeclk-exists-quirk;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/usb/generic-ehci.yaml b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
index 247ef00381ea..6816de7dfc00 100644
--- a/Documentation/devicetree/bindings/usb/generic-ehci.yaml
+++ b/Documentation/devicetree/bindings/usb/generic-ehci.yaml
@@ -24,8 +24,53 @@ allOf:
properties:
compatible:
- contains:
- const: generic-ehci
+ oneOf:
+ - items:
+ - enum:
+ - allwinner,sun4i-a10-ehci
+ - allwinner,sun50i-a64-ehci
+ - allwinner,sun50i-h6-ehci
+ - allwinner,sun5i-a13-ehci
+ - allwinner,sun6i-a31-ehci
+ - allwinner,sun7i-a20-ehci
+ - allwinner,sun8i-a23-ehci
+ - allwinner,sun8i-h3-ehci
+ - allwinner,sun8i-r40-ehci
+ - allwinner,sun9i-a80-ehci
+ - aspeed,ast2400-ehci
+ - aspeed,ast2500-ehci
+ - aspeed,ast2600-ehci
+ - brcm,bcm3384-ehci
+ - brcm,bcm63268-ehci
+ - brcm,bcm6328-ehci
+ - brcm,bcm6358-ehci
+ - brcm,bcm6362-ehci
+ - brcm,bcm6368-ehci
+ - brcm,bcm7125-ehci
+ - brcm,bcm7346-ehci
+ - brcm,bcm7358-ehci
+ - brcm,bcm7360-ehci
+ - brcm,bcm7362-ehci
+ - brcm,bcm7420-ehci
+ - brcm,bcm7425-ehci
+ - brcm,bcm7435-ehci
+ - ibm,476gtr-ehci
+ - nxp,lpc1850-ehci
+ - qca,ar7100-ehci
+ - snps,hsdk-v1.0-ehci
+ - socionext,uniphier-ehci
+ - const: generic-ehci
+ - items:
+ - enum:
+ - cavium,octeon-6335-ehci
+ - ibm,usb-ehci-440epx
+ - ibm,usb-ehci-460ex
+ - nintendo,hollywood-usb-ehci
+ - st,spear600-ehci
+ - const: usb-ehci
+ - enum:
+ - generic-ehci
+ - usb-ehci
reg:
minItems: 1
@@ -101,7 +146,7 @@ additionalProperties: false
examples:
- |
usb@e0000300 {
- compatible = "ibm,usb-ehci-440epx", "generic-ehci";
+ compatible = "ibm,usb-ehci-440epx", "usb-ehci";
interrupt-parent = <&UIC0>;
interrupts = <0x1a 4>;
reg = <0xe0000300 90>, <0xe0000390 70>;
diff --git a/Documentation/devicetree/bindings/usb/generic-ohci.yaml b/Documentation/devicetree/bindings/usb/generic-ohci.yaml
index 2178bcc401bc..53df281f618c 100644
--- a/Documentation/devicetree/bindings/usb/generic-ohci.yaml
+++ b/Documentation/devicetree/bindings/usb/generic-ohci.yaml
@@ -14,8 +14,38 @@ maintainers:
properties:
compatible:
- contains:
- const: generic-ohci
+ oneOf:
+ - items:
+ - enum:
+ - allwinner,sun4i-a10-ohci
+ - allwinner,sun50i-a64-ohci
+ - allwinner,sun50i-h6-ohci
+ - allwinner,sun5i-a13-ohci
+ - allwinner,sun6i-a31-ohci
+ - allwinner,sun7i-a20-ohci
+ - allwinner,sun8i-a23-ohci
+ - allwinner,sun8i-h3-ohci
+ - allwinner,sun8i-r40-ohci
+ - allwinner,sun9i-a80-ohci
+ - brcm,bcm3384-ohci
+ - brcm,bcm63268-ohci
+ - brcm,bcm6328-ohci
+ - brcm,bcm6358-ohci
+ - brcm,bcm6362-ohci
+ - brcm,bcm6368-ohci
+ - brcm,bcm7125-ohci
+ - brcm,bcm7346-ohci
+ - brcm,bcm7358-ohci
+ - brcm,bcm7360-ohci
+ - brcm,bcm7362-ohci
+ - brcm,bcm7420-ohci
+ - brcm,bcm7425-ohci
+ - brcm,bcm7435-ohci
+ - ibm,476gtr-ohci
+ - ingenic,jz4740-ohci
+ - snps,hsdk-v1.0-ohci
+ - const: generic-ohci
+ - const: generic-ohci
reg:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/usb/generic-xhci.yaml b/Documentation/devicetree/bindings/usb/generic-xhci.yaml
new file mode 100644
index 000000000000..23d73df96ea3
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/generic-xhci.yaml
@@ -0,0 +1,65 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/generic-xhci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: USB xHCI Controller Device Tree Bindings
+
+maintainers:
+ - Mathias Nyman <mathias.nyman@intel.com>
+
+allOf:
+ - $ref: "usb-xhci.yaml#"
+
+properties:
+ compatible:
+ oneOf:
+ - description: Generic xHCI device
+ const: generic-xhci
+ - description: Armada 37xx/375/38x/8k SoCs
+ items:
+ - enum:
+ - marvell,armada3700-xhci
+ - marvell,armada-375-xhci
+ - marvell,armada-380-xhci
+ - marvell,armada-8k-xhci
+ - const: generic-xhci
+ - description: Broadcom STB SoCs with xHCI
+ enum:
+ - brcm,xhci-brcm-v2
+ - brcm,bcm7445-xhci
+ - description: Generic xHCI device
+ const: xhci-platform
+ deprecated: true
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 1
+ maxItems: 2
+
+ clock-names:
+ minItems: 1
+ items:
+ - const: core
+ - const: reg
+
+unevaluatedProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ usb@f0931000 {
+ compatible = "generic-xhci";
+ reg = <0xf0931000 0x8c8>;
+ interrupts = <0x0 0x4e 0x0>;
+ };
diff --git a/Documentation/devicetree/bindings/usb/generic.txt b/Documentation/devicetree/bindings/usb/generic.txt
deleted file mode 100644
index ba472e7aefc9..000000000000
--- a/Documentation/devicetree/bindings/usb/generic.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-Generic USB Properties
-
-Optional properties:
- - maximum-speed: tells USB controllers we want to work up to a certain
- speed. Valid arguments are "super-speed-plus",
- "super-speed", "high-speed", "full-speed" and
- "low-speed". In case this isn't passed via DT, USB
- controllers should default to their maximum HW
- capability.
- - dr_mode: tells Dual-Role USB controllers that we want to work on a
- particular mode. Valid arguments are "host",
- "peripheral" and "otg". In case this attribute isn't
- passed via DT, USB DRD controllers should default to
- OTG.
- - phy_type: tells USB controllers that we want to configure the core to support
- a UTMI+ PHY with an 8- or 16-bit interface if UTMI+ is
- selected. Valid arguments are "utmi" and "utmi_wide".
- In case this isn't passed via DT, USB controllers should
- default to HW capability.
- - otg-rev: tells usb driver the release number of the OTG and EH supplement
- with which the device and its descriptors are compliant,
- in binary-coded decimal (i.e. 2.0 is 0200H). This
- property is used if any real OTG features(HNP/SRP/ADP)
- is enabled, if ADP is required, otg-rev should be
- 0x0200 or above.
- - companion: phandle of a companion
- - hnp-disable: tells OTG controllers we want to disable OTG HNP, normally HNP
- is the basic function of real OTG except you want it
- to be a srp-capable only B device.
- - srp-disable: tells OTG controllers we want to disable OTG SRP, SRP is
- optional for OTG device.
- - adp-disable: tells OTG controllers we want to disable OTG ADP, ADP is
- optional for OTG device.
- - usb-role-switch: boolean, indicates that the device is capable of assigning
- the USB data role (USB host or USB device) for a given
- USB connector, such as Type-C, Type-B(micro).
- see connector/usb-connector.yaml.
- - role-switch-default-mode: indicating if usb-role-switch is enabled, the
- device default operation mode of controller while usb
- role is USB_ROLE_NONE. Valid arguments are "host" and
- "peripheral". Defaults to "peripheral" if not
- specified.
-
-
-This is an attribute to a USB controller such as:
-
-dwc3@4a030000 {
- compatible = "synopsys,dwc3";
- reg = <0x4a030000 0xcfff>;
- interrupts = <0 92 4>
- usb-phy = <&usb2_phy>, <&usb3,phy>;
- maximum-speed = "super-speed";
- dr_mode = "otg";
- phy_type = "utmi_wide";
- otg-rev = <0x0200>;
- adp-disable;
-};
diff --git a/Documentation/devicetree/bindings/usb/intel,keembay-dwc3.yaml b/Documentation/devicetree/bindings/usb/intel,keembay-dwc3.yaml
index dd32c10ce6c7..43b91ab62004 100644
--- a/Documentation/devicetree/bindings/usb/intel,keembay-dwc3.yaml
+++ b/Documentation/devicetree/bindings/usb/intel,keembay-dwc3.yaml
@@ -34,11 +34,8 @@ properties:
# Required child node:
patternProperties:
- "^dwc3@[0-9a-f]+$":
- type: object
- description:
- A child node must exist to represent the core DWC3 IP block.
- The content of the node is defined in dwc3.txt.
+ "^usb@[0-9a-f]+$":
+ $ref: snps,dwc3.yaml#
required:
- compatible
@@ -68,7 +65,7 @@ examples:
#address-cells = <1>;
#size-cells = <1>;
- dwc3@34000000 {
+ usb@34000000 {
compatible = "snps,dwc3";
reg = <0x34000000 0x10000>;
interrupts = <GIC_SPI 91 IRQ_TYPE_LEVEL_HIGH>;
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt b/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
deleted file mode 100644
index 42d8814f903a..000000000000
--- a/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
+++ /dev/null
@@ -1,121 +0,0 @@
-MT8173 xHCI
-
-The device node for Mediatek SOC USB3.0 host controller
-
-There are two scenarios: the first one only supports xHCI driver;
-the second one supports dual-role mode, and the host is based on xHCI
-driver. Take account of backward compatibility, we divide bindings
-into two parts.
-
-1st: only supports xHCI driver
-------------------------------------------------------------------------
-
-Required properties:
- - compatible : should be "mediatek,<soc-model>-xhci", "mediatek,mtk-xhci",
- soc-model is the name of SoC, such as mt8173, mt2712 etc, when using
- "mediatek,mtk-xhci" compatible string, you need SoC specific ones in
- addition, one of:
- - "mediatek,mt8173-xhci"
- - reg : specifies physical base address and size of the registers
- - reg-names: should be "mac" for xHCI MAC and "ippc" for IP port control
- - interrupts : interrupt used by the controller
- - power-domains : a phandle to USB power domain node to control USB's
- mtcmos
- - vusb33-supply : regulator of USB avdd3.3v
-
- - clocks : a list of phandle + clock-specifier pairs, one for each
- entry in clock-names
- - clock-names : must contain
- "sys_ck": controller clock used by normal mode,
- the following ones are optional:
- "ref_ck": reference clock used by low power mode etc,
- "mcu_ck": mcu_bus clock for register access,
- "dma_ck": dma_bus clock for data transfer by DMA,
- "xhci_ck": controller clock
-
- - phys : see usb-hcd.yaml in the current directory
-
-Optional properties:
- - wakeup-source : enable USB remote wakeup;
- - mediatek,syscon-wakeup : phandle to syscon used to access the register
- of the USB wakeup glue layer between xHCI and SPM; it depends on
- "wakeup-source", and has two arguments:
- - the first one : register base address of the glue layer in syscon;
- - the second one : hardware version of the glue layer
- - 1 : used by mt8173 etc
- - 2 : used by mt2712 etc
- - mediatek,u3p-dis-msk : mask to disable u3ports, bit0 for u3port0,
- bit1 for u3port1, ... etc;
- - vbus-supply : reference to the VBUS regulator;
- - usb3-lpm-capable : supports USB3.0 LPM
- - pinctrl-names : a pinctrl state named "default" must be defined
- - pinctrl-0 : pin control group
- See: Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
- - imod-interval-ns: default interrupt moderation interval is 5000ns
-
-additionally the properties from usb-hcd.yaml (in the current directory) are
-supported.
-
-Example:
-usb30: usb@11270000 {
- compatible = "mediatek,mt8173-xhci";
- reg = <0 0x11270000 0 0x1000>,
- <0 0x11280700 0 0x0100>;
- reg-names = "mac", "ippc";
- interrupts = <GIC_SPI 115 IRQ_TYPE_LEVEL_LOW>;
- power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
- clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>,
- <&pericfg CLK_PERI_USB0>,
- <&pericfg CLK_PERI_USB1>;
- clock-names = "sys_ck", "ref_ck";
- phys = <&phy_port0 PHY_TYPE_USB3>,
- <&phy_port1 PHY_TYPE_USB2>;
- vusb33-supply = <&mt6397_vusb_reg>;
- vbus-supply = <&usb_p1_vbus>;
- usb3-lpm-capable;
- mediatek,syscon-wakeup = <&pericfg 0x400 1>;
- wakeup-source;
- imod-interval-ns = <10000>;
-};
-
-2nd: dual-role mode with xHCI driver
-------------------------------------------------------------------------
-
-In the case, xhci is added as subnode to mtu3. An example and the DT binding
-details of mtu3 can be found in:
-Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
-
-Required properties:
- - compatible : should be "mediatek,<soc-model>-xhci", "mediatek,mtk-xhci",
- soc-model is the name of SoC, such as mt8173, mt2712 etc, when using
- "mediatek,mtk-xhci" compatible string, you need SoC specific ones in
- addition, one of:
- - "mediatek,mt8173-xhci"
- - reg : specifies physical base address and size of the registers
- - reg-names: should be "mac" for xHCI MAC
- - interrupts : interrupt used by the host controller
- - power-domains : a phandle to USB power domain node to control USB's
- mtcmos
- - vusb33-supply : regulator of USB avdd3.3v
-
- - clocks : a list of phandle + clock-specifier pairs, one for each
- entry in clock-names
- - clock-names : must contain "sys_ck", and the following ones are optional:
- "ref_ck", "mcu_ck" and "dma_ck", "xhci_ck"
-
-Optional properties:
- - vbus-supply : reference to the VBUS regulator;
- - usb3-lpm-capable : supports USB3.0 LPM
-
-Example:
-usb30: usb@11270000 {
- compatible = "mediatek,mt8173-xhci";
- reg = <0 0x11270000 0 0x1000>;
- reg-names = "mac";
- interrupts = <GIC_SPI 115 IRQ_TYPE_LEVEL_LOW>;
- power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
- clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>;
- clock-names = "sys_ck", "ref_ck";
- vusb33-supply = <&mt6397_vusb_reg>;
- usb3-lpm-capable;
-};
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.yaml b/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.yaml
new file mode 100644
index 000000000000..14f40efb3b22
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.yaml
@@ -0,0 +1,188 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright (c) 2020 MediaTek
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/mediatek,mtk-xhci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MediaTek USB3 xHCI Device Tree Bindings
+
+maintainers:
+ - Chunfeng Yun <chunfeng.yun@mediatek.com>
+
+allOf:
+ - $ref: "usb-xhci.yaml"
+
+description: |
+ There are two scenarios:
+ case 1: only supports xHCI driver;
+ case 2: supports dual-role mode, and the host is based on xHCI driver.
+
+properties:
+ # common properties for both case 1 and case 2
+ compatible:
+ items:
+ - enum:
+ - mediatek,mt2701-xhci
+ - mediatek,mt2712-xhci
+ - mediatek,mt7622-xhci
+ - mediatek,mt7623-xhci
+ - mediatek,mt7629-xhci
+ - mediatek,mt8173-xhci
+ - mediatek,mt8183-xhci
+ - const: mediatek,mtk-xhci
+
+ reg:
+ minItems: 1
+ items:
+ - description: the registers of xHCI MAC
+ - description: the registers of IP Port Control
+
+ reg-names:
+ minItems: 1
+ items:
+ - const: mac
+ - const: ippc # optional, only needed for case 1.
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ description: A phandle to USB power domain node to control USB's MTCMOS
+ maxItems: 1
+
+ clocks:
+ minItems: 1
+ items:
+ - description: Controller clock used by normal mode
+ - description: Reference clock used by low power mode etc
+ - description: Mcu bus clock for register access
+ - description: DMA bus clock for data transfer
+ - description: controller clock
+
+ clock-names:
+ minItems: 1
+ items:
+ - const: sys_ck # required, the following ones are optional
+ - const: ref_ck
+ - const: mcu_ck
+ - const: dma_ck
+ - const: xhci_ck
+
+ assigned-clocks:
+ minItems: 1
+ maxItems: 5
+
+ assigned-clock-parents:
+ minItems: 1
+ maxItems: 5
+
+ phys:
+ description:
+ List of all PHYs used on this HCD, it's better to keep PHYs in order
+ as the hardware layout
+ minItems: 1
+ items:
+ - description: USB2/HS PHY # required, others are optional
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+
+ vusb33-supply:
+ description: Regulator of USB AVDD3.3v
+
+ vbus-supply:
+ description: Regulator of USB VBUS5v
+
+ usb3-lpm-capable:
+ description: supports USB3.0 LPM
+ type: boolean
+
+ imod-interval-ns:
+ description:
+ Interrupt moderation interval value, it is 8 times as much as that
+ defined in the xHCI spec on MTK's controller.
+ default: 5000
+
+ # the following properties are only used for case 1
+ wakeup-source:
+ description: enable USB remote wakeup, see power/wakeup-source.txt
+ type: boolean
+
+ mediatek,syscon-wakeup:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ maxItems: 1
+ description:
+ A phandle to syscon used to access the register of the USB wakeup glue
+ layer between xHCI and SPM, the field should always be 3 cells long.
+ items:
+ items:
+ - description:
+ The first cell represents a phandle to syscon
+ - description:
+ The second cell represents the register base address of the glue
+ layer in syscon
+ - description:
+ The third cell represents the hardware version of the glue layer,
+ 1 is used by mt8173 etc, 2 is used by mt2712 etc
+ enum: [1, 2]
+
+ mediatek,u3p-dis-msk:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: The mask to disable u3ports, bit0 for u3port0,
+ bit1 for u3port1, ... etc
+
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+patternProperties:
+ "@[0-9a-f]{1}$":
+ type: object
+ description: The hard wired USB devices.
+
+dependencies:
+ wakeup-source: [ 'mediatek,syscon-wakeup' ]
+
+required:
+ - compatible
+ - reg
+ - reg-names
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/mt8173-clk.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/phy/phy.h>
+ #include <dt-bindings/power/mt8173-power.h>
+
+ usb@11270000 {
+ compatible = "mediatek,mt8173-xhci", "mediatek,mtk-xhci";
+ reg = <0x11270000 0x1000>, <0x11280700 0x0100>;
+ reg-names = "mac", "ippc";
+ interrupts = <GIC_SPI 115 IRQ_TYPE_LEVEL_LOW>;
+ power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
+ clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>;
+ clock-names = "sys_ck", "ref_ck";
+ phys = <&u3port0 PHY_TYPE_USB3>, <&u2port1 PHY_TYPE_USB2>;
+ vusb33-supply = <&mt6397_vusb_reg>;
+ vbus-supply = <&usb_p1_vbus>;
+ imod-interval-ns = <10000>;
+ mediatek,syscon-wakeup = <&pericfg 0x400 1>;
+ wakeup-source;
+ usb3-lpm-capable;
+ };
+...
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt b/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
deleted file mode 100644
index a82ca438aec1..000000000000
--- a/Documentation/devicetree/bindings/usb/mediatek,mtu3.txt
+++ /dev/null
@@ -1,108 +0,0 @@
-The device node for Mediatek USB3.0 DRD controller
-
-Required properties:
- - compatible : should be "mediatek,<soc-model>-mtu3", "mediatek,mtu3",
- soc-model is the name of SoC, such as mt8173, mt2712 etc,
- when using "mediatek,mtu3" compatible string, you need SoC specific
- ones in addition, one of:
- - "mediatek,mt8173-mtu3"
- - reg : specifies physical base address and size of the registers
- - reg-names: should be "mac" for device IP and "ippc" for IP port control
- - interrupts : interrupt used by the device IP
- - power-domains : a phandle to USB power domain node to control USB's
- mtcmos
- - vusb33-supply : regulator of USB avdd3.3v
- - clocks : a list of phandle + clock-specifier pairs, one for each
- entry in clock-names
- - clock-names : must contain "sys_ck" for clock of controller,
- the following clocks are optional:
- "ref_ck", "mcu_ck" and "dma_ck";
- - phys : see usb-hcd.yaml in the current directory
- - dr_mode : should be one of "host", "peripheral" or "otg",
- refer to usb/generic.txt
-
-Optional properties:
- - #address-cells, #size-cells : should be '2' if the device has sub-nodes
- with 'reg' property
- - ranges : allows valid 1:1 translation between child's address space and
- parent's address space
- - extcon : external connector for vbus and idpin changes detection, needed
- when supports dual-role mode.
- it's considered valid for compatibility reasons, not allowed for
- new bindings, and use "usb-role-switch" property instead.
- - vbus-supply : reference to the VBUS regulator, needed when supports
- dual-role mode.
- it's considered valid for compatibility reasons, not allowed for
- new bindings, and put into a usb-connector node.
- see connector/usb-connector.yaml.
- - pinctrl-names : a pinctrl state named "default" is optional, and need be
- defined if auto drd switch is enabled, that means the property dr_mode
- is set as "otg", and meanwhile the property "mediatek,enable-manual-drd"
- is not set.
- - pinctrl-0 : pin control group
- See: Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
-
- - maximum-speed : valid arguments are "super-speed", "high-speed" and
- "full-speed"; refer to usb/generic.txt
- - usb-role-switch : use USB Role Switch to support dual-role switch, but
- not extcon; see usb/generic.txt.
- - enable-manual-drd : supports manual dual-role switch via debugfs; usually
- used when receptacle is TYPE-A and also wants to support dual-role
- mode.
- - wakeup-source: enable USB remote wakeup of host mode.
- - mediatek,syscon-wakeup : phandle to syscon used to access the register
- of the USB wakeup glue layer between SSUSB and SPM; it depends on
- "wakeup-source", and has two arguments:
- - the first one : register base address of the glue layer in syscon;
- - the second one : hardware version of the glue layer
- - 1 : used by mt8173 etc
- - 2 : used by mt2712 etc
- - mediatek,u3p-dis-msk : mask to disable u3ports, bit0 for u3port0,
- bit1 for u3port1, ... etc;
-
-additionally the properties from usb-hcd.yaml (in the current directory) are
-supported.
-
-Sub-nodes:
-The xhci should be added as subnode to mtu3 as shown in the following example
-if host mode is enabled. The DT binding details of xhci can be found in:
-Documentation/devicetree/bindings/usb/mediatek,mtk-xhci.txt
-
-The port would be added as subnode if use "usb-role-switch" property.
- see graph.txt
-
-Example:
-ssusb: usb@11271000 {
- compatible = "mediatek,mt8173-mtu3";
- reg = <0 0x11271000 0 0x3000>,
- <0 0x11280700 0 0x0100>;
- reg-names = "mac", "ippc";
- interrupts = <GIC_SPI 64 IRQ_TYPE_LEVEL_LOW>;
- phys = <&phy_port0 PHY_TYPE_USB3>,
- <&phy_port1 PHY_TYPE_USB2>;
- power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
- clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>,
- <&pericfg CLK_PERI_USB0>,
- <&pericfg CLK_PERI_USB1>;
- clock-names = "sys_ck", "ref_ck";
- vusb33-supply = <&mt6397_vusb_reg>;
- vbus-supply = <&usb_p0_vbus>;
- extcon = <&extcon_usb>;
- dr_mode = "otg";
- wakeup-source;
- mediatek,syscon-wakeup = <&pericfg 0x400 1>;
- #address-cells = <2>;
- #size-cells = <2>;
- ranges;
-
- usb_host: xhci@11270000 {
- compatible = "mediatek,mt8173-xhci";
- reg = <0 0x11270000 0 0x1000>;
- reg-names = "mac";
- interrupts = <GIC_SPI 115 IRQ_TYPE_LEVEL_LOW>;
- power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
- clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>;
- clock-names = "sys_ck", "ref_ck";
- vusb33-supply = <&mt6397_vusb_reg>;
- };
-};
diff --git a/Documentation/devicetree/bindings/usb/mediatek,mtu3.yaml b/Documentation/devicetree/bindings/usb/mediatek,mtu3.yaml
new file mode 100644
index 000000000000..f5c04b9d2de9
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/mediatek,mtu3.yaml
@@ -0,0 +1,287 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright (c) 2020 MediaTek
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/mediatek,mtu3.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MediaTek USB3 DRD Controller Device Tree Bindings
+
+maintainers:
+ - Chunfeng Yun <chunfeng.yun@mediatek.com>
+
+allOf:
+ - $ref: "usb-drd.yaml"
+
+description: |
+ The DRD controller has a glue layer IPPC (IP Port Control), and its host is
+ based on xHCI.
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - mediatek,mt2712-mtu3
+ - mediatek,mt8173-mtu3
+ - mediatek,mt8183-mtu3
+ - const: mediatek,mtu3
+
+ reg:
+ items:
+ - description: the registers of device MAC
+ - description: the registers of IP Port Control
+
+ reg-names:
+ items:
+ - const: mac
+ - const: ippc
+
+ interrupts:
+ maxItems: 1
+
+ power-domains:
+ description: A phandle to USB power domain node to control USB's MTCMOS
+ maxItems: 1
+
+ clocks:
+ minItems: 1
+ items:
+ - description: Controller clock used by normal mode
+ - description: Reference clock used by low power mode etc
+ - description: Mcu bus clock for register access
+ - description: DMA bus clock for data transfer
+
+ clock-names:
+ minItems: 1
+ items:
+ - const: sys_ck # required, others are optional
+ - const: ref_ck
+ - const: mcu_ck
+ - const: dma_ck
+
+ phys:
+ description:
+ List of all the USB PHYs used, it's better to keep the sequence
+ as the hardware layout.
+ minItems: 1
+ items:
+ - description: USB2/HS PHY # required, others are optional
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY # the following for backward compatible
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+ - description: USB3/SS(P) PHY
+ - description: USB2/HS PHY
+
+ vusb33-supply:
+ description: Regulator of USB AVDD3.3v
+
+ vbus-supply:
+ deprecated: true
+ description: |
+ Regulator of USB VBUS5v, needed when supports dual-role mode.
+ Particularly, if use an output GPIO to control a VBUS regulator, should
+ model it as a regulator. See bindings/regulator/fixed-regulator.yaml
+ It's considered valid for compatibility reasons, not allowed for
+ new bindings, and put into a usb-connector node.
+
+ dr_mode:
+ enum: [host, peripheral, otg]
+ default: otg
+
+ maximum-speed:
+ enum: [super-speed-plus, super-speed, high-speed, full-speed]
+
+ "#address-cells":
+ enum: [1, 2]
+
+ "#size-cells":
+ enum: [1, 2]
+
+ ranges: true
+
+ extcon:
+ deprecated: true
+ description: |
+ Phandle to the extcon device detecting the IDDIG/VBUS state, neede
+ when supports dual-role mode.
+ It's considered valid for compatibility reasons, not allowed for
+ new bindings, and use "usb-role-switch" property instead.
+
+ usb-role-switch:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description: Support role switch.
+ type: boolean
+
+ connector:
+ $ref: /connector/usb-connector.yaml#
+ description:
+ Connector for dual role switch, especially for "gpio-usb-b-connector"
+ type: object
+
+ port:
+ description:
+ Any connector to the data bus of this controller should be modelled
+ using the OF graph bindings specified, if the "usb-role-switch"
+ property is used. See graph.txt
+ type: object
+
+ enable-manual-drd:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description:
+ supports manual dual-role switch via debugfs; usually used when
+ receptacle is TYPE-A and also wants to support dual-role mode.
+ type: boolean
+
+ wakeup-source:
+ description: enable USB remote wakeup, see power/wakeup-source.txt
+ type: boolean
+
+ mediatek,syscon-wakeup:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ maxItems: 1
+ description:
+ A phandle to syscon used to access the register of the USB wakeup glue
+ layer between xHCI and SPM, the field should always be 3 cells long.
+ items:
+ items:
+ - description:
+ The first cell represents a phandle to syscon
+ - description:
+ The second cell represents the register base address of the glue
+ layer in syscon
+ - description:
+ The third cell represents the hardware version of the glue layer,
+ 1 is used by mt8173 etc, 2 is used by mt2712 etc
+ enum: [1, 2]
+
+ mediatek,u3p-dis-msk:
+ $ref: /schemas/types.yaml#/definitions/uint32
+ description: The mask to disable u3ports, bit0 for u3port0,
+ bit1 for u3port1, ... etc
+
+# Required child node when support dual-role
+patternProperties:
+ "^usb@[0-9a-f]+$":
+ type: object
+ $ref: /usb/mediatek,mtk-xhci.yaml#
+ description:
+ The xhci should be added as subnode to mtu3 as shown in the following
+ example if the host mode is enabled.
+
+dependencies:
+ connector: [ 'usb-role-switch' ]
+ port: [ 'usb-role-switch' ]
+ wakeup-source: [ 'mediatek,syscon-wakeup' ]
+
+required:
+ - compatible
+ - reg
+ - reg-names
+ - interrupts
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ # Dual role switch by extcon
+ - |
+ #include <dt-bindings/clock/mt8173-clk.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/phy/phy.h>
+ #include <dt-bindings/power/mt8173-power.h>
+
+ usb@11271000 {
+ compatible = "mediatek,mt8173-mtu3", "mediatek,mtu3";
+ reg = <0x11271000 0x3000>, <0x11280700 0x0100>;
+ reg-names = "mac", "ippc";
+ interrupts = <GIC_SPI 64 IRQ_TYPE_LEVEL_LOW>;
+ phys = <&phy_port0 PHY_TYPE_USB3>, <&phy_port1 PHY_TYPE_USB2>;
+ power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
+ clocks = <&topckgen CLK_TOP_USB30_SEL>;
+ clock-names = "sys_ck";
+ vusb33-supply = <&mt6397_vusb_reg>;
+ vbus-supply = <&usb_p0_vbus>;
+ extcon = <&extcon_usb>;
+ dr_mode = "otg";
+ wakeup-source;
+ mediatek,syscon-wakeup = <&pericfg 0x400 1>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ xhci: usb@11270000 {
+ compatible = "mediatek,mt8173-xhci", "mediatek,mtk-xhci";
+ reg = <0x11270000 0x1000>;
+ reg-names = "mac";
+ interrupts = <GIC_SPI 115 IRQ_TYPE_LEVEL_LOW>;
+ power-domains = <&scpsys MT8173_POWER_DOMAIN_USB>;
+ clocks = <&topckgen CLK_TOP_USB30_SEL>, <&clk26m>;
+ clock-names = "sys_ck", "ref_ck";
+ vusb33-supply = <&mt6397_vusb_reg>;
+ };
+ };
+
+ # Enable/disable device by an input gpio for VBUS pin
+ - |
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/power/mt2712-power.h>
+
+ usb@112c1000 {
+ compatible = "mediatek,mt2712-mtu3", "mediatek,mtu3";
+ reg = <0x112c1000 0x3000>, <0x112d0700 0x0100>;
+ reg-names = "mac", "ippc";
+ interrupts = <GIC_SPI 248 IRQ_TYPE_LEVEL_LOW>;
+ phys = <&u2port2 PHY_TYPE_USB2>;
+ power-domains = <&scpsys MT2712_POWER_DOMAIN_USB2>;
+ clocks = <&topckgen CLK_TOP_USB30_SEL>;
+ clock-names = "sys_ck";
+ dr_mode = "peripheral";
+ usb-role-switch;
+
+ connector {
+ compatible = "gpio-usb-b-connector", "usb-b-connector";
+ type = "micro";
+ vbus-gpios = <&pio 13 GPIO_ACTIVE_HIGH>;
+ };
+ };
+
+ # Dual role switch with type-c
+ - |
+ usb@11201000 {
+ compatible ="mediatek,mt8183-mtu3", "mediatek,mtu3";
+ reg = <0x11201000 0x2e00>, <0x11203e00 0x0100>;
+ reg-names = "mac", "ippc";
+ interrupts = <GIC_SPI 72 IRQ_TYPE_LEVEL_LOW>;
+ phys = <&u2port0 PHY_TYPE_USB2>;
+ clocks = <&clk26m>;
+ clock-names = "sys_ck";
+ mediatek,syscon-wakeup = <&pericfg 0x400 1>;
+ wakeup-source;
+ dr_mode = "otg";
+ usb-role-switch;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ ranges;
+
+ host: usb@11200000 {
+ compatible = "mediatek,mt8183-xhci", "mediatek,mtk-xhci";
+ reg = <0x11200000 0x1000>;
+ reg-names = "mac";
+ interrupts = <GIC_SPI 73 IRQ_TYPE_LEVEL_LOW>;
+ clocks = <&clk26m>;
+ clock-names = "sys_ck";
+ };
+
+ port {
+ usb_role_sw: endpoint {
+ remote-endpoint = <&hs_ep>;
+ };
+ };
+ };
+
+...
diff --git a/Documentation/devicetree/bindings/usb/mediatek,musb.txt b/Documentation/devicetree/bindings/usb/mediatek,musb.txt
deleted file mode 100644
index 5eedb0296562..000000000000
--- a/Documentation/devicetree/bindings/usb/mediatek,musb.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-MediaTek musb DRD/OTG controller
--------------------------------------------
-
-Required properties:
- - compatible : should be one of:
- "mediatek,mt2701-musb"
- ...
- followed by "mediatek,mtk-musb"
- - reg : specifies physical base address and size of
- the registers
- - interrupts : interrupt used by musb controller
- - interrupt-names : must be "mc"
- - phys : PHY specifier for the OTG phy
- - dr_mode : should be one of "host", "peripheral" or "otg",
- refer to usb/generic.txt
- - clocks : a list of phandle + clock-specifier pairs, one for
- each entry in clock-names
- - clock-names : must contain "main", "mcu", "univpll"
- for clocks of controller
-
-Optional properties:
- - power-domains : a phandle to USB power domain node to control USB's
- MTCMOS
-
-Required child nodes:
- usb connector node as defined in bindings/connector/usb-connector.yaml
-Optional properties:
- - id-gpios : input GPIO for USB ID pin.
- - vbus-gpios : input GPIO for USB VBUS pin.
- - vbus-supply : reference to the VBUS regulator, needed when supports
- dual-role mode
- - usb-role-switch : use USB Role Switch to support dual-role switch, see
- usb/generic.txt.
-
-Example:
-
-usb2: usb@11200000 {
- compatible = "mediatek,mt2701-musb",
- "mediatek,mtk-musb";
- reg = <0 0x11200000 0 0x1000>;
- interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_LOW>;
- interrupt-names = "mc";
- phys = <&u2port2 PHY_TYPE_USB2>;
- dr_mode = "otg";
- clocks = <&pericfg CLK_PERI_USB0>,
- <&pericfg CLK_PERI_USB0_MCU>,
- <&pericfg CLK_PERI_USB_SLV>;
- clock-names = "main","mcu","univpll";
- power-domains = <&scpsys MT2701_POWER_DOMAIN_IFR_MSC>;
- usb-role-switch;
- connector{
- compatible = "gpio-usb-b-connector", "usb-b-connector";
- type = "micro";
- id-gpios = <&pio 44 GPIO_ACTIVE_HIGH>;
- vbus-supply = <&usb_vbus>;
- };
-};
diff --git a/Documentation/devicetree/bindings/usb/mediatek,musb.yaml b/Documentation/devicetree/bindings/usb/mediatek,musb.yaml
new file mode 100644
index 000000000000..84ddacfdbe9b
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/mediatek,musb.yaml
@@ -0,0 +1,114 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+# Copyright (c) 2020 MediaTek
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/mediatek,musb.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: MediaTek MUSB DRD/OTG Controller Device Tree Bindings
+
+maintainers:
+ - Min Guo <min.guo@mediatek.com>
+
+properties:
+ $nodename:
+ pattern: '^usb@[0-9a-f]+$'
+
+ compatible:
+ items:
+ - enum:
+ - mediatek,mt8516-musb
+ - mediatek,mt2701-musb
+ - const: mediatek,mtk-musb
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ interrupt-names:
+ items:
+ - const: mc
+
+ clocks:
+ items:
+ - description: The main/core clock
+ - description: The system bus clock
+ - description: The 48Mhz clock
+
+ clock-names:
+ items:
+ - const: main
+ - const: mcu
+ - const: univpll
+
+ phys:
+ maxItems: 1
+
+ usb-role-switch:
+ $ref: /schemas/types.yaml#/definitions/flag
+ description: Support role switch. See usb/generic.txt
+ type: boolean
+
+ dr_mode:
+ enum:
+ - host
+ - otg
+ - peripheral
+
+ power-domains:
+ description: A phandle to USB power domain node to control USB's MTCMOS
+ maxItems: 1
+
+ connector:
+ $ref: /connector/usb-connector.yaml#
+ description: Connector for dual role switch
+ type: object
+
+dependencies:
+ usb-role-switch: [ 'connector' ]
+ connector: [ 'usb-role-switch' ]
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - interrupt-names
+ - phys
+ - clocks
+ - clock-names
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/clock/mt2701-clk.h>
+ #include <dt-bindings/gpio/gpio.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+ #include <dt-bindings/interrupt-controller/irq.h>
+ #include <dt-bindings/phy/phy.h>
+ #include <dt-bindings/power/mt2701-power.h>
+
+ usb@11200000 {
+ compatible = "mediatek,mt2701-musb", "mediatek,mtk-musb";
+ reg = <0x11200000 0x1000>;
+ interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_LOW>;
+ interrupt-names = "mc";
+ phys = <&u2port2 PHY_TYPE_USB2>;
+ dr_mode = "otg";
+ clocks = <&pericfg CLK_PERI_USB0>,
+ <&pericfg CLK_PERI_USB0_MCU>,
+ <&pericfg CLK_PERI_USB_SLV>;
+ clock-names = "main","mcu","univpll";
+ power-domains = <&scpsys MT2701_POWER_DOMAIN_IFR_MSC>;
+ usb-role-switch;
+
+ connector {
+ compatible = "gpio-usb-b-connector", "usb-b-connector";
+ type = "micro";
+ id-gpios = <&pio 44 GPIO_ACTIVE_HIGH>;
+ vbus-supply = <&usb_vbus>;
+ };
+ };
+...
diff --git a/Documentation/devicetree/bindings/usb/omap-usb.txt b/Documentation/devicetree/bindings/usb/omap-usb.txt
index 38d9bb8507cf..f0dbc5ae45ae 100644
--- a/Documentation/devicetree/bindings/usb/omap-usb.txt
+++ b/Documentation/devicetree/bindings/usb/omap-usb.txt
@@ -65,7 +65,7 @@ Sub-nodes:
The dwc3 core should be added as subnode to omap dwc3 glue.
- dwc3 :
The binding details of dwc3 can be found in:
- Documentation/devicetree/bindings/usb/dwc3.txt
+ Documentation/devicetree/bindings/usb/snps,dwc3.yaml
omap_dwc3 {
compatible = "ti,dwc3";
diff --git a/Documentation/devicetree/bindings/usb/qcom,dwc3.yaml b/Documentation/devicetree/bindings/usb/qcom,dwc3.yaml
index 2cf525d21e05..c3cbd1fa9944 100644
--- a/Documentation/devicetree/bindings/usb/qcom,dwc3.yaml
+++ b/Documentation/devicetree/bindings/usb/qcom,dwc3.yaml
@@ -17,6 +17,10 @@ properties:
- qcom,msm8998-dwc3
- qcom,sc7180-dwc3
- qcom,sdm845-dwc3
+ - qcom,sdx55-dwc3
+ - qcom,sm8150-dwc3
+ - qcom,sm8250-dwc3
+ - qcom,sm8350-dwc3
- const: qcom,dwc3
reg:
@@ -103,11 +107,8 @@ properties:
# Required child node:
patternProperties:
- "^dwc3@[0-9a-f]+$":
- type: object
- description:
- A child node must exist to represent the core DWC3 IP block
- The content of the node is defined in dwc3.txt.
+ "^usb@[0-9a-f]+$":
+ $ref: snps,dwc3.yaml#
required:
- compatible
@@ -162,7 +163,7 @@ examples:
resets = <&gcc GCC_USB30_PRIM_BCR>;
- dwc3@a600000 {
+ usb@a600000 {
compatible = "snps,dwc3";
reg = <0 0x0a600000 0 0xcd00>;
interrupts = <GIC_SPI 133 IRQ_TYPE_LEVEL_HIGH>;
diff --git a/Documentation/devicetree/bindings/usb/renesas,usb-xhci.yaml b/Documentation/devicetree/bindings/usb/renesas,usb-xhci.yaml
index 22603256ddf8..4c5efaf02308 100644
--- a/Documentation/devicetree/bindings/usb/renesas,usb-xhci.yaml
+++ b/Documentation/devicetree/bindings/usb/renesas,usb-xhci.yaml
@@ -11,7 +11,7 @@ maintainers:
- Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com>
allOf:
- - $ref: "usb-hcd.yaml"
+ - $ref: "usb-xhci.yaml"
properties:
compatible:
@@ -68,7 +68,7 @@ required:
- power-domains
- resets
-additionalProperties: false
+unevaluatedProperties: false
examples:
- |
diff --git a/Documentation/devicetree/bindings/usb/rockchip,dwc3.txt b/Documentation/devicetree/bindings/usb/rockchip,dwc3.txt
deleted file mode 100644
index 94520493233b..000000000000
--- a/Documentation/devicetree/bindings/usb/rockchip,dwc3.txt
+++ /dev/null
@@ -1,56 +0,0 @@
-Rockchip SuperSpeed DWC3 USB SoC controller
-
-Required properties:
-- compatible: should contain "rockchip,rk3399-dwc3" for rk3399 SoC
-- clocks: A list of phandle + clock-specifier pairs for the
- clocks listed in clock-names
-- clock-names: Should contain the following:
- "ref_clk" Controller reference clk, have to be 24 MHz
- "suspend_clk" Controller suspend clk, have to be 24 MHz or 32 KHz
- "bus_clk" Master/Core clock, have to be >= 62.5 MHz for SS
- operation and >= 30MHz for HS operation
- "grf_clk" Controller grf clk
-
-Required child node:
-A child node must exist to represent the core DWC3 IP block. The name of
-the node is not important. The content of the node is defined in dwc3.txt.
-
-Phy documentation is provided in the following places:
-Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.yaml - USB2.0 PHY
-Documentation/devicetree/bindings/phy/phy-rockchip-typec.txt - Type-C PHY
-
-Example device nodes:
-
- usbdrd3_0: usb@fe800000 {
- compatible = "rockchip,rk3399-dwc3";
- clocks = <&cru SCLK_USB3OTG0_REF>, <&cru SCLK_USB3OTG0_SUSPEND>,
- <&cru ACLK_USB3OTG0>, <&cru ACLK_USB3_GRF>;
- clock-names = "ref_clk", "suspend_clk",
- "bus_clk", "grf_clk";
- #address-cells = <2>;
- #size-cells = <2>;
- ranges;
- usbdrd_dwc3_0: dwc3@fe800000 {
- compatible = "snps,dwc3";
- reg = <0x0 0xfe800000 0x0 0x100000>;
- interrupts = <GIC_SPI 105 IRQ_TYPE_LEVEL_HIGH>;
- dr_mode = "otg";
- };
- };
-
- usbdrd3_1: usb@fe900000 {
- compatible = "rockchip,rk3399-dwc3";
- clocks = <&cru SCLK_USB3OTG1_REF>, <&cru SCLK_USB3OTG1_SUSPEND>,
- <&cru ACLK_USB3OTG1>, <&cru ACLK_USB3_GRF>;
- clock-names = "ref_clk", "suspend_clk",
- "bus_clk", "grf_clk";
- #address-cells = <2>;
- #size-cells = <2>;
- ranges;
- usbdrd_dwc3_1: dwc3@fe900000 {
- compatible = "snps,dwc3";
- reg = <0x0 0xfe900000 0x0 0x100000>;
- interrupts = <GIC_SPI 110 IRQ_TYPE_LEVEL_HIGH>;
- dr_mode = "otg";
- };
- };
diff --git a/Documentation/devicetree/bindings/usb/rockchip,dwc3.yaml b/Documentation/devicetree/bindings/usb/rockchip,dwc3.yaml
new file mode 100644
index 000000000000..04077f2d7faf
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/rockchip,dwc3.yaml
@@ -0,0 +1,108 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/rockchip,dwc3.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Rockchip SuperSpeed DWC3 USB SoC controller
+
+maintainers:
+ - Heiko Stuebner <heiko@sntech.de>
+
+description:
+ The common content of the node is defined in snps,dwc3.yaml.
+
+ Phy documentation is provided in the following places.
+
+ USB2.0 PHY
+ Documentation/devicetree/bindings/phy/phy-rockchip-inno-usb2.yaml
+
+ Type-C PHY
+ Documentation/devicetree/bindings/phy/phy-rockchip-typec.txt
+
+allOf:
+ - $ref: snps,dwc3.yaml#
+
+select:
+ properties:
+ compatible:
+ contains:
+ enum:
+ - rockchip,rk3328-dwc3
+ - rockchip,rk3399-dwc3
+ required:
+ - compatible
+
+properties:
+ compatible:
+ items:
+ - enum:
+ - rockchip,rk3328-dwc3
+ - rockchip,rk3399-dwc3
+ - const: snps,dwc3
+
+ reg:
+ maxItems: 1
+
+ interrupts:
+ maxItems: 1
+
+ clocks:
+ minItems: 3
+ items:
+ - description:
+ Controller reference clock, must to be 24 MHz
+ - description:
+ Controller suspend clock, must to be 24 MHz or 32 KHz
+ - description:
+ Master/Core clock, must to be >= 62.5 MHz for SS
+ operation and >= 30MHz for HS operation
+ - description:
+ Controller grf clock
+
+ clock-names:
+ minItems: 3
+ items:
+ - const: ref_clk
+ - const: suspend_clk
+ - const: bus_clk
+ - const: grf_clk
+
+ power-domains:
+ maxItems: 1
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ const: usb3-otg
+
+unevaluatedProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+ - clocks
+ - clock-names
+
+examples:
+ - |
+ #include <dt-bindings/clock/rk3399-cru.h>
+ #include <dt-bindings/interrupt-controller/arm-gic.h>
+
+ bus {
+ #address-cells = <2>;
+ #size-cells = <2>;
+
+ usbdrd3_0: usb@fe800000 {
+ compatible = "rockchip,rk3399-dwc3", "snps,dwc3";
+ reg = <0x0 0xfe800000 0x0 0x100000>;
+ interrupts = <GIC_SPI 105 IRQ_TYPE_LEVEL_HIGH>;
+ clocks = <&cru SCLK_USB3OTG0_REF>, <&cru SCLK_USB3OTG0_SUSPEND>,
+ <&cru ACLK_USB3OTG0>, <&cru ACLK_USB3_GRF>;
+ clock-names = "ref_clk", "suspend_clk",
+ "bus_clk", "grf_clk";
+ dr_mode = "otg";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/usb/snps,dwc3.yaml b/Documentation/devicetree/bindings/usb/snps,dwc3.yaml
new file mode 100644
index 000000000000..2247da77eac1
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/snps,dwc3.yaml
@@ -0,0 +1,332 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/snps,dwc3.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Synopsys DesignWare USB3 Controller
+
+maintainers:
+ - Felipe Balbi <balbi@kernel.org>
+
+description:
+ This is usually a subnode to DWC3 glue to which it is connected, but can also
+ be presented as a standalone DT node with an optional vendor-specific
+ compatible string.
+
+allOf:
+ - $ref: usb-drd.yaml#
+ - if:
+ properties:
+ dr_mode:
+ const: peripheral
+
+ required:
+ - dr_mode
+ then:
+ $ref: usb.yaml#
+ else:
+ $ref: usb-xhci.yaml#
+
+properties:
+ compatible:
+ contains:
+ oneOf:
+ - const: snps,dwc3
+ - const: synopsys,dwc3
+ deprecated: true
+
+ interrupts:
+ description:
+ It's either a single common DWC3 interrupt (dwc_usb3) or individual
+ interrupts for the host, gadget and DRD modes.
+ minItems: 1
+ maxItems: 3
+
+ interrupt-names:
+ minItems: 1
+ maxItems: 3
+ oneOf:
+ - const: dwc_usb3
+ - items:
+ enum: [host, peripheral, otg]
+
+ clocks:
+ description:
+ In general the core supports three types of clocks. bus_early is a
+ SoC Bus Clock (AHB/AXI/Native). ref generates ITP when the UTMI/ULPI
+ PHY is suspended. suspend clocks a small part of the USB3 core when
+ SS PHY in P3. But particular cases may differ from that having less
+ or more clock sources with another names.
+
+ clock-names:
+ contains:
+ anyOf:
+ - enum: [bus_early, ref, suspend]
+ - true
+
+ usb-phy:
+ minItems: 1
+ items:
+ - description: USB2/HS PHY
+ - description: USB3/SS PHY
+
+ phys:
+ minItems: 1
+ items:
+ - description: USB2/HS PHY
+ - description: USB3/SS PHY
+
+ phy-names:
+ minItems: 1
+ items:
+ - const: usb2-phy
+ - const: usb3-phy
+
+ resets:
+ minItems: 1
+
+ snps,usb2-lpm-disable:
+ description: Indicate if we don't want to enable USB2 HW LPM
+ type: boolean
+
+ snps,usb3_lpm_capable:
+ description: Determines if platform is USB3 LPM capable
+ type: boolean
+
+ snps,dis-start-transfer-quirk:
+ description:
+ When set, disable isoc START TRANSFER command failure SW work-around
+ for DWC_usb31 version 1.70a-ea06 and prior.
+ type: boolean
+
+ snps,disable_scramble_quirk:
+ description:
+ True when SW should disable data scrambling. Only really useful for FPGA
+ builds.
+ type: boolean
+
+ snps,has-lpm-erratum:
+ description: True when DWC3 was configured with LPM Erratum enabled
+ type: boolean
+
+ snps,lpm-nyet-threshold:
+ description: LPM NYET threshold
+ $ref: /schemas/types.yaml#/definitions/uint8
+
+ snps,u2exit_lfps_quirk:
+ description: Set if we want to enable u2exit lfps quirk
+ type: boolean
+
+ snps,u2ss_inp3_quirk:
+ description: Set if we enable P3 OK for U2/SS Inactive quirk
+ type: boolean
+
+ snps,req_p1p2p3_quirk:
+ description:
+ When set, the core will always request for P1/P2/P3 transition sequence.
+ type: boolean
+
+ snps,del_p1p2p3_quirk:
+ description:
+ When set core will delay P1/P2/P3 until a certain amount of 8B10B errors
+ occur.
+ type: boolean
+
+ snps,del_phy_power_chg_quirk:
+ description: When set core will delay PHY power change from P0 to P1/P2/P3.
+ type: boolean
+
+ snps,lfps_filter_quirk:
+ description: When set core will filter LFPS reception.
+ type: boolean
+
+ snps,rx_detect_poll_quirk:
+ description:
+ when set core will disable a 400us delay to start Polling LFPS after
+ RX.Detect.
+ type: boolean
+
+ snps,tx_de_emphasis_quirk:
+ description: When set core will set Tx de-emphasis value
+ type: boolean
+
+ snps,tx_de_emphasis:
+ description:
+ The value driven to the PHY is controlled by the LTSSM during USB3
+ Compliance mode.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ enum:
+ - 0 # -6dB de-emphasis
+ - 1 # -3.5dB de-emphasis
+ - 2 # No de-emphasis
+
+ snps,dis_u3_susphy_quirk:
+ description: When set core will disable USB3 suspend phy
+ type: boolean
+
+ snps,dis_u2_susphy_quirk:
+ description: When set core will disable USB2 suspend phy
+ type: boolean
+
+ snps,dis_enblslpm_quirk:
+ description:
+ When set clears the enblslpm in GUSB2PHYCFG, disabling the suspend signal
+ to the PHY.
+ type: boolean
+
+ snps,dis-u1-entry-quirk:
+ description: Set if link entering into U1 needs to be disabled
+ type: boolean
+
+ snps,dis-u2-entry-quirk:
+ description: Set if link entering into U2 needs to be disabled
+ type: boolean
+
+ snps,dis_rxdet_inp3_quirk:
+ description:
+ When set core will disable receiver detection in PHY P3 power state.
+ type: boolean
+
+ snps,dis-u2-freeclk-exists-quirk:
+ description:
+ When set, clear the u2_freeclk_exists in GUSB2PHYCFG, specify that USB2
+ PHY doesn't provide a free-running PHY clock.
+ type: boolean
+
+ snps,dis-del-phy-power-chg-quirk:
+ description:
+ When set core will change PHY power from P0 to P1/P2/P3 without delay.
+ type: boolean
+
+ snps,dis-tx-ipgap-linecheck-quirk:
+ description: When set, disable u2mac linestate check during HS transmit
+ type: boolean
+
+ snps,parkmode-disable-ss-quirk:
+ description:
+ When set, all SuperSpeed bus instances in park mode are disabled.
+ type: boolean
+
+ snps,dis_metastability_quirk:
+ description:
+ When set, disable metastability workaround. CAUTION! Use only if you are
+ absolutely sure of it.
+ type: boolean
+
+ snps,dis-split-quirk:
+ description:
+ When set, change the way URBs are handled by the driver. Needed to
+ avoid -EPROTO errors with usbhid on some devices (Hikey 970).
+ type: boolean
+
+ snps,is-utmi-l1-suspend:
+ description:
+ True when DWC3 asserts output signal utmi_l1_suspend_n, false when
+ asserts utmi_sleep_n.
+ type: boolean
+
+ snps,hird-threshold:
+ description: HIRD threshold
+ $ref: /schemas/types.yaml#/definitions/uint8
+
+ snps,hsphy_interface:
+ description:
+ High-Speed PHY interface selection between UTMI+ and ULPI when the
+ DWC_USB3_HSPHY_INTERFACE has value 3.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ enum: [utmi, ulpi]
+
+ snps,quirk-frame-length-adjustment:
+ description:
+ Value for GFLADJ_30MHZ field of GFLADJ register for post-silicon frame
+ length adjustment when the fladj_30mhz_sdbnd signal is invalid or
+ incorrect.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ minimum: 0
+ maximum: 0x3f
+
+ snps,rx-thr-num-pkt-prd:
+ description:
+ Periodic ESS RX packet threshold count (host mode only). Set this and
+ snps,rx-max-burst-prd to a valid, non-zero value 1-16 (DWC_usb31
+ programming guide section 1.2.4) to enable periodic ESS RX threshold.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ minimum: 1
+ maximum: 16
+
+ snps,rx-max-burst-prd:
+ description:
+ Max periodic ESS RX burst size (host mode only). Set this and
+ snps,rx-thr-num-pkt-prd to a valid, non-zero value 1-16 (DWC_usb31
+ programming guide section 1.2.4) to enable periodic ESS RX threshold.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ minimum: 1
+ maximum: 16
+
+ snps,tx-thr-num-pkt-prd:
+ description:
+ Periodic ESS TX packet threshold count (host mode only). Set this and
+ snps,tx-max-burst-prd to a valid, non-zero value 1-16 (DWC_usb31
+ programming guide section 1.2.3) to enable periodic ESS TX threshold.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ minimum: 1
+ maximum: 16
+
+ snps,tx-max-burst-prd:
+ description:
+ Max periodic ESS TX burst size (host mode only). Set this and
+ snps,tx-thr-num-pkt-prd to a valid, non-zero value 1-16 (DWC_usb31
+ programming guide section 1.2.3) to enable periodic ESS TX threshold.
+ $ref: /schemas/types.yaml#/definitions/uint8
+ minimum: 1
+ maximum: 16
+
+ tx-fifo-resize:
+ description: Determines if the FIFO *has* to be reallocated
+ deprecated: true
+ type: boolean
+
+ snps,incr-burst-type-adjustment:
+ description:
+ Value for INCR burst type of GSBUSCFG0 register, undefined length INCR
+ burst type enable and INCRx type. A single value means INCRX burst mode
+ enabled. If more than one value specified, undefined length INCR burst
+ type will be enabled with burst lengths utilized up to the maximum
+ of the values passed in this property.
+ $ref: /schemas/types.yaml#/definitions/uint32-array
+ minItems: 1
+ maxItems: 8
+ uniqueItems: true
+ items:
+ enum: [1, 4, 8, 16, 32, 64, 128, 256]
+
+unevaluatedProperties: false
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+examples:
+ - |
+ usb@4a030000 {
+ compatible = "snps,dwc3";
+ reg = <0x4a030000 0xcfff>;
+ interrupts = <0 92 4>;
+ usb-phy = <&usb2_phy>, <&usb3_phy>;
+ snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
+ };
+ - |
+ usb@4a000000 {
+ compatible = "snps,dwc3";
+ reg = <0x4a000000 0xcfff>;
+ interrupts = <0 92 4>;
+ clocks = <&clk 1>, <&clk 2>, <&clk 3>;
+ clock-names = "bus_early", "ref", "suspend";
+ phys = <&usb2_phy>, <&usb3_phy>;
+ phy-names = "usb2-phy", "usb3-phy";
+ snps,dis_u2_susphy_quirk;
+ snps,dis_enblslpm_quirk;
+ };
+...
diff --git a/Documentation/devicetree/bindings/usb/ti,j721e-usb.yaml b/Documentation/devicetree/bindings/usb/ti,j721e-usb.yaml
index 148b3fb4ceaf..c80a83571919 100644
--- a/Documentation/devicetree/bindings/usb/ti,j721e-usb.yaml
+++ b/Documentation/devicetree/bindings/usb/ti,j721e-usb.yaml
@@ -21,6 +21,8 @@ properties:
reg:
description: module registers
+ ranges: true
+
power-domains:
description:
PM domain provider node and an args specifier containing
@@ -62,6 +64,8 @@ properties:
'#size-cells':
const: 2
+ dma-coherent: true
+
patternProperties:
"^usb@":
type: object
diff --git a/Documentation/devicetree/bindings/usb/ti,keystone-dwc3.yaml b/Documentation/devicetree/bindings/usb/ti,keystone-dwc3.yaml
index c1b19fc5d0a2..ca7fbe3ed22e 100644
--- a/Documentation/devicetree/bindings/usb/ti,keystone-dwc3.yaml
+++ b/Documentation/devicetree/bindings/usb/ti,keystone-dwc3.yaml
@@ -64,9 +64,7 @@ properties:
patternProperties:
"usb@[a-f0-9]+$":
- type: object
- description: This is the node representing the DWC3 controller instance
- Documentation/devicetree/bindings/usb/dwc3.txt
+ $ref: snps,dwc3.yaml#
required:
- compatible
diff --git a/Documentation/devicetree/bindings/usb/usb-device.txt b/Documentation/devicetree/bindings/usb/usb-device.txt
deleted file mode 100644
index 036be172b1ae..000000000000
--- a/Documentation/devicetree/bindings/usb/usb-device.txt
+++ /dev/null
@@ -1,102 +0,0 @@
-Generic USB Device Properties
-
-Usually, we only use device tree for hard wired USB device.
-The reference binding doc is from:
-http://www.devicetree.org/open-firmware/bindings/usb/usb-1_0.ps
-
-Four types of device-tree nodes are defined: "host-controller nodes"
-representing USB host controllers, "device nodes" representing USB devices,
-"interface nodes" representing USB interfaces and "combined nodes"
-representing simple USB devices.
-
-A combined node shall be used instead of a device node and an interface node
-for devices of class 0 or 9 (hub) with a single configuration and a single
-interface.
-
-A "hub node" is a combined node or an interface node that represents a USB
-hub.
-
-
-Required properties for device nodes:
-- compatible: "usbVID,PID", where VID is the vendor id and PID the product id.
- The textual representation of VID and PID shall be in lower case hexadecimal
- with leading zeroes suppressed. The other compatible strings from the above
- standard binding could also be used, but a device adhering to this binding
- may leave out all except for "usbVID,PID".
-- reg: the number of the USB hub port or the USB host-controller port to which
- this device is attached. The range is 1-255.
-
-
-Required properties for device nodes with interface nodes:
-- #address-cells: shall be 2
-- #size-cells: shall be 0
-
-
-Required properties for interface nodes:
-- compatible: "usbifVID,PID.configCN.IN", where VID is the vendor id, PID is
- the product id, CN is the configuration value and IN is the interface
- number. The textual representation of VID, PID, CN and IN shall be in lower
- case hexadecimal with leading zeroes suppressed. The other compatible
- strings from the above standard binding could also be used, but a device
- adhering to this binding may leave out all except for
- "usbifVID,PID.configCN.IN".
-- reg: the interface number and configuration value
-
-The configuration component is not included in the textual representation of
-an interface-node unit address for configuration 1.
-
-
-Required properties for combined nodes:
-- compatible: "usbVID,PID", where VID is the vendor id and PID the product id.
- The textual representation of VID and PID shall be in lower case hexadecimal
- with leading zeroes suppressed. The other compatible strings from the above
- standard binding could also be used, but a device adhering to this binding
- may leave out all except for "usbVID,PID".
-- reg: the number of the USB hub port or the USB host-controller port to which
- this device is attached. The range is 1-255.
-
-
-Required properties for hub nodes with device nodes:
-- #address-cells: shall be 1
-- #size-cells: shall be 0
-
-
-Required properties for host-controller nodes with device nodes:
-- #address-cells: shall be 1
-- #size-cells: shall be 0
-
-
-Example:
-
-&usb1 { /* host controller */
- #address-cells = <1>;
- #size-cells = <0>;
-
- hub@1 { /* hub connected to port 1 */
- compatible = "usb5e3,608";
- reg = <1>;
- };
-
- device@2 { /* device connected to port 2 */
- compatible = "usb123,4567";
- reg = <2>;
- };
-
- device@3 { /* device connected to port 3 */
- compatible = "usb123,abcd";
- reg = <3>;
-
- #address-cells = <2>;
- #size-cells = <0>;
-
- interface@0 { /* interface 0 of configuration 1 */
- compatible = "usbif123,abcd.config1.0";
- reg = <0 1>;
- };
-
- interface@0,2 { /* interface 0 of configuration 2 */
- compatible = "usbif123,abcd.config2.0";
- reg = <0 2>;
- };
- };
-};
diff --git a/Documentation/devicetree/bindings/usb/usb-device.yaml b/Documentation/devicetree/bindings/usb/usb-device.yaml
new file mode 100644
index 000000000000..d4c99809ee9a
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-device.yaml
@@ -0,0 +1,124 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/usb-device.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: The device tree bindings for the Generic USB Device
+
+maintainers:
+ - Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+
+description: |
+ Usually, we only use device tree for hard wired USB device.
+ The reference binding doc is from:
+ http://www.devicetree.org/open-firmware/bindings/usb/usb-1_0.ps
+
+ Four types of device-tree nodes are defined: "host-controller nodes"
+ representing USB host controllers, "device nodes" representing USB devices,
+ "interface nodes" representing USB interfaces and "combined nodes"
+ representing simple USB devices.
+
+ A combined node shall be used instead of a device node and an interface node
+ for devices of class 0 or 9 (hub) with a single configuration and a single
+ interface.
+
+ A "hub node" is a combined node or an interface node that represents a USB
+ hub.
+
+properties:
+ compatible:
+ pattern: "^usb[0-9a-f]{1,4},[0-9a-f]{1,4}$"
+ description: Device nodes or combined nodes.
+ "usbVID,PID", where VID is the vendor id and PID the product id.
+ The textual representation of VID and PID shall be in lower case
+ hexadecimal with leading zeroes suppressed. The other compatible
+ strings from the above standard binding could also be used,
+ but a device adhering to this binding may leave out all except
+ for "usbVID,PID".
+
+ reg:
+ description: the number of the USB hub port or the USB host-controller
+ port to which this device is attached. The range is 1-255.
+ maxItems: 1
+
+ "#address-cells":
+ description: should be 1 for hub nodes with device nodes,
+ should be 2 for device nodes with interface nodes.
+ enum: [1, 2]
+
+ "#size-cells":
+ const: 0
+
+patternProperties:
+ "^interface@[0-9a-f]{1,2}(,[0-9a-f]{1,2})$":
+ type: object
+ description: USB interface nodes.
+ The configuration component is not included in the textual
+ representation of an interface-node unit address for configuration 1.
+
+ properties:
+ compatible:
+ pattern: "^usbif[0-9a-f]{1,4},[0-9a-f]{1,4}.config[0-9a-f]{1,2}.[0-9a-f]{1,2}$"
+ description: Interface nodes.
+ "usbifVID,PID.configCN.IN", where VID is the vendor id, PID is
+ the product id, CN is the configuration value and IN is the interface
+ number. The textual representation of VID, PID, CN and IN shall be
+ in lower case hexadecimal with leading zeroes suppressed.
+ The other compatible strings from the above standard binding could
+ also be used, but a device adhering to this binding may leave out
+ all except for "usbifVID,PID.configCN.IN".
+
+ reg:
+ description: should be 2 cells long, the first cell represents
+ the interface number and the second cell represents the
+ configuration value.
+ maxItems: 1
+
+required:
+ - compatible
+ - reg
+
+additionalProperties: true
+
+examples:
+ #hub connected to port 1
+ #device connected to port 2
+ #device connected to port 3
+ # interface 0 of configuration 1
+ # interface 0 of configuration 2
+ - |
+ usb@11270000 {
+ reg = <0x11270000 0x1000>;
+ interrupts = <0x0 0x4e 0x0>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ hub@1 {
+ compatible = "usb5e3,608";
+ reg = <1>;
+ };
+
+ device@2 {
+ compatible = "usb123,4567";
+ reg = <2>;
+ };
+
+ device@3 {
+ compatible = "usb123,abcd";
+ reg = <3>;
+
+ #address-cells = <2>;
+ #size-cells = <0>;
+
+ interface@0 {
+ compatible = "usbif123,abcd.config1.0";
+ reg = <0 1>;
+ };
+
+ interface@0,2 {
+ compatible = "usbif123,abcd.config2.0";
+ reg = <0 2>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/usb/usb-drd.yaml b/Documentation/devicetree/bindings/usb/usb-drd.yaml
new file mode 100644
index 000000000000..f229fc8068d9
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-drd.yaml
@@ -0,0 +1,78 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/usb-drd.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic USB OTG Controller Device Tree Bindings
+
+maintainers:
+ - Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+
+properties:
+ otg-rev:
+ description:
+ Tells usb driver the release number of the OTG and EH supplement with
+ which the device and its descriptors are compliant, in binary-coded
+ decimal (i.e. 2.0 is 0200H). This property is used if any real OTG
+ features (HNP/SRP/ADP) is enabled. If ADP is required, otg-rev should be
+ 0x0200 or above.
+ $ref: /schemas/types.yaml#/definitions/uint32
+ enum: [0x0100, 0x0120, 0x0130, 0x0200]
+
+ dr_mode:
+ description:
+ Tells Dual-Role USB controllers that we want to work on a particular
+ mode. In case this attribute isn't passed via DT, USB DRD controllers
+ should default to OTG.
+ $ref: /schemas/types.yaml#/definitions/string
+ enum: [host, peripheral, otg]
+
+ hnp-disable:
+ description:
+ Tells OTG controllers we want to disable OTG HNP. Normally HNP is the
+ basic function of real OTG except you want it to be a srp-capable only B
+ device.
+ type: boolean
+
+ srp-disable:
+ description:
+ Tells OTG controllers we want to disable OTG SRP. SRP is optional for OTG
+ device.
+ type: boolean
+
+ adp-disable:
+ description:
+ Tells OTG controllers we want to disable OTG ADP. ADP is optional for OTG
+ device.
+ type: boolean
+
+ usb-role-switch:
+ description:
+ Indicates that the device is capable of assigning the USB data role
+ (USB host or USB device) for a given USB connector, such as Type-C,
+ Type-B(micro). See connector/usb-connector.yaml.
+
+ role-switch-default-mode:
+ description:
+ Indicates if usb-role-switch is enabled, the device default operation
+ mode of controller while usb role is USB_ROLE_NONE.
+ $ref: /schemas/types.yaml#/definitions/string
+ enum: [host, peripheral]
+ default: peripheral
+
+additionalProperties: true
+
+examples:
+ - |
+ usb@4a030000 {
+ compatible = "snps,dwc3";
+ reg = <0x4a030000 0xcfff>;
+ interrupts = <0 92 4>;
+ usb-phy = <&usb2_phy>, <&usb3_phy>;
+ maximum-speed = "super-speed";
+ dr_mode = "otg";
+ phy_type = "utmi_wide";
+ otg-rev = <0x0200>;
+ adp-disable;
+ };
diff --git a/Documentation/devicetree/bindings/usb/usb-hcd.yaml b/Documentation/devicetree/bindings/usb/usb-hcd.yaml
index b545b087b342..56853c17af66 100644
--- a/Documentation/devicetree/bindings/usb/usb-hcd.yaml
+++ b/Documentation/devicetree/bindings/usb/usb-hcd.yaml
@@ -9,18 +9,31 @@ title: Generic USB Host Controller Device Tree Bindings
maintainers:
- Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+allOf:
+ - $ref: usb.yaml#
+
properties:
- $nodename:
- pattern: "^usb(@.*)?"
+ companion:
+ description: Phandle of a companion device
+ $ref: /schemas/types.yaml#/definitions/phandle
- phys:
- $ref: /schemas/types.yaml#/definitions/phandle-array
+ tpl-support:
description:
- List of all the USB PHYs on this HCD
+ Indicates if the Targeted Peripheral List is supported for given
+ targeted hosts (non-PC hosts).
+ type: boolean
- phy-names:
- description:
- Name specifier for the USB PHY
+ "#address-cells":
+ const: 1
+
+ "#size-cells":
+ const: 0
+
+patternProperties:
+ "^.*@[0-9a-f]{1,2}$":
+ description: The hard wired USB devices
+ type: object
+ $ref: /usb/usb-device.yaml
additionalProperties: true
@@ -29,4 +42,11 @@ examples:
usb {
phys = <&usb2_phy1>, <&usb3_phy1>;
phy-names = "usb";
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ hub@1 {
+ compatible = "usb5e3,610";
+ reg = <1>;
+ };
};
diff --git a/Documentation/devicetree/bindings/usb/usb-xhci.txt b/Documentation/devicetree/bindings/usb/usb-xhci.txt
deleted file mode 100644
index 0c5cff84a969..000000000000
--- a/Documentation/devicetree/bindings/usb/usb-xhci.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-USB xHCI controllers
-
-Required properties:
- - compatible: should be one or more of
-
- - "generic-xhci" for generic XHCI device
- - "marvell,armada3700-xhci" for Armada 37xx SoCs
- - "marvell,armada-375-xhci" for Armada 375 SoCs
- - "marvell,armada-380-xhci" for Armada 38x SoCs
- - "brcm,bcm7445-xhci" for Broadcom STB SoCs with XHCI
- - "xhci-platform" (deprecated)
-
- When compatible with the generic version, nodes must list the
- SoC-specific version corresponding to the platform first
- followed by the generic version.
-
- - reg: should contain address and length of the standard XHCI
- register set for the device.
- - interrupts: one XHCI interrupt should be described here.
-
-Optional properties:
- - clocks: reference to the clocks
- - clock-names: mandatory if there is a second clock, in this case
- the name must be "core" for the first clock and "reg" for the
- second one
- - usb2-lpm-disable: indicate if we don't want to enable USB2 HW LPM
- - usb3-lpm-capable: determines if platform is USB3 LPM capable
- - quirk-broken-port-ped: set if the controller has broken port disable mechanism
- - imod-interval-ns: default interrupt moderation interval is 5000ns
- - phys : see usb-hcd.yaml in the current directory
-
-additionally the properties from usb-hcd.yaml (in the current directory) are
-supported.
-
-
-Example:
- usb@f0931000 {
- compatible = "generic-xhci";
- reg = <0xf0931000 0x8c8>;
- interrupts = <0x0 0x4e 0x0>;
- };
diff --git a/Documentation/devicetree/bindings/usb/usb-xhci.yaml b/Documentation/devicetree/bindings/usb/usb-xhci.yaml
new file mode 100644
index 000000000000..965f87fef702
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb-xhci.yaml
@@ -0,0 +1,42 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/usb-xhci.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic USB xHCI Controller Device Tree Bindings
+
+maintainers:
+ - Mathias Nyman <mathias.nyman@intel.com>
+
+allOf:
+ - $ref: "usb-hcd.yaml#"
+
+properties:
+ usb2-lpm-disable:
+ description: Indicates if we don't want to enable USB2 HW LPM
+ type: boolean
+
+ usb3-lpm-capable:
+ description: Determines if platform is USB3 LPM capable
+ type: boolean
+
+ quirk-broken-port-ped:
+ description: Set if the controller has broken port disable mechanism
+ type: boolean
+
+ imod-interval-ns:
+ description: Interrupt moderation interval
+ default: 5000
+
+additionalProperties: true
+
+examples:
+ - |
+ usb@f0930000 {
+ compatible = "generic-xhci";
+ reg = <0xf0930000 0x8c8>;
+ interrupts = <0x0 0x4e 0x0>;
+ usb2-lpm-disable;
+ usb3-lpm-capable;
+ };
diff --git a/Documentation/devicetree/bindings/usb/usb.yaml b/Documentation/devicetree/bindings/usb/usb.yaml
new file mode 100644
index 000000000000..78491e66ed24
--- /dev/null
+++ b/Documentation/devicetree/bindings/usb/usb.yaml
@@ -0,0 +1,63 @@
+# SPDX-License-Identifier: GPL-2.0
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/usb/usb.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Generic USB Controller Device Tree Bindings
+
+maintainers:
+ - Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+
+select: false
+
+properties:
+ $nodename:
+ pattern: "^usb(@.*)?"
+
+ phys:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ description:
+ List of all the USB PHYs on this HCD
+
+ phy-names:
+ description:
+ Name specifier for the USB PHY
+
+ usb-phy:
+ $ref: /schemas/types.yaml#/definitions/phandle-array
+ description:
+ List of all the USB PHYs on this HCD to be accepted by the legacy USB
+ Physical Layer subsystem.
+ deprecated: true
+
+ phy_type:
+ description:
+ Tells USB controllers that we want to configure the core to support a
+ UTMI+ PHY with an 8- or 16-bit interface if UTMI+ is selected, UTMI+ low
+ pin interface if ULPI is specified, Serial core/PHY interconnect if
+ serial is specified and High-Speed Inter-Chip feature if HSIC is
+ selected. In case this isn't passed via DT, USB controllers should
+ default to HW capability.
+ $ref: /schemas/types.yaml#/definitions/string
+ enum: [utmi, utmi_wide, ulpi, serial, hsic]
+
+ maximum-speed:
+ description:
+ Tells USB controllers we want to work up to a certain speed. In case this
+ isn't passed via DT, USB controllers should default to their maximum HW
+ capability.
+ $ref: /schemas/types.yaml#/definitions/string
+ enum:
+ - low-speed
+ - full-speed
+ - high-speed
+ - super-speed
+ - super-speed-plus
+ - super-speed-plus-gen2x1
+ - super-speed-plus-gen1x2
+ - super-speed-plus-gen2x2
+
+additionalProperties: true
+
+...
diff --git a/Documentation/devicetree/bindings/usb/usbmisc-imx.txt b/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
index b353b9816487..b796836d2ce7 100644
--- a/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
+++ b/Documentation/devicetree/bindings/usb/usbmisc-imx.txt
@@ -1,7 +1,7 @@
* Freescale i.MX non-core registers
Required properties:
-- #index-cells: Cells used to descibe usb controller index. Should be <1>
+- #index-cells: Cells used to describe usb controller index. Should be <1>
- compatible: Should be one of below:
"fsl,imx6q-usbmisc" for imx6q
"fsl,vf610-usbmisc" for Vybrid vf610
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.yaml b/Documentation/devicetree/bindings/vendor-prefixes.yaml
index 041ae90b0d8f..f3134f44c80c 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.yaml
+++ b/Documentation/devicetree/bindings/vendor-prefixes.yaml
@@ -59,6 +59,8 @@ patternProperties:
description: Aeroflex Gaisler AB
"^al,.*":
description: Annapurna Labs
+ "^alcatel,.*":
+ description: Alcatel
"^allegro,.*":
description: Allegro DVT
"^allo,.*":
@@ -311,6 +313,8 @@ patternProperties:
description: Dyna-Image
"^ea,.*":
description: Embedded Artists AB
+ "^ebang,.*":
+ description: Zhejiang Ebang Communication Co., Ltd
"^ebs-systart,.*":
description: EBS-SYSTART GmbH
"^ebv,.*":
@@ -467,10 +471,10 @@ patternProperties:
description: Hitex Development Tools
"^holt,.*":
description: Holt Integrated Circuits, Inc.
- "^honeywell,.*":
- description: Honeywell
"^honestar,.*":
description: Honestar Technologies Co., Ltd.
+ "^honeywell,.*":
+ description: Honeywell
"^hoperun,.*":
description: Jiangsu HopeRun Software Co., Ltd.
"^hp,.*":
@@ -581,6 +585,8 @@ patternProperties:
description: Kontron S&T AG
"^kosagi,.*":
description: Sutajio Ko-Usagi PTE Ltd.
+ "^kvg,.*":
+ description: Kverneland Group
"^kyo,.*":
description: Kyocera Corporation
"^lacie,.*":
@@ -866,6 +872,8 @@ patternProperties:
description: PLDA
"^plx,.*":
description: Broadcom Corporation (formerly PLX Technology)
+ "^ply,.*":
+ description: Plymovent Group BV
"^pni,.*":
description: PNI Sensor Corporation
"^pocketbook,.*":
@@ -1252,6 +1260,8 @@ patternProperties:
description: Shenzhen Xunlong Software CO.,Limited
"^xylon,.*":
description: Xylon
+ "^yamaha,.*":
+ description: Yamaha Corporation
"^yes-optoelectronics,.*":
description: Yes Optoelectronics Co.,Ltd.
"^ylm,.*":
diff --git a/Documentation/devicetree/bindings/watchdog/qcom-wdt.yaml b/Documentation/devicetree/bindings/watchdog/qcom-wdt.yaml
index 8e3760a3822b..b8e4118945a0 100644
--- a/Documentation/devicetree/bindings/watchdog/qcom-wdt.yaml
+++ b/Documentation/devicetree/bindings/watchdog/qcom-wdt.yaml
@@ -18,6 +18,7 @@ properties:
- qcom,apss-wdt-qcs404
- qcom,apss-wdt-sc7180
- qcom,apss-wdt-sdm845
+ - qcom,apss-wdt-sdx55
- qcom,apss-wdt-sm8150
- qcom,kpss-timer
- qcom,kpss-wdt
diff --git a/Documentation/devicetree/bindings/watchdog/watchdog.yaml b/Documentation/devicetree/bindings/watchdog/watchdog.yaml
index 4e2c26cd981d..e3dfb02f0ca5 100644
--- a/Documentation/devicetree/bindings/watchdog/watchdog.yaml
+++ b/Documentation/devicetree/bindings/watchdog/watchdog.yaml
@@ -19,7 +19,6 @@ properties:
pattern: "^watchdog(@.*|-[0-9a-f])?$"
timeout-sec:
- $ref: /schemas/types.yaml#/definitions/uint32
description:
Contains the watchdog timeout in seconds.
diff --git a/Documentation/driver-api/auxiliary_bus.rst b/Documentation/driver-api/auxiliary_bus.rst
index 2312506b0674..fff96c7ba7a8 100644
--- a/Documentation/driver-api/auxiliary_bus.rst
+++ b/Documentation/driver-api/auxiliary_bus.rst
@@ -1,5 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0-only
+.. _auxiliary_bus:
+
=============
Auxiliary Bus
=============
diff --git a/Documentation/filesystems/f2fs.rst b/Documentation/filesystems/f2fs.rst
index dae15c96e659..35ed01a5fbc9 100644
--- a/Documentation/filesystems/f2fs.rst
+++ b/Documentation/filesystems/f2fs.rst
@@ -179,7 +179,6 @@ fault_type=%d Support configuring fault injection type, should be
FAULT_KVMALLOC 0x000000002
FAULT_PAGE_ALLOC 0x000000004
FAULT_PAGE_GET 0x000000008
- FAULT_ALLOC_BIO 0x000000010
FAULT_ALLOC_NID 0x000000020
FAULT_ORPHAN 0x000000040
FAULT_BLOCK 0x000000080
@@ -247,8 +246,24 @@ checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "enabl
hide up to all remaining free space. The actual space that
would be unusable can be viewed at /sys/fs/f2fs/<disk>/unusable
This space is reclaimed once checkpoint=enable.
+checkpoint_merge When checkpoint is enabled, this can be used to create a kernel
+ daemon and make it to merge concurrent checkpoint requests as
+ much as possible to eliminate redundant checkpoint issues. Plus,
+ we can eliminate the sluggish issue caused by slow checkpoint
+ operation when the checkpoint is done in a process context in
+ a cgroup having low i/o budget and cpu shares. To make this
+ do better, we set the default i/o priority of the kernel daemon
+ to "3", to give one higher priority than other kernel threads.
+ This is the same way to give a I/O priority to the jbd2
+ journaling thread of ext4 filesystem.
+nocheckpoint_merge Disable checkpoint merge feature.
compress_algorithm=%s Control compress algorithm, currently f2fs supports "lzo",
"lz4", "zstd" and "lzo-rle" algorithm.
+compress_algorithm=%s:%d Control compress algorithm and its compress level, now, only
+ "lz4" and "zstd" support compress level config.
+ algorithm level range
+ lz4 3 - 16
+ zstd 1 - 22
compress_log_size=%u Support configuring compress cluster size, the size will
be 4KB * (1 << %u), 16KB is minimum size, also it's
default size.
@@ -831,7 +846,7 @@ This is the default option. f2fs does automatic compression in the writeback of
compression enabled files.
2) compress_mode=user
-This disables the automaic compression and gives the user discretion of choosing the
+This disables the automatic compression and gives the user discretion of choosing the
target file and the timing. The user can do manual compression/decompression on the
compression enabled files using F2FS_IOC_DECOMPRESS_FILE and F2FS_IOC_COMPRESS_FILE
ioctls like the below.
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
index e0204a23e997..1d831e3cbcb3 100644
--- a/Documentation/filesystems/fsverity.rst
+++ b/Documentation/filesystems/fsverity.rst
@@ -217,6 +217,82 @@ FS_IOC_MEASURE_VERITY can fail with the following errors:
- ``EOVERFLOW``: the digest is longer than the specified
``digest_size`` bytes. Try providing a larger buffer.
+FS_IOC_READ_VERITY_METADATA
+---------------------------
+
+The FS_IOC_READ_VERITY_METADATA ioctl reads verity metadata from a
+verity file. This ioctl is available since Linux v5.12.
+
+This ioctl allows writing a server program that takes a verity file
+and serves it to a client program, such that the client can do its own
+fs-verity compatible verification of the file. This only makes sense
+if the client doesn't trust the server and if the server needs to
+provide the storage for the client.
+
+This is a fairly specialized use case, and most fs-verity users won't
+need this ioctl.
+
+This ioctl takes in a pointer to the following structure::
+
+ #define FS_VERITY_METADATA_TYPE_MERKLE_TREE 1
+ #define FS_VERITY_METADATA_TYPE_DESCRIPTOR 2
+ #define FS_VERITY_METADATA_TYPE_SIGNATURE 3
+
+ struct fsverity_read_metadata_arg {
+ __u64 metadata_type;
+ __u64 offset;
+ __u64 length;
+ __u64 buf_ptr;
+ __u64 __reserved;
+ };
+
+``metadata_type`` specifies the type of metadata to read:
+
+- ``FS_VERITY_METADATA_TYPE_MERKLE_TREE`` reads the blocks of the
+ Merkle tree. The blocks are returned in order from the root level
+ to the leaf level. Within each level, the blocks are returned in
+ the same order that their hashes are themselves hashed.
+ See `Merkle tree`_ for more information.
+
+- ``FS_VERITY_METADATA_TYPE_DESCRIPTOR`` reads the fs-verity
+ descriptor. See `fs-verity descriptor`_.
+
+- ``FS_VERITY_METADATA_TYPE_SIGNATURE`` reads the signature which was
+ passed to FS_IOC_ENABLE_VERITY, if any. See `Built-in signature
+ verification`_.
+
+The semantics are similar to those of ``pread()``. ``offset``
+specifies the offset in bytes into the metadata item to read from, and
+``length`` specifies the maximum number of bytes to read from the
+metadata item. ``buf_ptr`` is the pointer to the buffer to read into,
+cast to a 64-bit integer. ``__reserved`` must be 0. On success, the
+number of bytes read is returned. 0 is returned at the end of the
+metadata item. The returned length may be less than ``length``, for
+example if the ioctl is interrupted.
+
+The metadata returned by FS_IOC_READ_VERITY_METADATA isn't guaranteed
+to be authenticated against the file digest that would be returned by
+`FS_IOC_MEASURE_VERITY`_, as the metadata is expected to be used to
+implement fs-verity compatible verification anyway (though absent a
+malicious disk, the metadata will indeed match). E.g. to implement
+this ioctl, the filesystem is allowed to just read the Merkle tree
+blocks from disk without actually verifying the path to the root node.
+
+FS_IOC_READ_VERITY_METADATA can fail with the following errors:
+
+- ``EFAULT``: the caller provided inaccessible memory
+- ``EINTR``: the ioctl was interrupted before any data was read
+- ``EINVAL``: reserved fields were set, or ``offset + length``
+ overflowed
+- ``ENODATA``: the file is not a verity file, or
+ FS_VERITY_METADATA_TYPE_SIGNATURE was requested but the file doesn't
+ have a built-in signature
+- ``ENOTTY``: this type of filesystem does not implement fs-verity, or
+ this ioctl is not yet implemented on it
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support, or the filesystem superblock has not had the 'verity'
+ feature enabled on it. (See `Filesystem support`_.)
+
FS_IOC_GETFLAGS
---------------
diff --git a/Documentation/filesystems/overlayfs.rst b/Documentation/filesystems/overlayfs.rst
index 587a93973929..78240e29b0bb 100644
--- a/Documentation/filesystems/overlayfs.rst
+++ b/Documentation/filesystems/overlayfs.rst
@@ -586,6 +586,14 @@ without significant effort.
The advantage of mounting with the "volatile" option is that all forms of
sync calls to the upper filesystem are omitted.
+In order to avoid a giving a false sense of safety, the syncfs (and fsync)
+semantics of volatile mounts are slightly different than that of the rest of
+VFS. If any writeback error occurs on the upperdir's filesystem after a
+volatile mount takes place, all sync functions will return an error. Once this
+condition is reached, the filesystem will not recover, and every subsequent sync
+call will return an error, even if the upperdir has not experience a new error
+since the last sync call.
+
When overlay is mounted with "volatile" option, the directory
"$workdir/work/incompat/volatile" is created. During next mount, overlay
checks for this directory and refuses to mount if present. This is a strong
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
index 867036aa90b8..1f8cf8e10b34 100644
--- a/Documentation/filesystems/porting.rst
+++ b/Documentation/filesystems/porting.rst
@@ -865,3 +865,19 @@ no matter what. Everything is handled by the caller.
clone_private_mount() returns a longterm mount now, so the proper destructor of
its result is kern_unmount() or kern_unmount_array().
+
+---
+
+**mandatory**
+
+zero-length bvec segments are disallowed, they must be filtered out before
+passed on to an iterator.
+
+---
+
+**mandatory**
+
+For bvec based itererators bio_iov_iter_get_pages() now doesn't copy bvecs but
+uses the one provided. Anyone issuing kiocb-I/O should ensure that the bvec and
+page references stay until I/O has completed, i.e. until ->ki_complete() has
+been called or returned with non -EIOCBQUEUED code.
diff --git a/Documentation/firmware-guide/acpi/debug.rst b/Documentation/firmware-guide/acpi/debug.rst
index 1a152dd1d765..03cd4e25fc45 100644
--- a/Documentation/firmware-guide/acpi/debug.rst
+++ b/Documentation/firmware-guide/acpi/debug.rst
@@ -52,19 +52,12 @@ shows the supported mask values, currently these::
ACPI_CA_DISASSEMBLER 0x00000800
ACPI_COMPILER 0x00001000
ACPI_TOOLS 0x00002000
- ACPI_BUS_COMPONENT 0x00010000
- ACPI_AC_COMPONENT 0x00020000
- ACPI_BATTERY_COMPONENT 0x00040000
- ACPI_BUTTON_COMPONENT 0x00080000
ACPI_SBS_COMPONENT 0x00100000
ACPI_FAN_COMPONENT 0x00200000
ACPI_PCI_COMPONENT 0x00400000
- ACPI_POWER_COMPONENT 0x00800000
ACPI_CONTAINER_COMPONENT 0x01000000
ACPI_SYSTEM_COMPONENT 0x02000000
- ACPI_THERMAL_COMPONENT 0x04000000
ACPI_MEMORY_DEVICE_COMPONENT 0x08000000
- ACPI_VIDEO_COMPONENT 0x10000000
ACPI_PROCESSOR_COMPONENT 0x20000000
debug_level
@@ -118,15 +111,15 @@ currently these::
Examples
========
-For example, drivers/acpi/bus.c contains this::
+For example, drivers/acpi/acpica/evxfevnt.c contains this::
- #define _COMPONENT ACPI_BUS_COMPONENT
+ #define _COMPONENT ACPI_EVENTS
...
- ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device insertion detected\n"));
+ ACPI_DEBUG_PRINT((ACPI_DB_INIT, "ACPI mode disabled\n"));
-To turn on this message, set the ACPI_BUS_COMPONENT bit in acpi.debug_layer
-and the ACPI_LV_INFO bit in acpi.debug_level. (The ACPI_DEBUG_PRINT
-statement uses ACPI_DB_INFO, which is macro based on the ACPI_LV_INFO
+To turn on this message, set the ACPI_EVENTS bit in acpi.debug_layer
+and the ACPI_LV_INIT bit in acpi.debug_level. (The ACPI_DEBUG_PRINT
+statement uses ACPI_DB_INIT, which is a macro based on the ACPI_LV_INIT
definition.)
Enable all AML "Debug" output (stores to the Debug object while interpreting
diff --git a/Documentation/firmware-guide/acpi/gpio-properties.rst b/Documentation/firmware-guide/acpi/gpio-properties.rst
index b36aa3e743d8..4e264c16ddff 100644
--- a/Documentation/firmware-guide/acpi/gpio-properties.rst
+++ b/Documentation/firmware-guide/acpi/gpio-properties.rst
@@ -146,6 +146,7 @@ following rules (see also the examples):
other words, it is not mandatory to fill all the GPIO lines
- empty names are allowed (two quotation marks ``""`` correspond to an empty
name)
+ - names inside one GPIO controller/expander must be unique
Example of a GPIO controller of 16 lines, with an incomplete list with two
empty names::
diff --git a/Documentation/kbuild/gcc-plugins.rst b/Documentation/kbuild/gcc-plugins.rst
index 4b1c10f88e30..3349966f213d 100644
--- a/Documentation/kbuild/gcc-plugins.rst
+++ b/Documentation/kbuild/gcc-plugins.rst
@@ -11,16 +11,13 @@ compiler [1]_. They are useful for runtime instrumentation and static analysis.
We can analyse, change and add further code during compilation via
callbacks [2]_, GIMPLE [3]_, IPA [4]_ and RTL passes [5]_.
-The GCC plugin infrastructure of the kernel supports all gcc versions from
-4.5 to 6.0, building out-of-tree modules, cross-compilation and building in a
-separate directory.
-Plugin source files have to be compilable by both a C and a C++ compiler as well
-because gcc versions 4.5 and 4.6 are compiled by a C compiler,
-gcc-4.7 can be compiled by a C or a C++ compiler,
-and versions 4.8+ can only be compiled by a C++ compiler.
+The GCC plugin infrastructure of the kernel supports building out-of-tree
+modules, cross-compilation and building in a separate directory.
+Plugin source files have to be compilable by a C++ compiler.
-Currently the GCC plugin infrastructure supports only the x86, arm, arm64 and
-powerpc architectures.
+Currently the GCC plugin infrastructure supports only some architectures.
+Grep "select HAVE_GCC_PLUGINS" to find out which architectures support
+GCC plugins.
This infrastructure was ported from grsecurity [6]_ and PaX [7]_.
@@ -47,20 +44,13 @@ Files
This is a compatibility header for GCC plugins.
It should be always included instead of individual gcc headers.
-**$(src)/scripts/gcc-plugin.sh**
-
- This script checks the availability of the included headers in
- gcc-common.h and chooses the proper host compiler to build the plugins
- (gcc-4.7 can be built by either gcc or g++).
-
**$(src)/scripts/gcc-plugins/gcc-generate-gimple-pass.h,
$(src)/scripts/gcc-plugins/gcc-generate-ipa-pass.h,
$(src)/scripts/gcc-plugins/gcc-generate-simple_ipa-pass.h,
$(src)/scripts/gcc-plugins/gcc-generate-rtl-pass.h**
These headers automatically generate the registration structures for
- GIMPLE, SIMPLE_IPA, IPA and RTL passes. They support all gcc versions
- from 4.5 to 6.0.
+ GIMPLE, SIMPLE_IPA, IPA and RTL passes.
They should be preferred to creating the structures by hand.
@@ -68,21 +58,25 @@ Usage
=====
You must install the gcc plugin headers for your gcc version,
-e.g., on Ubuntu for gcc-4.9::
+e.g., on Ubuntu for gcc-10::
- apt-get install gcc-4.9-plugin-dev
+ apt-get install gcc-10-plugin-dev
Or on Fedora::
dnf install gcc-plugin-devel
-Enable a GCC plugin based feature in the kernel config::
+Enable the GCC plugin infrastructure and some plugin(s) you want to use
+in the kernel config::
- CONFIG_GCC_PLUGIN_CYC_COMPLEXITY = y
+ CONFIG_GCC_PLUGINS=y
+ CONFIG_GCC_PLUGIN_CYC_COMPLEXITY=y
+ CONFIG_GCC_PLUGIN_LATENT_ENTROPY=y
+ ...
-To compile only the plugin(s)::
+To compile the minimum tool set including the plugin(s)::
- make gcc-plugins
+ make scripts
or just run the kernel make and compile the whole kernel with
the cyclomatic complexity GCC plugin.
@@ -91,7 +85,8 @@ the cyclomatic complexity GCC plugin.
4. How to add a new GCC plugin
==============================
-The GCC plugins are in $(src)/scripts/gcc-plugins/. You can use a file or a directory
-here. It must be added to $(src)/scripts/gcc-plugins/Makefile,
-$(src)/scripts/Makefile.gcc-plugins and $(src)/arch/Kconfig.
+The GCC plugins are in scripts/gcc-plugins/. You need to put plugin source files
+right under scripts/gcc-plugins/. Creating subdirectories is not supported.
+It must be added to scripts/gcc-plugins/Makefile, scripts/Makefile.gcc-plugins
+and a relevant Kconfig file.
See the cyc_complexity_plugin.c (CONFIG_GCC_PLUGIN_CYC_COMPLEXITY) GCC plugin.
diff --git a/Documentation/kbuild/llvm.rst b/Documentation/kbuild/llvm.rst
index 21c847890d03..b18401d2ba82 100644
--- a/Documentation/kbuild/llvm.rst
+++ b/Documentation/kbuild/llvm.rst
@@ -63,6 +63,50 @@ They can be enabled individually. The full list of the parameters: ::
Currently, the integrated assembler is disabled by default. You can pass
``LLVM_IAS=1`` to enable it.
+Supported Architectures
+-----------------------
+
+LLVM does not target all of the architectures that Linux supports and
+just because a target is supported in LLVM does not mean that the kernel
+will build or work without any issues. Below is a general summary of
+architectures that currently work with ``CC=clang`` or ``LLVM=1``. Level
+of support corresponds to "S" values in the MAINTAINERS files. If an
+architecture is not present, it either means that LLVM does not target
+it or there are known issues. Using the latest stable version of LLVM or
+even the development tree will generally yield the best results.
+An architecture's ``defconfig`` is generally expected to work well,
+certain configurations may have problems that have not been uncovered
+yet. Bug reports are always welcome at the issue tracker below!
+
+.. list-table::
+ :widths: 10 10 10
+ :header-rows: 1
+
+ * - Architecture
+ - Level of support
+ - ``make`` command
+ * - arm
+ - Supported
+ - ``LLVM=1``
+ * - arm64
+ - Supported
+ - ``LLVM=1``
+ * - mips
+ - Maintained
+ - ``CC=clang``
+ * - powerpc
+ - Maintained
+ - ``CC=clang``
+ * - riscv
+ - Maintained
+ - ``CC=clang``
+ * - s390
+ - Maintained
+ - ``CC=clang``
+ * - x86
+ - Supported
+ - ``LLVM=1``
+
Getting Help
------------
diff --git a/Documentation/kbuild/makefiles.rst b/Documentation/kbuild/makefiles.rst
index 9f6a11881951..910c6303c7ea 100644
--- a/Documentation/kbuild/makefiles.rst
+++ b/Documentation/kbuild/makefiles.rst
@@ -755,7 +755,7 @@ more details, with real examples.
bits on the scripts nonetheless.
Kbuild provides variables $(CONFIG_SHELL), $(AWK), $(PERL),
- $(PYTHON) and $(PYTHON3) to refer to interpreters for the respective
+ and $(PYTHON3) to refer to interpreters for the respective
scripts.
Example::
@@ -1317,7 +1317,6 @@ When kbuild executes, the following steps are followed (roughly):
libs-y += arch/sparc/lib/
drivers-$(CONFIG_PM) += arch/sparc/power/
- drivers-$(CONFIG_OPROFILE) += arch/sparc/oprofile/
7.5 Architecture-specific boot images
-------------------------------------
diff --git a/Documentation/networking/bonding.rst b/Documentation/networking/bonding.rst
index adc314639085..5f690f0ad0e4 100644
--- a/Documentation/networking/bonding.rst
+++ b/Documentation/networking/bonding.rst
@@ -951,6 +951,19 @@ xmit_hash_policy
packets will be distributed according to the encapsulated
flows.
+ vlan+srcmac
+
+ This policy uses a very rudimentary vlan ID and source mac
+ hash to load-balance traffic per-vlan, with failover
+ should one leg fail. The intended use case is for a bond
+ shared by multiple virtual machines, all configured to
+ use their own vlan, to give lacp-like functionality
+ without requiring lacp-capable switching hardware.
+
+ The formula for the hash is simply
+
+ hash = (vlan ID) XOR (source MAC vendor) XOR (source MAC dev)
+
The default value is layer2. This option was added in bonding
version 2.6.3. In earlier versions of bonding, this parameter
does not exist, and the layer2 policy is the only policy. The
diff --git a/Documentation/networking/caif/caif.rst b/Documentation/networking/caif/caif.rst
index a07213030ccf..81a14373d780 100644
--- a/Documentation/networking/caif/caif.rst
+++ b/Documentation/networking/caif/caif.rst
@@ -68,7 +68,6 @@ There are debugfs parameters provided for serial communication.
* tty_status: Prints the bit-mask tty status information
- 0x01 - tty->warned is on.
- - 0x02 - tty->low_latency is on.
- 0x04 - tty->packed is on.
- 0x08 - tty->flow_stopped is on.
- 0x10 - tty->hw_stopped is on.
diff --git a/Documentation/networking/device_drivers/ethernet/index.rst b/Documentation/networking/device_drivers/ethernet/index.rst
index cbb75a1818c0..6b5dc203da2b 100644
--- a/Documentation/networking/device_drivers/ethernet/index.rst
+++ b/Documentation/networking/device_drivers/ethernet/index.rst
@@ -49,6 +49,7 @@ Contents:
stmicro/stmmac
ti/cpsw
ti/cpsw_switchdev
+ ti/am65_nuss_cpsw_switchdev
ti/tlan
toshiba/spider_net
diff --git a/Documentation/networking/device_drivers/ethernet/intel/ice.rst b/Documentation/networking/device_drivers/ethernet/intel/ice.rst
index ee43ea57d443..e7d9cbff771b 100644
--- a/Documentation/networking/device_drivers/ethernet/intel/ice.rst
+++ b/Documentation/networking/device_drivers/ethernet/intel/ice.rst
@@ -1,46 +1,1031 @@
.. SPDX-License-Identifier: GPL-2.0+
-==================================================================
-Linux Base Driver for the Intel(R) Ethernet Connection E800 Series
-==================================================================
+=================================================================
+Linux Base Driver for the Intel(R) Ethernet Controller 800 Series
+=================================================================
Intel ice Linux driver.
-Copyright(c) 2018 Intel Corporation.
+Copyright(c) 2018-2021 Intel Corporation.
Contents
========
-- Enabling the driver
-- Support
+- Overview
+- Identifying Your Adapter
+- Important Notes
+- Additional Features & Configurations
+- Performance Optimization
-The driver in this release supports Intel's E800 Series of products. For
-more information, visit Intel's support page at https://support.intel.com.
-Enabling the driver
-===================
-The driver is enabled via the standard kernel configuration system,
-using the make command::
+The associated Virtual Function (VF) driver for this driver is iavf.
- make oldconfig/menuconfig/etc.
+Driver information can be obtained using ethtool and lspci.
-The driver is located in the menu structure at:
+For questions related to hardware requirements, refer to the documentation
+supplied with your Intel adapter. All hardware requirements listed apply to use
+with Linux.
+
+This driver supports XDP (Express Data Path) and AF_XDP zero-copy. Note that
+XDP is blocked for frame sizes larger than 3KB.
+
+
+Identifying Your Adapter
+========================
+For information on how to identify your adapter, and for the latest Intel
+network drivers, refer to the Intel Support website:
+https://www.intel.com/support
+
+
+Important Notes
+===============
+
+Packet drops may occur under receive stress
+-------------------------------------------
+Devices based on the Intel(R) Ethernet Controller 800 Series are designed to
+tolerate a limited amount of system latency during PCIe and DMA transactions.
+If these transactions take longer than the tolerated latency, it can impact the
+length of time the packets are buffered in the device and associated memory,
+which may result in dropped packets. These packets drops typically do not have
+a noticeable impact on throughput and performance under standard workloads.
+
+If these packet drops appear to affect your workload, the following may improve
+the situation:
+
+1) Make sure that your system's physical memory is in a high-performance
+ configuration, as recommended by the platform vendor. A common
+ recommendation is for all channels to be populated with a single DIMM
+ module.
+2) In your system's BIOS/UEFI settings, select the "Performance" profile.
+3) Your distribution may provide tools like "tuned," which can help tweak
+ kernel settings to achieve better standard settings for different workloads.
+
+
+Configuring SR-IOV for improved network security
+------------------------------------------------
+In a virtualized environment, on Intel(R) Ethernet Network Adapters that
+support SR-IOV, the virtual function (VF) may be subject to malicious behavior.
+Software-generated layer two frames, like IEEE 802.3x (link flow control), IEEE
+802.1Qbb (priority based flow-control), and others of this type, are not
+expected and can throttle traffic between the host and the virtual switch,
+reducing performance. To resolve this issue, and to ensure isolation from
+unintended traffic streams, configure all SR-IOV enabled ports for VLAN tagging
+from the administrative interface on the PF. This configuration allows
+unexpected, and potentially malicious, frames to be dropped.
+
+See "Configuring VLAN Tagging on SR-IOV Enabled Adapter Ports" later in this
+README for configuration instructions.
+
+
+Do not unload port driver if VF with active VM is bound to it
+-------------------------------------------------------------
+Do not unload a port's driver if a Virtual Function (VF) with an active Virtual
+Machine (VM) is bound to it. Doing so will cause the port to appear to hang.
+Once the VM shuts down, or otherwise releases the VF, the command will
+complete.
+
+
+Important notes for SR-IOV and Link Aggregation
+-----------------------------------------------
+Link Aggregation is mutually exclusive with SR-IOV.
+
+- If Link Aggregation is active, SR-IOV VFs cannot be created on the PF.
+- If SR-IOV is active, you cannot set up Link Aggregation on the interface.
+
+Bridging and MACVLAN are also affected by this. If you wish to use bridging or
+MACVLAN with SR-IOV, you must set up bridging or MACVLAN before enabling
+SR-IOV. If you are using bridging or MACVLAN in conjunction with SR-IOV, and
+you want to remove the interface from the bridge or MACVLAN, you must follow
+these steps:
+
+1. Destroy SR-IOV VFs if they exist
+2. Remove the interface from the bridge or MACVLAN
+3. Recreate SRIOV VFs as needed
+
+
+Additional Features and Configurations
+======================================
+
+ethtool
+-------
+The driver utilizes the ethtool interface for driver configuration and
+diagnostics, as well as displaying statistical information. The latest ethtool
+version is required for this functionality. Download it at:
+https://kernel.org/pub/software/network/ethtool/
+
+NOTE: The rx_bytes value of ethtool does not match the rx_bytes value of
+Netdev, due to the 4-byte CRC being stripped by the device. The difference
+between the two rx_bytes values will be 4 x the number of Rx packets. For
+example, if Rx packets are 10 and Netdev (software statistics) displays
+rx_bytes as "X", then ethtool (hardware statistics) will display rx_bytes as
+"X+40" (4 bytes CRC x 10 packets).
+
+
+Viewing Link Messages
+---------------------
+Link messages will not be displayed to the console if the distribution is
+restricting system messages. In order to see network driver link messages on
+your console, set dmesg to eight by entering the following::
+
+ # dmesg -n 8
+
+NOTE: This setting is not saved across reboots.
+
+
+Dynamic Device Personalization
+------------------------------
+Dynamic Device Personalization (DDP) allows you to change the packet processing
+pipeline of a device by applying a profile package to the device at runtime.
+Profiles can be used to, for example, add support for new protocols, change
+existing protocols, or change default settings. DDP profiles can also be rolled
+back without rebooting the system.
+
+The DDP package loads during device initialization. The driver looks for
+``intel/ice/ddp/ice.pkg`` in your firmware root (typically ``/lib/firmware/``
+or ``/lib/firmware/updates/``) and checks that it contains a valid DDP package
+file.
+
+NOTE: Your distribution should likely have provided the latest DDP file, but if
+ice.pkg is missing, you can find it in the linux-firmware repository or from
+intel.com.
+
+If the driver is unable to load the DDP package, the device will enter Safe
+Mode. Safe Mode disables advanced and performance features and supports only
+basic traffic and minimal functionality, such as updating the NVM or
+downloading a new driver or DDP package. Safe Mode only applies to the affected
+physical function and does not impact any other PFs. See the "Intel(R) Ethernet
+Adapters and Devices User Guide" for more details on DDP and Safe Mode.
+
+NOTES:
+
+- If you encounter issues with the DDP package file, you may need to download
+ an updated driver or DDP package file. See the log messages for more
+ information.
+
+- The ice.pkg file is a symbolic link to the default DDP package file.
+
+- You cannot update the DDP package if any PF drivers are already loaded. To
+ overwrite a package, unload all PFs and then reload the driver with the new
+ package.
+
+- Only the first loaded PF per device can download a package for that device.
+
+You can install specific DDP package files for different physical devices in
+the same system. To install a specific DDP package file:
+
+1. Download the DDP package file you want for your device.
+
+2. Rename the file ice-xxxxxxxxxxxxxxxx.pkg, where 'xxxxxxxxxxxxxxxx' is the
+ unique 64-bit PCI Express device serial number (in hex) of the device you
+ want the package downloaded on. The filename must include the complete
+ serial number (including leading zeros) and be all lowercase. For example,
+ if the 64-bit serial number is b887a3ffffca0568, then the file name would be
+ ice-b887a3ffffca0568.pkg.
+
+ To find the serial number from the PCI bus address, you can use the
+ following command::
+
+ # lspci -vv -s af:00.0 | grep -i Serial
+ Capabilities: [150 v1] Device Serial Number b8-87-a3-ff-ff-ca-05-68
+
+ You can use the following command to format the serial number without the
+ dashes::
+
+ # lspci -vv -s af:00.0 | grep -i Serial | awk '{print $7}' | sed s/-//g
+ b887a3ffffca0568
+
+3. Copy the renamed DDP package file to
+ ``/lib/firmware/updates/intel/ice/ddp/``. If the directory does not yet
+ exist, create it before copying the file.
+
+4. Unload all of the PFs on the device.
+
+5. Reload the driver with the new package.
+
+NOTE: The presence of a device-specific DDP package file overrides the loading
+of the default DDP package file (ice.pkg).
+
+
+Intel(R) Ethernet Flow Director
+-------------------------------
+The Intel Ethernet Flow Director performs the following tasks:
+
+- Directs receive packets according to their flows to different queues
+- Enables tight control on routing a flow in the platform
+- Matches flows and CPU cores for flow affinity
+
+NOTE: This driver supports the following flow types:
+
+- IPv4
+- TCPv4
+- UDPv4
+- SCTPv4
+- IPv6
+- TCPv6
+- UDPv6
+- SCTPv6
+
+Each flow type supports valid combinations of IP addresses (source or
+destination) and UDP/TCP/SCTP ports (source and destination). You can supply
+only a source IP address, a source IP address and a destination port, or any
+combination of one or more of these four parameters.
+
+NOTE: This driver allows you to filter traffic based on a user-defined flexible
+two-byte pattern and offset by using the ethtool user-def and mask fields. Only
+L3 and L4 flow types are supported for user-defined flexible filters. For a
+given flow type, you must clear all Intel Ethernet Flow Director filters before
+changing the input set (for that flow type).
+
+
+Flow Director Filters
+---------------------
+Flow Director filters are used to direct traffic that matches specified
+characteristics. They are enabled through ethtool's ntuple interface. To enable
+or disable the Intel Ethernet Flow Director and these filters::
+
+ # ethtool -K <ethX> ntuple <off|on>
+
+NOTE: When you disable ntuple filters, all the user programmed filters are
+flushed from the driver cache and hardware. All needed filters must be re-added
+when ntuple is re-enabled.
+
+To display all of the active filters::
+
+ # ethtool -u <ethX>
+
+To add a new filter::
+
+ # ethtool -U <ethX> flow-type <type> src-ip <ip> [m <ip_mask>] dst-ip <ip>
+ [m <ip_mask>] src-port <port> [m <port_mask>] dst-port <port> [m <port_mask>]
+ action <queue>
+
+ Where:
+ <ethX> - the Ethernet device to program
+ <type> - can be ip4, tcp4, udp4, sctp4, ip6, tcp6, udp6, sctp6
+ <ip> - the IP address to match on
+ <ip_mask> - the IPv4 address to mask on
+ NOTE: These filters use inverted masks.
+ <port> - the port number to match on
+ <port_mask> - the 16-bit integer for masking
+ NOTE: These filters use inverted masks.
+ <queue> - the queue to direct traffic toward (-1 discards the
+ matched traffic)
+
+To delete a filter::
+
+ # ethtool -U <ethX> delete <N>
+
+ Where <N> is the filter ID displayed when printing all the active filters,
+ and may also have been specified using "loc <N>" when adding the filter.
+
+EXAMPLES:
+
+To add a filter that directs packet to queue 2::
+
+ # ethtool -U <ethX> flow-type tcp4 src-ip 192.168.10.1 dst-ip \
+ 192.168.10.2 src-port 2000 dst-port 2001 action 2 [loc 1]
+
+To set a filter using only the source and destination IP address::
+
+ # ethtool -U <ethX> flow-type tcp4 src-ip 192.168.10.1 dst-ip \
+ 192.168.10.2 action 2 [loc 1]
+
+To set a filter based on a user-defined pattern and offset::
+
+ # ethtool -U <ethX> flow-type tcp4 src-ip 192.168.10.1 dst-ip \
+ 192.168.10.2 user-def 0x4FFFF action 2 [loc 1]
+
+ where the value of the user-def field contains the offset (4 bytes) and
+ the pattern (0xffff).
+
+To match TCP traffic sent from 192.168.0.1, port 5300, directed to 192.168.0.5,
+port 80, and then send it to queue 7::
+
+ # ethtool -U enp130s0 flow-type tcp4 src-ip 192.168.0.1 dst-ip 192.168.0.5
+ src-port 5300 dst-port 80 action 7
+
+To add a TCPv4 filter with a partial mask for a source IP subnet::
+
+ # ethtool -U <ethX> flow-type tcp4 src-ip 192.168.0.0 m 0.255.255.255 dst-ip
+ 192.168.5.12 src-port 12600 dst-port 31 action 12
+
+NOTES:
+
+For each flow-type, the programmed filters must all have the same matching
+input set. For example, issuing the following two commands is acceptable::
+
+ # ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
+ # ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.5 src-port 55 action 10
+
+Issuing the next two commands, however, is not acceptable, since the first
+specifies src-ip and the second specifies dst-ip::
+
+ # ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
+ # ethtool -U enp130s0 flow-type ip4 dst-ip 192.168.0.5 src-port 55 action 10
+
+The second command will fail with an error. You may program multiple filters
+with the same fields, using different values, but, on one device, you may not
+program two tcp4 filters with different matching fields.
+
+The ice driver does not support matching on a subportion of a field, thus
+partial mask fields are not supported.
+
+
+Flex Byte Flow Director Filters
+-------------------------------
+The driver also supports matching user-defined data within the packet payload.
+This flexible data is specified using the "user-def" field of the ethtool
+command in the following way:
+
+.. table::
+
+ ============================== ============================
+ ``31 28 24 20 16`` ``15 12 8 4 0``
+ ``offset into packet payload`` ``2 bytes of flexible data``
+ ============================== ============================
+
+For example,
+
+::
+
+ ... user-def 0x4FFFF ...
+
+tells the filter to look 4 bytes into the payload and match that value against
+0xFFFF. The offset is based on the beginning of the payload, and not the
+beginning of the packet. Thus
+
+::
+
+ flow-type tcp4 ... user-def 0x8BEAF ...
+
+would match TCP/IPv4 packets which have the value 0xBEAF 8 bytes into the
+TCP/IPv4 payload.
+
+Note that ICMP headers are parsed as 4 bytes of header and 4 bytes of payload.
+Thus to match the first byte of the payload, you must actually add 4 bytes to
+the offset. Also note that ip4 filters match both ICMP frames as well as raw
+(unknown) ip4 frames, where the payload will be the L3 payload of the IP4
+frame.
+
+The maximum offset is 64. The hardware will only read up to 64 bytes of data
+from the payload. The offset must be even because the flexible data is 2 bytes
+long and must be aligned to byte 0 of the packet payload.
+
+The user-defined flexible offset is also considered part of the input set and
+cannot be programmed separately for multiple filters of the same type. However,
+the flexible data is not part of the input set and multiple filters may use the
+same offset but match against different data.
+
+
+RSS Hash Flow
+-------------
+Allows you to set the hash bytes per flow type and any combination of one or
+more options for Receive Side Scaling (RSS) hash byte configuration.
+
+::
+
+ # ethtool -N <ethX> rx-flow-hash <type> <option>
+
+ Where <type> is:
+ tcp4 signifying TCP over IPv4
+ udp4 signifying UDP over IPv4
+ tcp6 signifying TCP over IPv6
+ udp6 signifying UDP over IPv6
+ And <option> is one or more of:
+ s Hash on the IP source address of the Rx packet.
+ d Hash on the IP destination address of the Rx packet.
+ f Hash on bytes 0 and 1 of the Layer 4 header of the Rx packet.
+ n Hash on bytes 2 and 3 of the Layer 4 header of the Rx packet.
+
+
+Accelerated Receive Flow Steering (aRFS)
+----------------------------------------
+Devices based on the Intel(R) Ethernet Controller 800 Series support
+Accelerated Receive Flow Steering (aRFS) on the PF. aRFS is a load-balancing
+mechanism that allows you to direct packets to the same CPU where an
+application is running or consuming the packets in that flow.
+
+NOTES:
+
+- aRFS requires that ntuple filtering is enabled via ethtool.
+- aRFS support is limited to the following packet types:
+
+ - TCP over IPv4 and IPv6
+ - UDP over IPv4 and IPv6
+ - Nonfragmented packets
+
+- aRFS only supports Flow Director filters, which consist of the
+ source/destination IP addresses and source/destination ports.
+- aRFS and ethtool's ntuple interface both use the device's Flow Director. aRFS
+ and ntuple features can coexist, but you may encounter unexpected results if
+ there's a conflict between aRFS and ntuple requests. See "Intel(R) Ethernet
+ Flow Director" for additional information.
+
+To set up aRFS:
+
+1. Enable the Intel Ethernet Flow Director and ntuple filters using ethtool.
+
+::
+
+ # ethtool -K <ethX> ntuple on
+
+2. Set up the number of entries in the global flow table. For example:
+
+::
+
+ # NUM_RPS_ENTRIES=16384
+ # echo $NUM_RPS_ENTRIES > /proc/sys/net/core/rps_sock_flow_entries
+
+3. Set up the number of entries in the per-queue flow table. For example:
+
+::
+
+ # NUM_RX_QUEUES=64
+ # for file in /sys/class/net/$IFACE/queues/rx-*/rps_flow_cnt; do
+ # echo $(($NUM_RPS_ENTRIES/$NUM_RX_QUEUES)) > $file;
+ # done
+
+4. Disable the IRQ balance daemon (this is only a temporary stop of the service
+ until the next reboot).
+
+::
+
+ # systemctl stop irqbalance
+
+5. Configure the interrupt affinity.
+
+ See ``/Documentation/core-api/irq/irq-affinity.rst``
+
+
+To disable aRFS using ethtool::
+
+ # ethtool -K <ethX> ntuple off
+
+NOTE: This command will disable ntuple filters and clear any aRFS filters in
+software and hardware.
+
+Example Use Case:
+
+1. Set the server application on the desired CPU (e.g., CPU 4).
+
+::
+
+ # taskset -c 4 netserver
+
+2. Use netperf to route traffic from the client to CPU 4 on the server with
+ aRFS configured. This example uses TCP over IPv4.
+
+::
+
+ # netperf -H <Host IPv4 Address> -t TCP_STREAM
+
+
+Enabling Virtual Functions (VFs)
+--------------------------------
+Use sysfs to enable virtual functions (VF).
+
+For example, you can create 4 VFs as follows::
+
+ # echo 4 > /sys/class/net/<ethX>/device/sriov_numvfs
+
+To disable VFs, write 0 to the same file::
+
+ # echo 0 > /sys/class/net/<ethX>/device/sriov_numvfs
+
+The maximum number of VFs for the ice driver is 256 total (all ports). To check
+how many VFs each PF supports, use the following command::
+
+ # cat /sys/class/net/<ethX>/device/sriov_totalvfs
+
+Note: You cannot use SR-IOV when link aggregation (LAG)/bonding is active, and
+vice versa. To enforce this, the driver checks for this mutual exclusion.
+
+
+Displaying VF Statistics on the PF
+----------------------------------
+Use the following command to display the statistics for the PF and its VFs::
+
+ # ip -s link show dev <ethX>
+
+NOTE: The output of this command can be very large due to the maximum number of
+possible VFs.
+
+The PF driver will display a subset of the statistics for the PF and for all
+VFs that are configured. The PF will always print a statistics block for each
+of the possible VFs, and it will show zero for all unconfigured VFs.
+
+
+Configuring VLAN Tagging on SR-IOV Enabled Adapter Ports
+--------------------------------------------------------
+To configure VLAN tagging for the ports on an SR-IOV enabled adapter, use the
+following command. The VLAN configuration should be done before the VF driver
+is loaded or the VM is booted. The VF is not aware of the VLAN tag being
+inserted on transmit and removed on received frames (sometimes called "port
+VLAN" mode).
+
+::
+
+ # ip link set dev <ethX> vf <id> vlan <vlan id>
+
+For example, the following will configure PF eth0 and the first VF on VLAN 10::
+
+ # ip link set dev eth0 vf 0 vlan 10
+
+
+Enabling a VF link if the port is disconnected
+----------------------------------------------
+If the physical function (PF) link is down, you can force link up (from the
+host PF) on any virtual functions (VF) bound to the PF.
+
+For example, to force link up on VF 0 bound to PF eth0::
+
+ # ip link set eth0 vf 0 state enable
+
+Note: If the command does not work, it may not be supported by your system.
+
+
+Setting the MAC Address for a VF
+--------------------------------
+To change the MAC address for the specified VF::
+
+ # ip link set <ethX> vf 0 mac <address>
+
+For example::
+
+ # ip link set <ethX> vf 0 mac 00:01:02:03:04:05
+
+This setting lasts until the PF is reloaded.
+
+NOTE: Assigning a MAC address for a VF from the host will disable any
+subsequent requests to change the MAC address from within the VM. This is a
+security feature. The VM is not aware of this restriction, so if this is
+attempted in the VM, it will trigger MDD events.
+
+
+Trusted VFs and VF Promiscuous Mode
+-----------------------------------
+This feature allows you to designate a particular VF as trusted and allows that
+trusted VF to request selective promiscuous mode on the Physical Function (PF).
+
+To set a VF as trusted or untrusted, enter the following command in the
+Hypervisor::
+
+ # ip link set dev <ethX> vf 1 trust [on|off]
+
+NOTE: It's important to set the VF to trusted before setting promiscuous mode.
+If the VM is not trusted, the PF will ignore promiscuous mode requests from the
+VF. If the VM becomes trusted after the VF driver is loaded, you must make a
+new request to set the VF to promiscuous.
+
+Once the VF is designated as trusted, use the following commands in the VM to
+set the VF to promiscuous mode.
+
+For promiscuous all::
+
+ # ip link set <ethX> promisc on
+ Where <ethX> is a VF interface in the VM
+
+For promiscuous Multicast::
+
+ # ip link set <ethX> allmulticast on
+ Where <ethX> is a VF interface in the VM
+
+NOTE: By default, the ethtool private flag vf-true-promisc-support is set to
+"off," meaning that promiscuous mode for the VF will be limited. To set the
+promiscuous mode for the VF to true promiscuous and allow the VF to see all
+ingress traffic, use the following command::
+
+ # ethtool --set-priv-flags <ethX> vf-true-promisc-support on
+
+The vf-true-promisc-support private flag does not enable promiscuous mode;
+rather, it designates which type of promiscuous mode (limited or true) you will
+get when you enable promiscuous mode using the ip link commands above. Note
+that this is a global setting that affects the entire device. However, the
+vf-true-promisc-support private flag is only exposed to the first PF of the
+device. The PF remains in limited promiscuous mode regardless of the
+vf-true-promisc-support setting.
+
+Next, add a VLAN interface on the VF interface. For example::
+
+ # ip link add link eth2 name eth2.100 type vlan id 100
+
+Note that the order in which you set the VF to promiscuous mode and add the
+VLAN interface does not matter (you can do either first). The result in this
+example is that the VF will get all traffic that is tagged with VLAN 100.
+
+
+Malicious Driver Detection (MDD) for VFs
+----------------------------------------
+Some Intel Ethernet devices use Malicious Driver Detection (MDD) to detect
+malicious traffic from the VF and disable Tx/Rx queues or drop the offending
+packet until a VF driver reset occurs. You can view MDD messages in the PF's
+system log using the dmesg command.
+
+- If the PF driver logs MDD events from the VF, confirm that the correct VF
+ driver is installed.
+- To restore functionality, you can manually reload the VF or VM or enable
+ automatic VF resets.
+- When automatic VF resets are enabled, the PF driver will immediately reset
+ the VF and reenable queues when it detects MDD events on the receive path.
+- If automatic VF resets are disabled, the PF will not automatically reset the
+ VF when it detects MDD events.
+
+To enable or disable automatic VF resets, use the following command::
+
+ # ethtool --set-priv-flags <ethX> mdd-auto-reset-vf on|off
+
+
+MAC and VLAN Anti-Spoofing Feature for VFs
+------------------------------------------
+When a malicious driver on a Virtual Function (VF) interface attempts to send a
+spoofed packet, it is dropped by the hardware and not transmitted.
+
+NOTE: This feature can be disabled for a specific VF::
+
+ # ip link set <ethX> vf <vf id> spoofchk {off|on}
+
+
+Jumbo Frames
+------------
+Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
+to a value larger than the default value of 1500.
+
+Use the ifconfig command to increase the MTU size. For example, enter the
+following where <ethX> is the interface number::
+
+ # ifconfig <ethX> mtu 9000 up
+
+Alternatively, you can use the ip command as follows::
+
+ # ip link set mtu 9000 dev <ethX>
+ # ip link set up dev <ethX>
+
+This setting is not saved across reboots.
+
+
+NOTE: The maximum MTU setting for jumbo frames is 9702. This corresponds to the
+maximum jumbo frame size of 9728 bytes.
+
+NOTE: This driver will attempt to use multiple page sized buffers to receive
+each jumbo packet. This should help to avoid buffer starvation issues when
+allocating receive packets.
+
+NOTE: Packet loss may have a greater impact on throughput when you use jumbo
+frames. If you observe a drop in performance after enabling jumbo frames,
+enabling flow control may mitigate the issue.
+
+
+Speed and Duplex Configuration
+------------------------------
+In addressing speed and duplex configuration issues, you need to distinguish
+between copper-based adapters and fiber-based adapters.
+
+In the default mode, an Intel(R) Ethernet Network Adapter using copper
+connections will attempt to auto-negotiate with its link partner to determine
+the best setting. If the adapter cannot establish link with the link partner
+using auto-negotiation, you may need to manually configure the adapter and link
+partner to identical settings to establish link and pass packets. This should
+only be needed when attempting to link with an older switch that does not
+support auto-negotiation or one that has been forced to a specific speed or
+duplex mode. Your link partner must match the setting you choose. 1 Gbps speeds
+and higher cannot be forced. Use the autonegotiation advertising setting to
+manually set devices for 1 Gbps and higher.
+
+Speed, duplex, and autonegotiation advertising are configured through the
+ethtool utility. For the latest version, download and install ethtool from the
+following website:
+
+ https://kernel.org/pub/software/network/ethtool/
+
+To see the speed configurations your device supports, run the following::
+
+ # ethtool <ethX>
+
+Caution: Only experienced network administrators should force speed and duplex
+or change autonegotiation advertising manually. The settings at the switch must
+always match the adapter settings. Adapter performance may suffer or your
+adapter may not operate if you configure the adapter differently from your
+switch.
+
+
+Data Center Bridging (DCB)
+--------------------------
+NOTE: The kernel assumes that TC0 is available, and will disable Priority Flow
+Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
+enabled when setting up DCB on your switch.
+
+DCB is a configuration Quality of Service implementation in hardware. It uses
+the VLAN priority tag (802.1p) to filter traffic. That means that there are 8
+different priorities that traffic can be filtered into. It also enables
+priority flow control (802.1Qbb) which can limit or eliminate the number of
+dropped packets during network stress. Bandwidth can be allocated to each of
+these priorities, which is enforced at the hardware level (802.1Qaz).
+
+DCB is normally configured on the network using the DCBX protocol (802.1Qaz), a
+specialization of LLDP (802.1AB). The ice driver supports the following
+mutually exclusive variants of DCBX support:
+
+1) Firmware-based LLDP Agent
+2) Software-based LLDP Agent
+
+In firmware-based mode, firmware intercepts all LLDP traffic and handles DCBX
+negotiation transparently for the user. In this mode, the adapter operates in
+"willing" DCBX mode, receiving DCB settings from the link partner (typically a
+switch). The local user can only query the negotiated DCB configuration. For
+information on configuring DCBX parameters on a switch, please consult the
+switch manufacturer's documentation.
+
+In software-based mode, LLDP traffic is forwarded to the network stack and user
+space, where a software agent can handle it. In this mode, the adapter can
+operate in either "willing" or "nonwilling" DCBX mode and DCB configuration can
+be both queried and set locally. This mode requires the FW-based LLDP Agent to
+be disabled.
+
+NOTE:
+
+- You can enable and disable the firmware-based LLDP Agent using an ethtool
+ private flag. Refer to the "FW-LLDP (Firmware Link Layer Discovery Protocol)"
+ section in this README for more information.
+- In software-based DCBX mode, you can configure DCB parameters using software
+ LLDP/DCBX agents that interface with the Linux kernel's DCB Netlink API. We
+ recommend using OpenLLDP as the DCBX agent when running in software mode. For
+ more information, see the OpenLLDP man pages and
+ https://github.com/intel/openlldp.
+- The driver implements the DCB netlink interface layer to allow the user space
+ to communicate with the driver and query DCB configuration for the port.
+- iSCSI with DCB is not supported.
+
+
+FW-LLDP (Firmware Link Layer Discovery Protocol)
+------------------------------------------------
+Use ethtool to change FW-LLDP settings. The FW-LLDP setting is per port and
+persists across boots.
+
+To enable LLDP::
+
+ # ethtool --set-priv-flags <ethX> fw-lldp-agent on
+
+To disable LLDP::
+
+ # ethtool --set-priv-flags <ethX> fw-lldp-agent off
+
+To check the current LLDP setting::
+
+ # ethtool --show-priv-flags <ethX>
+
+NOTE: You must enable the UEFI HII "LLDP Agent" attribute for this setting to
+take effect. If "LLDP AGENT" is set to disabled, you cannot enable it from the
+OS.
+
+
+Flow Control
+------------
+Ethernet Flow Control (IEEE 802.3x) can be configured with ethtool to enable
+receiving and transmitting pause frames for ice. When transmit is enabled,
+pause frames are generated when the receive packet buffer crosses a predefined
+threshold. When receive is enabled, the transmit unit will halt for the time
+delay specified when a pause frame is received.
+
+NOTE: You must have a flow control capable link partner.
+
+Flow Control is disabled by default.
+
+Use ethtool to change the flow control settings.
+
+To enable or disable Rx or Tx Flow Control::
+
+ # ethtool -A <ethX> rx <on|off> tx <on|off>
+
+Note: This command only enables or disables Flow Control if auto-negotiation is
+disabled. If auto-negotiation is enabled, this command changes the parameters
+used for auto-negotiation with the link partner.
+
+Note: Flow Control auto-negotiation is part of link auto-negotiation. Depending
+on your device, you may not be able to change the auto-negotiation setting.
+
+NOTE:
+
+- The ice driver requires flow control on both the port and link partner. If
+ flow control is disabled on one of the sides, the port may appear to hang on
+ heavy traffic.
+- You may encounter issues with link-level flow control (LFC) after disabling
+ DCB. The LFC status may show as enabled but traffic is not paused. To resolve
+ this issue, disable and reenable LFC using ethtool::
+
+ # ethtool -A <ethX> rx off tx off
+ # ethtool -A <ethX> rx on tx on
+
+
+NAPI
+----
+This driver supports NAPI (Rx polling mode).
+For more information on NAPI, see
+https://www.linuxfoundation.org/collaborate/workgroups/networking/napi
+
+
+MACVLAN
+-------
+This driver supports MACVLAN. Kernel support for MACVLAN can be tested by
+checking if the MACVLAN driver is loaded. You can run 'lsmod | grep macvlan' to
+see if the MACVLAN driver is loaded or run 'modprobe macvlan' to try to load
+the MACVLAN driver.
+
+NOTE:
+
+- In passthru mode, you can only set up one MACVLAN device. It will inherit the
+ MAC address of the underlying PF (Physical Function) device.
+
+
+IEEE 802.1ad (QinQ) Support
+---------------------------
+The IEEE 802.1ad standard, informally known as QinQ, allows for multiple VLAN
+IDs within a single Ethernet frame. VLAN IDs are sometimes referred to as
+"tags," and multiple VLAN IDs are thus referred to as a "tag stack." Tag stacks
+allow L2 tunneling and the ability to segregate traffic within a particular
+VLAN ID, among other uses.
+
+NOTES:
+
+- Receive checksum offloads and VLAN acceleration are not supported for 802.1ad
+ (QinQ) packets.
+
+- 0x88A8 traffic will not be received unless VLAN stripping is disabled with
+ the following command::
+
+ # ethool -K <ethX> rxvlan off
+
+- 0x88A8/0x8100 double VLANs cannot be used with 0x8100 or 0x8100/0x8100 VLANS
+ configured on the same port. 0x88a8/0x8100 traffic will not be received if
+ 0x8100 VLANs are configured.
+
+- The VF can only transmit 0x88A8/0x8100 (i.e., 802.1ad/802.1Q) traffic if:
+
+ 1) The VF is not assigned a port VLAN.
+ 2) spoofchk is disabled from the PF. If you enable spoofchk, the VF will
+ not transmit 0x88A8/0x8100 traffic.
+
+- The VF may not receive all network traffic based on the Inner VLAN header
+ when VF true promiscuous mode (vf-true-promisc-support) and double VLANs are
+ enabled in SR-IOV mode.
+
+The following are examples of how to configure 802.1ad (QinQ)::
+
+ # ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
+ # ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
+
+ Where "24" and "371" are example VLAN IDs.
+
+
+Tunnel/Overlay Stateless Offloads
+---------------------------------
+Supported tunnels and overlays include VXLAN, GENEVE, and others depending on
+hardware and software configuration. Stateless offloads are enabled by default.
+
+To view the current state of all offloads::
+
+ # ethtool -k <ethX>
+
+
+UDP Segmentation Offload
+------------------------
+Allows the adapter to offload transmit segmentation of UDP packets with
+payloads up to 64K into valid Ethernet frames. Because the adapter hardware is
+able to complete data segmentation much faster than operating system software,
+this feature may improve transmission performance.
+In addition, the adapter may use fewer CPU resources.
+
+NOTE:
+
+- The application sending UDP packets must support UDP segmentation offload.
+
+To enable/disable UDP Segmentation Offload, issue the following command::
+
+ # ethtool -K <ethX> tx-udp-segmentation [off|on]
+
+
+Performance Optimization
+========================
+Driver defaults are meant to fit a wide variety of workloads, but if further
+optimization is required, we recommend experimenting with the following
+settings.
+
+
+Rx Descriptor Ring Size
+-----------------------
+To reduce the number of Rx packet discards, increase the number of Rx
+descriptors for each Rx ring using ethtool.
+
+ Check if the interface is dropping Rx packets due to buffers being full
+ (rx_dropped.nic can mean that there is no PCIe bandwidth)::
+
+ # ethtool -S <ethX> | grep "rx_dropped"
+
+ If the previous command shows drops on queues, it may help to increase
+ the number of descriptors using 'ethtool -G'::
+
+ # ethtool -G <ethX> rx <N>
+ Where <N> is the desired number of ring entries/descriptors
+
+ This can provide temporary buffering for issues that create latency while
+ the CPUs process descriptors.
+
+
+Interrupt Rate Limiting
+-----------------------
+This driver supports an adaptive interrupt throttle rate (ITR) mechanism that
+is tuned for general workloads. The user can customize the interrupt rate
+control for specific workloads, via ethtool, adjusting the number of
+microseconds between interrupts.
+
+To set the interrupt rate manually, you must disable adaptive mode::
+
+ # ethtool -C <ethX> adaptive-rx off adaptive-tx off
+
+For lower CPU utilization:
+
+ Disable adaptive ITR and lower Rx and Tx interrupts. The examples below
+ affect every queue of the specified interface.
+
+ Setting rx-usecs and tx-usecs to 80 will limit interrupts to about
+ 12,500 interrupts per second per queue::
+
+ # ethtool -C <ethX> adaptive-rx off adaptive-tx off rx-usecs 80 tx-usecs 80
+
+For reduced latency:
+
+ Disable adaptive ITR and ITR by setting rx-usecs and tx-usecs to 0
+ using ethtool::
+
+ # ethtool -C <ethX> adaptive-rx off adaptive-tx off rx-usecs 0 tx-usecs 0
+
+Per-queue interrupt rate settings:
+
+ The following examples are for queues 1 and 3, but you can adjust other
+ queues.
+
+ To disable Rx adaptive ITR and set static Rx ITR to 10 microseconds or
+ about 100,000 interrupts/second, for queues 1 and 3::
+
+ # ethtool --per-queue <ethX> queue_mask 0xa --coalesce adaptive-rx off
+ rx-usecs 10
+
+ To show the current coalesce settings for queues 1 and 3::
+
+ # ethtool --per-queue <ethX> queue_mask 0xa --show-coalesce
+
+Bounding interrupt rates using rx-usecs-high:
+
+ :Valid Range: 0-236 (0=no limit)
+
+ The range of 0-236 microseconds provides an effective range of 4,237 to
+ 250,000 interrupts per second. The value of rx-usecs-high can be set
+ independently of rx-usecs and tx-usecs in the same ethtool command, and is
+ also independent of the adaptive interrupt moderation algorithm. The
+ underlying hardware supports granularity in 4-microsecond intervals, so
+ adjacent values may result in the same interrupt rate.
+
+ The following command would disable adaptive interrupt moderation, and allow
+ a maximum of 5 microseconds before indicating a receive or transmit was
+ complete. However, instead of resulting in as many as 200,000 interrupts per
+ second, it limits total interrupts per second to 50,000 via the rx-usecs-high
+ parameter.
+
+ ::
+
+ # ethtool -C <ethX> adaptive-rx off adaptive-tx off rx-usecs-high 20
+ rx-usecs 5 tx-usecs 5
+
+
+Virtualized Environments
+------------------------
+In addition to the other suggestions in this section, the following may be
+helpful to optimize performance in VMs.
+
+ Using the appropriate mechanism (vcpupin) in the VM, pin the CPUs to
+ individual LCPUs, making sure to use a set of CPUs included in the
+ device's local_cpulist: ``/sys/class/net/<ethX>/device/local_cpulist``.
+
+ Configure as many Rx/Tx queues in the VM as available. (See the iavf driver
+ documentation for the number of queues supported.) For example::
+
+ # ethtool -L <virt_interface> rx <max> tx <max>
- -> Device Drivers
- -> Network device support (NETDEVICES [=y])
- -> Ethernet driver support
- -> Intel devices
- -> Intel(R) Ethernet Connection E800 Series Support
Support
=======
For general information, go to the Intel support website at:
-
https://www.intel.com/support/
or the Intel Wired Networking project hosted by Sourceforge at:
-
https://sourceforge.net/projects/e1000
If an issue is identified with the released source code on a supported kernel
with a supported adapter, email the specific information related to the issue
to e1000-devel@lists.sf.net.
+
+
+Trademarks
+==========
+Intel is a trademark or registered trademark of Intel Corporation or its
+subsidiaries in the United States and/or other countries.
+
+* Other names and brands may be claimed as the property of others.
diff --git a/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst b/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst
index 61e850460e18..dd5cd69467be 100644
--- a/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst
+++ b/Documentation/networking/device_drivers/ethernet/marvell/octeontx2.rst
@@ -217,3 +217,73 @@ For example::
NPA_AF_ERR:
NPA Error Interrupt Reg : 4096
AQ Doorbell Error
+
+
+NIX Reporters
+-------------
+The NIX reporters are responsible for reporting and recovering the following group of errors:
+
+1. GENERAL events
+
+ - Receive mirror/multicast packet drop due to insufficient buffer.
+ - SMQ Flush operation.
+
+2. ERROR events
+
+ - Memory Fault due to WQE read/write from multicast/mirror buffer.
+ - Receive multicast/mirror replication list error.
+ - Receive packet on an unmapped PF.
+ - Fault due to NIX_AQ_INST_S read or NIX_AQ_RES_S write.
+ - AQ Doorbell Error.
+
+3. RAS events
+
+ - RAS Error Reporting for NIX Receive Multicast/Mirror Entry Structure.
+ - RAS Error Reporting for WQE/Packet Data read from Multicast/Mirror Buffer..
+ - RAS Error Reporting for NIX_AQ_INST_S/NIX_AQ_RES_S.
+
+4. RVU events
+
+ - Error due to unmapped slot.
+
+Sample Output::
+
+ ~# ./devlink health
+ pci/0002:01:00.0:
+ reporter hw_npa_intr
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_gen
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_err
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_npa_ras
+ state healthy error 0 recover 0 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_intr
+ state healthy error 1121 recover 1121 last_dump_date 2021-01-19 last_dump_time 05:42:26 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_gen
+ state healthy error 949 recover 949 last_dump_date 2021-01-19 last_dump_time 05:42:43 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_err
+ state healthy error 1147 recover 1147 last_dump_date 2021-01-19 last_dump_time 05:42:59 grace_period 0 auto_recover true auto_dump true
+ reporter hw_nix_ras
+ state healthy error 409 recover 409 last_dump_date 2021-01-19 last_dump_time 05:43:16 grace_period 0 auto_recover true auto_dump true
+
+Each reporter dumps the
+
+ - Error Type
+ - Error Register value
+ - Reason in words
+
+For example::
+
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_intr
+ NIX_AF_RVU:
+ NIX RVU Interrupt Reg : 1
+ Unmap Slot Error
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_gen
+ NIX_AF_GENERAL:
+ NIX General Interrupt Reg : 1
+ Rx multicast pkt drop
+ ~# devlink health dump show pci/0002:01:00.0 reporter hw_nix_err
+ NIX_AF_ERR:
+ NIX Error Interrupt Reg : 64
+ Rx on unmapped PF_FUNC
diff --git a/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst b/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
index e9b65035cd47..1b7e32d8a61b 100644
--- a/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
+++ b/Documentation/networking/device_drivers/ethernet/mellanox/mlx5.rst
@@ -12,11 +12,13 @@ Contents
- `Enabling the driver and kconfig options`_
- `Devlink info`_
- `Devlink parameters`_
+- `mlx5 subfunction`_
+- `mlx5 function attributes`_
- `Devlink health reporters`_
- `mlx5 tracepoints`_
Enabling the driver and kconfig options
-================================================
+=======================================
| mlx5 core is modular and most of the major mlx5 core driver features can be selected (compiled in/out)
| at build time via kernel Kconfig flags.
@@ -97,6 +99,11 @@ Enabling the driver and kconfig options
| Provides low-level InfiniBand/RDMA and `RoCE <https://community.mellanox.com/s/article/recommended-network-configuration-examples-for-roce-deployment>`_ support.
+**CONFIG_MLX5_SF=(y/n)**
+
+| Build support for subfunction.
+| Subfunctons are more light weight than PCI SRIOV VFs. Choosing this option
+| will enable support for creating subfunction devices.
**External options** ( Choose if the corresponding mlx5 feature is required )
@@ -176,6 +183,214 @@ User command examples:
values:
cmode driverinit value true
+mlx5 subfunction
+================
+mlx5 supports subfunction management using devlink port (see :ref:`Documentation/networking/devlink/devlink-port.rst <devlink_port>`) interface.
+
+A Subfunction has its own function capabilities and its own resources. This
+means a subfunction has its own dedicated queues (txq, rxq, cq, eq). These
+queues are neither shared nor stolen from the parent PCI function.
+
+When a subfunction is RDMA capable, it has its own QP1, GID table and rdma
+resources neither shared nor stolen from the parent PCI function.
+
+A subfunction has a dedicated window in PCI BAR space that is not shared
+with ther other subfunctions or the parent PCI function. This ensures that all
+devices (netdev, rdma, vdpa etc.) of the subfunction accesses only assigned
+PCI BAR space.
+
+A Subfunction supports eswitch representation through which it supports tc
+offloads. The user configures eswitch to send/receive packets from/to
+the subfunction port.
+
+Subfunctions share PCI level resources such as PCI MSI-X IRQs with
+other subfunctions and/or with its parent PCI function.
+
+Example mlx5 software, system and device view::
+
+ _______
+ | admin |
+ | user |----------
+ |_______| |
+ | |
+ ____|____ __|______ _________________
+ | | | | | |
+ | devlink | | tc tool | | user |
+ | tool | |_________| | applications |
+ |_________| | |_________________|
+ | | | |
+ | | | | Userspace
+ +---------|-------------|-------------------|----------|--------------------+
+ | | +----------+ +----------+ Kernel
+ | | | netdev | | rdma dev |
+ | | +----------+ +----------+
+ (devlink port add/del | ^ ^
+ port function set) | | |
+ | | +---------------|
+ _____|___ | | _______|_______
+ | | | | | mlx5 class |
+ | devlink | +------------+ | | drivers |
+ | kernel | | rep netdev | | |(mlx5_core,ib) |
+ |_________| +------------+ | |_______________|
+ | | | ^
+ (devlink ops) | | (probe/remove)
+ _________|________ | | ____|________
+ | subfunction | | +---------------+ | subfunction |
+ | management driver|----- | subfunction |---| driver |
+ | (mlx5_core) | | auxiliary dev | | (mlx5_core) |
+ |__________________| +---------------+ |_____________|
+ | ^
+ (sf add/del, vhca events) |
+ | (device add/del)
+ _____|____ ____|________
+ | | | subfunction |
+ | PCI NIC |---- activate/deactive events---->| host driver |
+ |__________| | (mlx5_core) |
+ |_____________|
+
+Subfunction is created using devlink port interface.
+
+- Change device to switchdev mode::
+
+ $ devlink dev eswitch set pci/0000:06:00.0 mode switchdev
+
+- Add a devlink port of subfunction flaovur::
+
+ $ devlink port add pci/0000:06:00.0 flavour pcisf pfnum 0 sfnum 88
+ pci/0000:06:00.0/32768: type eth netdev eth6 flavour pcisf controller 0 pfnum 0 sfnum 88 external false splittable false
+ function:
+ hw_addr 00:00:00:00:00:00 state inactive opstate detached
+
+- Show a devlink port of the subfunction::
+
+ $ devlink port show pci/0000:06:00.0/32768
+ pci/0000:06:00.0/32768: type eth netdev enp6s0pf0sf88 flavour pcisf pfnum 0 sfnum 88
+ function:
+ hw_addr 00:00:00:00:00:00 state inactive opstate detached
+
+- Delete a devlink port of subfunction after use::
+
+ $ devlink port del pci/0000:06:00.0/32768
+
+mlx5 function attributes
+========================
+The mlx5 driver provides a mechanism to setup PCI VF/SF function attributes in
+a unified way for SmartNIC and non-SmartNIC.
+
+This is supported only when the eswitch mode is set to switchdev. Port function
+configuration of the PCI VF/SF is supported through devlink eswitch port.
+
+Port function attributes should be set before PCI VF/SF is enumerated by the
+driver.
+
+MAC address setup
+-----------------
+mlx5 driver provides mechanism to setup the MAC address of the PCI VF/SF.
+
+The configured MAC address of the PCI VF/SF will be used by netdevice and rdma
+device created for the PCI VF/SF.
+
+- Get the MAC address of the VF identified by its unique devlink port index::
+
+ $ devlink port show pci/0000:06:00.0/2
+ pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1
+ function:
+ hw_addr 00:00:00:00:00:00
+
+- Set the MAC address of the VF identified by its unique devlink port index::
+
+ $ devlink port function set pci/0000:06:00.0/2 hw_addr 00:11:22:33:44:55
+
+ $ devlink port show pci/0000:06:00.0/2
+ pci/0000:06:00.0/2: type eth netdev enp6s0pf0vf1 flavour pcivf pfnum 0 vfnum 1
+ function:
+ hw_addr 00:11:22:33:44:55
+
+- Get the MAC address of the SF identified by its unique devlink port index::
+
+ $ devlink port show pci/0000:06:00.0/32768
+ pci/0000:06:00.0/32768: type eth netdev enp6s0pf0sf88 flavour pcisf pfnum 0 sfnum 88
+ function:
+ hw_addr 00:00:00:00:00:00
+
+- Set the MAC address of the VF identified by its unique devlink port index::
+
+ $ devlink port function set pci/0000:06:00.0/32768 hw_addr 00:00:00:00:88:88
+
+ $ devlink port show pci/0000:06:00.0/32768
+ pci/0000:06:00.0/32768: type eth netdev enp6s0pf0sf88 flavour pcivf pfnum 0 sfnum 88
+ function:
+ hw_addr 00:00:00:00:88:88
+
+SF state setup
+--------------
+To use the SF, the user must active the SF using the SF function state
+attribute.
+
+- Get the state of the SF identified by its unique devlink port index::
+
+ $ devlink port show ens2f0npf0sf88
+ pci/0000:06:00.0/32768: type eth netdev ens2f0npf0sf88 flavour pcisf controller 0 pfnum 0 sfnum 88 external false splittable false
+ function:
+ hw_addr 00:00:00:00:88:88 state inactive opstate detached
+
+- Activate the function and verify its state is active::
+
+ $ devlink port function set ens2f0npf0sf88 state active
+
+ $ devlink port show ens2f0npf0sf88
+ pci/0000:06:00.0/32768: type eth netdev ens2f0npf0sf88 flavour pcisf controller 0 pfnum 0 sfnum 88 external false splittable false
+ function:
+ hw_addr 00:00:00:00:88:88 state active opstate detached
+
+Upon function activation, the PF driver instance gets the event from the device
+that a particular SF was activated. It's the cue to put the device on bus, probe
+it and instantiate the devlink instance and class specific auxiliary devices
+for it.
+
+- Show the auxiliary device and port of the subfunction::
+
+ $ devlink dev show
+ devlink dev show auxiliary/mlx5_core.sf.4
+
+ $ devlink port show auxiliary/mlx5_core.sf.4/1
+ auxiliary/mlx5_core.sf.4/1: type eth netdev p0sf88 flavour virtual port 0 splittable false
+
+ $ rdma link show mlx5_0/1
+ link mlx5_0/1 state ACTIVE physical_state LINK_UP netdev p0sf88
+
+ $ rdma dev show
+ 8: rocep6s0f1: node_type ca fw 16.29.0550 node_guid 248a:0703:00b3:d113 sys_image_guid 248a:0703:00b3:d112
+ 13: mlx5_0: node_type ca fw 16.29.0550 node_guid 0000:00ff:fe00:8888 sys_image_guid 248a:0703:00b3:d112
+
+- Subfunction auxiliary device and class device hierarchy::
+
+ mlx5_core.sf.4
+ (subfunction auxiliary device)
+ /\
+ / \
+ / \
+ / \
+ / \
+ mlx5_core.eth.4 mlx5_core.rdma.4
+ (sf eth aux dev) (sf rdma aux dev)
+ | |
+ | |
+ p0sf88 mlx5_0
+ (sf netdev) (sf rdma device)
+
+Additionally, the SF port also gets the event when the driver attaches to the
+auxiliary device of the subfunction. This results in changing the operational
+state of the function. This provides visiblity to the user to decide when is it
+safe to delete the SF port for graceful termination of the subfunction.
+
+- Show the SF port operational state::
+
+ $ devlink port show ens2f0npf0sf88
+ pci/0000:06:00.0/32768: type eth netdev ens2f0npf0sf88 flavour pcisf controller 0 pfnum 0 sfnum 88 external false splittable false
+ function:
+ hw_addr 00:00:00:00:88:88 state active opstate attached
+
Devlink health reporters
========================
diff --git a/Documentation/networking/device_drivers/ethernet/ti/am65_nuss_cpsw_switchdev.rst b/Documentation/networking/device_drivers/ethernet/ti/am65_nuss_cpsw_switchdev.rst
new file mode 100644
index 000000000000..f24adfab6a1b
--- /dev/null
+++ b/Documentation/networking/device_drivers/ethernet/ti/am65_nuss_cpsw_switchdev.rst
@@ -0,0 +1,143 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================================================
+Texas Instruments K3 AM65 CPSW NUSS switchdev based ethernet driver
+===================================================================
+
+:Version: 1.0
+
+Port renaming
+=============
+
+In order to rename via udev::
+
+ ip -d link show dev sw0p1 | grep switchid
+
+ SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}==<switchid>, \
+ ATTR{phys_port_name}!="", NAME="sw0$attr{phys_port_name}"
+
+
+Multi mac mode
+==============
+
+- The driver is operating in multi-mac mode by default, thus
+ working as N individual network interfaces.
+
+Devlink configuration parameters
+================================
+
+See Documentation/networking/devlink/am65-nuss-cpsw-switch.rst
+
+Enabling "switch"
+=================
+
+The Switch mode can be enabled by configuring devlink driver parameter
+"switch_mode" to 1/true::
+
+ devlink dev param set platform/c000000.ethernet \
+ name switch_mode value true cmode runtime
+
+This can be done regardless of the state of Port's netdev devices - UP/DOWN, but
+Port's netdev devices have to be in UP before joining to the bridge to avoid
+overwriting of bridge configuration as CPSW switch driver completely reloads its
+configuration when first port changes its state to UP.
+
+When the both interfaces joined the bridge - CPSW switch driver will enable
+marking packets with offload_fwd_mark flag.
+
+All configuration is implemented via switchdev API.
+
+Bridge setup
+============
+
+::
+
+ devlink dev param set platform/c000000.ethernet \
+ name switch_mode value true cmode runtime
+
+ ip link add name br0 type bridge
+ ip link set dev br0 type bridge ageing_time 1000
+ ip link set dev sw0p1 up
+ ip link set dev sw0p2 up
+ ip link set dev sw0p1 master br0
+ ip link set dev sw0p2 master br0
+
+ [*] bridge vlan add dev br0 vid 1 pvid untagged self
+
+ [*] if vlan_filtering=1. where default_pvid=1
+
+ Note. Steps [*] are mandatory.
+
+
+On/off STP
+==========
+
+::
+
+ ip link set dev BRDEV type bridge stp_state 1/0
+
+VLAN configuration
+==================
+
+::
+
+ bridge vlan add dev br0 vid 1 pvid untagged self <---- add cpu port to VLAN 1
+
+Note. This step is mandatory for bridge/default_pvid.
+
+Add extra VLANs
+===============
+
+ 1. untagged::
+
+ bridge vlan add dev sw0p1 vid 100 pvid untagged master
+ bridge vlan add dev sw0p2 vid 100 pvid untagged master
+ bridge vlan add dev br0 vid 100 pvid untagged self <---- Add cpu port to VLAN100
+
+ 2. tagged::
+
+ bridge vlan add dev sw0p1 vid 100 master
+ bridge vlan add dev sw0p2 vid 100 master
+ bridge vlan add dev br0 vid 100 pvid tagged self <---- Add cpu port to VLAN100
+
+FDBs
+----
+
+FDBs are automatically added on the appropriate switch port upon detection
+
+Manually adding FDBs::
+
+ bridge fdb add aa:bb:cc:dd:ee:ff dev sw0p1 master vlan 100
+ bridge fdb add aa:bb:cc:dd:ee:fe dev sw0p2 master <---- Add on all VLANs
+
+MDBs
+----
+
+MDBs are automatically added on the appropriate switch port upon detection
+
+Manually adding MDBs::
+
+ bridge mdb add dev br0 port sw0p1 grp 239.1.1.1 permanent vid 100
+ bridge mdb add dev br0 port sw0p1 grp 239.1.1.1 permanent <---- Add on all VLANs
+
+Multicast flooding
+==================
+CPU port mcast_flooding is always on
+
+Turning flooding on/off on swithch ports:
+bridge link set dev sw0p1 mcast_flood on/off
+
+Access and Trunk port
+=====================
+
+::
+
+ bridge vlan add dev sw0p1 vid 100 pvid untagged master
+ bridge vlan add dev sw0p2 vid 100 master
+
+
+ bridge vlan add dev br0 vid 100 self
+ ip link add link br0 name br0.100 type vlan id 100
+
+Note. Setting PVID on Bridge device itself works only for
+default VLAN (default_pvid).
diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index a3113ffd7a16..d8279de7bf25 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -15,6 +15,7 @@ Contents:
ethernet/index
fddi/index
hamradio/index
+ qlogic/index
wan/index
wifi/index
diff --git a/Documentation/networking/device_drivers/qlogic/index.rst b/Documentation/networking/device_drivers/qlogic/index.rst
new file mode 100644
index 000000000000..ad05b04286e4
--- /dev/null
+++ b/Documentation/networking/device_drivers/qlogic/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+
+QLogic QLGE Device Drivers
+===============================================
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ qlge
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
diff --git a/Documentation/networking/device_drivers/qlogic/qlge.rst b/Documentation/networking/device_drivers/qlogic/qlge.rst
new file mode 100644
index 000000000000..0b888253d152
--- /dev/null
+++ b/Documentation/networking/device_drivers/qlogic/qlge.rst
@@ -0,0 +1,118 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================
+QLogic QLGE 10Gb Ethernet device driver
+=======================================
+
+This driver use drgn and devlink for debugging.
+
+Dump kernel data structures in drgn
+-----------------------------------
+
+To dump kernel data structures, the following Python script can be used
+in drgn:
+
+.. code-block:: python
+
+ def align(x, a):
+ """the alignment a should be a power of 2
+ """
+ mask = a - 1
+ return (x+ mask) & ~mask
+
+ def struct_size(struct_type):
+ struct_str = "struct {}".format(struct_type)
+ return sizeof(Object(prog, struct_str, address=0x0))
+
+ def netdev_priv(netdevice):
+ NETDEV_ALIGN = 32
+ return netdevice.value_() + align(struct_size("net_device"), NETDEV_ALIGN)
+
+ name = 'xxx'
+ qlge_device = None
+ netdevices = prog['init_net'].dev_base_head.address_of_()
+ for netdevice in list_for_each_entry("struct net_device", netdevices, "dev_list"):
+ if netdevice.name.string_().decode('ascii') == name:
+ print(netdevice.name)
+
+ ql_adapter = Object(prog, "struct ql_adapter", address=netdev_priv(qlge_device))
+
+The struct ql_adapter will be printed in drgn as follows,
+
+ >>> ql_adapter
+ (struct ql_adapter){
+ .ricb = (struct ricb){
+ .base_cq = (u8)0,
+ .flags = (u8)120,
+ .mask = (__le16)26637,
+ .hash_cq_id = (u8 [1024]){ 172, 142, 255, 255 },
+ .ipv6_hash_key = (__le32 [10]){},
+ .ipv4_hash_key = (__le32 [4]){},
+ },
+ .flags = (unsigned long)0,
+ .wol = (u32)0,
+ .nic_stats = (struct nic_stats){
+ .tx_pkts = (u64)0,
+ .tx_bytes = (u64)0,
+ .tx_mcast_pkts = (u64)0,
+ .tx_bcast_pkts = (u64)0,
+ .tx_ucast_pkts = (u64)0,
+ .tx_ctl_pkts = (u64)0,
+ .tx_pause_pkts = (u64)0,
+ ...
+ },
+ .active_vlans = (unsigned long [64]){
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52780853100545, 18446744073709551615,
+ 18446619461681283072, 0, 42949673024, 2147483647,
+ },
+ .rx_ring = (struct rx_ring [17]){
+ {
+ .cqicb = (struct cqicb){
+ .msix_vect = (u8)0,
+ .reserved1 = (u8)0,
+ .reserved2 = (u8)0,
+ .flags = (u8)0,
+ .len = (__le16)0,
+ .rid = (__le16)0,
+ ...
+ },
+ .cq_base = (void *)0x0,
+ .cq_base_dma = (dma_addr_t)0,
+ }
+ ...
+ }
+ }
+
+coredump via devlink
+--------------------
+
+
+And the coredump obtained via devlink in json format looks like,
+
+.. code:: shell
+
+ $ devlink health dump show DEVICE reporter coredump -p -j
+ {
+ "Core Registers": {
+ "segment": 1,
+ "values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
+ },
+ "Test Logic Regs": {
+ "segment": 2,
+ "values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
+ },
+ "RMII Registers": {
+ "segment": 3,
+ "values": [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
+ },
+ ...
+ "Sem Registers": {
+ "segment": 50,
+ "values": [ 0,0,0,0 ]
+ }
+ }
+
+When the module parameter qlge_force_coredump is set to be true, the MPI
+RISC reset before coredumping. So coredumping will much longer since
+devlink tool has to wait for 5 secs for the resetting to be
+finished.
diff --git a/Documentation/networking/devlink/am65-nuss-cpsw-switch.rst b/Documentation/networking/devlink/am65-nuss-cpsw-switch.rst
new file mode 100644
index 000000000000..1e589c26abff
--- /dev/null
+++ b/Documentation/networking/devlink/am65-nuss-cpsw-switch.rst
@@ -0,0 +1,26 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==============================
+am65-cpsw-nuss devlink support
+==============================
+
+This document describes the devlink features implemented by the ``am65-cpsw-nuss``
+device driver.
+
+Parameters
+==========
+
+The ``am65-cpsw-nuss`` driver implements the following driver-specific
+parameters.
+
+.. list-table:: Driver-specific parameters implemented
+ :widths: 5 5 5 85
+
+ * - Name
+ - Type
+ - Mode
+ - Description
+ * - ``switch_mode``
+ - Boolean
+ - runtime
+ - Enable switch mode
diff --git a/Documentation/networking/devlink/devlink-port.rst b/Documentation/networking/devlink/devlink-port.rst
new file mode 100644
index 000000000000..e99b41599465
--- /dev/null
+++ b/Documentation/networking/devlink/devlink-port.rst
@@ -0,0 +1,199 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _devlink_port:
+
+============
+Devlink Port
+============
+
+``devlink-port`` is a port that exists on the device. It has a logically
+separate ingress/egress point of the device. A devlink port can be any one
+of many flavours. A devlink port flavour along with port attributes
+describe what a port represents.
+
+A device driver that intends to publish a devlink port sets the
+devlink port attributes and registers the devlink port.
+
+Devlink port flavours are described below.
+
+.. list-table:: List of devlink port flavours
+ :widths: 33 90
+
+ * - Flavour
+ - Description
+ * - ``DEVLINK_PORT_FLAVOUR_PHYSICAL``
+ - Any kind of physical port. This can be an eswitch physical port or any
+ other physical port on the device.
+ * - ``DEVLINK_PORT_FLAVOUR_DSA``
+ - This indicates a DSA interconnect port.
+ * - ``DEVLINK_PORT_FLAVOUR_CPU``
+ - This indicates a CPU port applicable only to DSA.
+ * - ``DEVLINK_PORT_FLAVOUR_PCI_PF``
+ - This indicates an eswitch port representing a port of PCI
+ physical function (PF).
+ * - ``DEVLINK_PORT_FLAVOUR_PCI_VF``
+ - This indicates an eswitch port representing a port of PCI
+ virtual function (VF).
+ * - ``DEVLINK_PORT_FLAVOUR_PCI_SF``
+ - This indicates an eswitch port representing a port of PCI
+ subfunction (SF).
+ * - ``DEVLINK_PORT_FLAVOUR_VIRTUAL``
+ - This indicates a virtual port for the PCI virtual function.
+
+Devlink port can have a different type based on the link layer described below.
+
+.. list-table:: List of devlink port types
+ :widths: 23 90
+
+ * - Type
+ - Description
+ * - ``DEVLINK_PORT_TYPE_ETH``
+ - Driver should set this port type when a link layer of the port is
+ Ethernet.
+ * - ``DEVLINK_PORT_TYPE_IB``
+ - Driver should set this port type when a link layer of the port is
+ InfiniBand.
+ * - ``DEVLINK_PORT_TYPE_AUTO``
+ - This type is indicated by the user when driver should detect the port
+ type automatically.
+
+PCI controllers
+---------------
+In most cases a PCI device has only one controller. A controller consists of
+potentially multiple physical, virtual functions and subfunctions. A function
+consists of one or more ports. This port is represented by the devlink eswitch
+port.
+
+A PCI device connected to multiple CPUs or multiple PCI root complexes or a
+SmartNIC, however, may have multiple controllers. For a device with multiple
+controllers, each controller is distinguished by a unique controller number.
+An eswitch is on the PCI device which supports ports of multiple controllers.
+
+An example view of a system with two controllers::
+
+ ---------------------------------------------------------
+ | |
+ | --------- --------- ------- ------- |
+ ----------- | | vf(s) | | sf(s) | |vf(s)| |sf(s)| |
+ | server | | ------- ----/---- ---/----- ------- ---/--- ---/--- |
+ | pci rc |=== | pf0 |______/________/ | pf1 |___/_______/ |
+ | connect | | ------- ------- |
+ ----------- | | controller_num=1 (no eswitch) |
+ ------|--------------------------------------------------
+ (internal wire)
+ |
+ ---------------------------------------------------------
+ | devlink eswitch ports and reps |
+ | ----------------------------------------------------- |
+ | |ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 |ctrl-0 | |
+ | |pf0 | pf0vfN | pf0sfN | pf1 | pf1vfN |pf1sfN | |
+ | ----------------------------------------------------- |
+ | |ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 |ctrl-1 | |
+ | |pf0 | pf0vfN | pf0sfN | pf1 | pf1vfN |pf1sfN | |
+ | ----------------------------------------------------- |
+ | |
+ | |
+ ----------- | --------- --------- ------- ------- |
+ | smartNIC| | | vf(s) | | sf(s) | |vf(s)| |sf(s)| |
+ | pci rc |==| ------- ----/---- ---/----- ------- ---/--- ---/--- |
+ | connect | | | pf0 |______/________/ | pf1 |___/_______/ |
+ ----------- | ------- ------- |
+ | |
+ | local controller_num=0 (eswitch) |
+ ---------------------------------------------------------
+
+In the above example, the external controller (identified by controller number = 1)
+doesn't have the eswitch. Local controller (identified by controller number = 0)
+has the eswitch. The Devlink instance on the local controller has eswitch
+devlink ports for both the controllers.
+
+Function configuration
+======================
+
+A user can configure the function attribute before enumerating the PCI
+function. Usually it means, user should configure function attribute
+before a bus specific device for the function is created. However, when
+SRIOV is enabled, virtual function devices are created on the PCI bus.
+Hence, function attribute should be configured before binding virtual
+function device to the driver. For subfunctions, this means user should
+configure port function attribute before activating the port function.
+
+A user may set the hardware address of the function using
+'devlink port function set hw_addr' command. For Ethernet port function
+this means a MAC address.
+
+Subfunction
+============
+
+Subfunction is a lightweight function that has a parent PCI function on which
+it is deployed. Subfunction is created and deployed in unit of 1. Unlike
+SRIOV VFs, a subfunction doesn't require its own PCI virtual function.
+A subfunction communicates with the hardware through the parent PCI function.
+
+To use a subfunction, 3 steps setup sequence is followed.
+(1) create - create a subfunction;
+(2) configure - configure subfunction attributes;
+(3) deploy - deploy the subfunction;
+
+Subfunction management is done using devlink port user interface.
+User performs setup on the subfunction management device.
+
+(1) Create
+----------
+A subfunction is created using a devlink port interface. A user adds the
+subfunction by adding a devlink port of subfunction flavour. The devlink
+kernel code calls down to subfunction management driver (devlink ops) and asks
+it to create a subfunction devlink port. Driver then instantiates the
+subfunction port and any associated objects such as health reporters and
+representor netdevice.
+
+(2) Configure
+-------------
+A subfunction devlink port is created but it is not active yet. That means the
+entities are created on devlink side, the e-switch port representor is created,
+but the subfunction device itself it not created. A user might use e-switch port
+representor to do settings, putting it into bridge, adding TC rules, etc. A user
+might as well configure the hardware address (such as MAC address) of the
+subfunction while subfunction is inactive.
+
+(3) Deploy
+----------
+Once a subfunction is configured, user must activate it to use it. Upon
+activation, subfunction management driver asks the subfunction management
+device to instantiate the subfunction device on particular PCI function.
+A subfunction device is created on the :ref:`Documentation/driver-api/auxiliary_bus.rst <auxiliary_bus>`.
+At this point a matching subfunction driver binds to the subfunction's auxiliary device.
+
+Terms and Definitions
+=====================
+
+.. list-table:: Terms and Definitions
+ :widths: 22 90
+
+ * - Term
+ - Definitions
+ * - ``PCI device``
+ - A physical PCI device having one or more PCI bus consists of one or
+ more PCI controllers.
+ * - ``PCI controller``
+ - A controller consists of potentially multiple physical functions,
+ virtual functions and subfunctions.
+ * - ``Port function``
+ - An object to manage the function of a port.
+ * - ``Subfunction``
+ - A lightweight function that has parent PCI function on which it is
+ deployed.
+ * - ``Subfunction device``
+ - A bus device of the subfunction, usually on a auxiliary bus.
+ * - ``Subfunction driver``
+ - A device driver for the subfunction auxiliary device.
+ * - ``Subfunction management device``
+ - A PCI physical function that supports subfunction management.
+ * - ``Subfunction management driver``
+ - A device driver for PCI physical function that supports
+ subfunction management using devlink port interface.
+ * - ``Subfunction host driver``
+ - A device driver for PCI physical function that hosts subfunction
+ devices. In most cases it is same as subfunction management driver. When
+ subfunction is used on external controller, subfunction management and
+ host drivers are different.
diff --git a/Documentation/networking/devlink/devlink-resource.rst b/Documentation/networking/devlink/devlink-resource.rst
index 93e92d2f0752..3d5ae51e65a2 100644
--- a/Documentation/networking/devlink/devlink-resource.rst
+++ b/Documentation/networking/devlink/devlink-resource.rst
@@ -23,6 +23,20 @@ current size and related sub resources. To access a sub resource, you
specify the path of the resource. For example ``/IPv4/fib`` is the id for
the ``fib`` sub-resource under the ``IPv4`` resource.
+Generic Resources
+=================
+
+Generic resources are used to describe resources that can be shared by multiple
+device drivers and their description must be added to the following table:
+
+.. list-table:: List of Generic Resources
+ :widths: 10 90
+
+ * - Name
+ - Description
+ * - ``physical_ports``
+ - A limited capacity of physical ports that the switch ASIC can support
+
example usage
-------------
diff --git a/Documentation/networking/devlink/devlink-trap.rst b/Documentation/networking/devlink/devlink-trap.rst
index d875f3e1e9cf..935b6397e8cf 100644
--- a/Documentation/networking/devlink/devlink-trap.rst
+++ b/Documentation/networking/devlink/devlink-trap.rst
@@ -480,6 +480,11 @@ be added to the following table:
- ``drop``
- Traps packets that the device decided to drop in case they hit a
blackhole nexthop
+ * - ``dmac_filter``
+ - ``drop``
+ - Traps incoming packets that the device decided to drop because
+ the destination MAC is not configured in the MAC table and
+ the interface is not in promiscuous mode
Driver-specific Packet Traps
============================
diff --git a/Documentation/networking/devlink/index.rst b/Documentation/networking/devlink/index.rst
index d82874760ae2..8428a1220723 100644
--- a/Documentation/networking/devlink/index.rst
+++ b/Documentation/networking/devlink/index.rst
@@ -18,6 +18,7 @@ general.
devlink-info
devlink-flash
devlink-params
+ devlink-port
devlink-region
devlink-resource
devlink-reload
@@ -44,3 +45,4 @@ parameters, info versions, and other features it supports.
sja1105
qed
ti-cpsw-switch
+ am65-nuss-cpsw-switch
diff --git a/Documentation/networking/dsa/dsa.rst b/Documentation/networking/dsa/dsa.rst
index a8d15dd2b42b..e9517af5fe02 100644
--- a/Documentation/networking/dsa/dsa.rst
+++ b/Documentation/networking/dsa/dsa.rst
@@ -273,10 +273,6 @@ will not make us go through the switch tagging protocol transmit function, so
the Ethernet switch on the other end, expecting a tag will typically drop this
frame.
-Slave network devices check that the master network device is UP before allowing
-you to administratively bring UP these slave network devices. A common
-configuration mistake is forgetting to bring UP the master network device first.
-
Interactions with other subsystems
==================================
diff --git a/Documentation/networking/ethtool-netlink.rst b/Documentation/networking/ethtool-netlink.rst
index 30b98245979f..05073482db05 100644
--- a/Documentation/networking/ethtool-netlink.rst
+++ b/Documentation/networking/ethtool-netlink.rst
@@ -431,16 +431,17 @@ Request contents:
``ETHTOOL_A_LINKMODES_SPEED`` u32 link speed (Mb/s)
``ETHTOOL_A_LINKMODES_DUPLEX`` u8 duplex mode
``ETHTOOL_A_LINKMODES_MASTER_SLAVE_CFG`` u8 Master/slave port mode
+ ``ETHTOOL_A_LINKMODES_LANES`` u32 lanes
========================================== ====== ==========================
``ETHTOOL_A_LINKMODES_OURS`` bit set allows setting advertised link modes. If
autonegotiation is on (either set now or kept from before), advertised modes
are not changed (no ``ETHTOOL_A_LINKMODES_OURS`` attribute) and at least one
-of speed and duplex is specified, kernel adjusts advertised modes to all
-supported modes matching speed, duplex or both (whatever is specified). This
-autoselection is done on ethtool side with ioctl interface, netlink interface
-is supposed to allow requesting changes without knowing what exactly kernel
-supports.
+of speed, duplex and lanes is specified, kernel adjusts advertised modes to all
+supported modes matching speed, duplex, lanes or all (whatever is specified).
+This autoselection is done on ethtool side with ioctl interface, netlink
+interface is supposed to allow requesting changes without knowing what exactly
+kernel supports.
LINKSTATE_GET
diff --git a/Documentation/networking/filter.rst b/Documentation/networking/filter.rst
index debb59e374de..251c6bd73d15 100644
--- a/Documentation/networking/filter.rst
+++ b/Documentation/networking/filter.rst
@@ -1006,13 +1006,13 @@ Size modifier is one of ...
Mode modifier is one of::
- BPF_IMM 0x00 /* used for 32-bit mov in classic BPF and 64-bit in eBPF */
- BPF_ABS 0x20
- BPF_IND 0x40
- BPF_MEM 0x60
- BPF_LEN 0x80 /* classic BPF only, reserved in eBPF */
- BPF_MSH 0xa0 /* classic BPF only, reserved in eBPF */
- BPF_XADD 0xc0 /* eBPF only, exclusive add */
+ BPF_IMM 0x00 /* used for 32-bit mov in classic BPF and 64-bit in eBPF */
+ BPF_ABS 0x20
+ BPF_IND 0x40
+ BPF_MEM 0x60
+ BPF_LEN 0x80 /* classic BPF only, reserved in eBPF */
+ BPF_MSH 0xa0 /* classic BPF only, reserved in eBPF */
+ BPF_ATOMIC 0xc0 /* eBPF only, atomic operations */
eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
(BPF_IND | <size> | BPF_LD) which are used to access packet data.
@@ -1044,16 +1044,57 @@ Unlike classic BPF instruction set, eBPF has generic load/store operations::
BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg
BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off)
- BPF_XADD | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
- BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
-Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
-2 byte atomic increments are not supported.
+Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW.
-eBPF has one 16-byte instruction: BPF_LD | BPF_DW | BPF_IMM which consists
+It also includes atomic operations, which use the immediate field for extra
+encoding::
+
+ .imm = BPF_ADD, .code = BPF_ATOMIC | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
+ .imm = BPF_ADD, .code = BPF_ATOMIC | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
+
+The basic atomic operations supported are::
+
+ BPF_ADD
+ BPF_AND
+ BPF_OR
+ BPF_XOR
+
+Each having equivalent semantics with the ``BPF_ADD`` example, that is: the
+memory location addresed by ``dst_reg + off`` is atomically modified, with
+``src_reg`` as the other operand. If the ``BPF_FETCH`` flag is set in the
+immediate, then these operations also overwrite ``src_reg`` with the
+value that was in memory before it was modified.
+
+The more special operations are::
+
+ BPF_XCHG
+
+This atomically exchanges ``src_reg`` with the value addressed by ``dst_reg +
+off``. ::
+
+ BPF_CMPXCHG
+
+This atomically compares the value addressed by ``dst_reg + off`` with
+``R0``. If they match it is replaced with ``src_reg``. In either case, the
+value that was there before is zero-extended and loaded back to ``R0``.
+
+Note that 1 and 2 byte atomic operations are not supported.
+
+Clang can generate atomic instructions by default when ``-mcpu=v3`` is
+enabled. If a lower version for ``-mcpu`` is set, the only atomic instruction
+Clang can generate is ``BPF_ADD`` *without* ``BPF_FETCH``. If you need to enable
+the atomics features, while keeping a lower ``-mcpu`` version, you can use
+``-Xclang -target-feature -Xclang +alu32``.
+
+You may encounter ``BPF_XADD`` - this is a legacy name for ``BPF_ATOMIC``,
+referring to the exclusive-add operation encoded when the immediate field is
+zero.
+
+eBPF has one 16-byte instruction: ``BPF_LD | BPF_DW | BPF_IMM`` which consists
of two consecutive ``struct bpf_insn`` 8-byte blocks and interpreted as single
instruction that loads 64-bit immediate value into a dst_reg.
-Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads
+Classic BPF has similar instruction: ``BPF_LD | BPF_W | BPF_IMM`` which loads
32-bit immediate value into a register.
eBPF verifier
diff --git a/Documentation/networking/ip-sysctl.rst b/Documentation/networking/ip-sysctl.rst
index dd2b12a32b73..c7952ac5bd2f 100644
--- a/Documentation/networking/ip-sysctl.rst
+++ b/Documentation/networking/ip-sysctl.rst
@@ -178,6 +178,27 @@ min_adv_mss - INTEGER
The advertised MSS depends on the first hop route MTU, but will
never be lower than this setting.
+fib_notify_on_flag_change - INTEGER
+ Whether to emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/
+ RTM_F_TRAP/RTM_F_OFFLOAD_FAILED flags are changed.
+
+ After installing a route to the kernel, user space receives an
+ acknowledgment, which means the route was installed in the kernel,
+ but not necessarily in hardware.
+ It is also possible for a route already installed in hardware to change
+ its action and therefore its flags. For example, a host route that is
+ trapping packets can be "promoted" to perform decapsulation following
+ the installation of an IPinIP/VXLAN tunnel.
+ The notifications will indicate to user-space the state of the route.
+
+ Default: 0 (Do not emit notifications.)
+
+ Possible values:
+
+ - 0 - Do not emit notifications.
+ - 1 - Emit notifications.
+ - 2 - Emit notifications only for RTM_F_OFFLOAD_FAILED flag change.
+
IP Fragmentation:
ipfrag_high_thresh - LONG INTEGER
@@ -630,16 +651,15 @@ tcp_rmem - vector of 3 INTEGERs: min, default, max
default: initial size of receive buffer used by TCP sockets.
This value overrides net.core.rmem_default used by other protocols.
- Default: 87380 bytes. This value results in window of 65535 with
- default setting of tcp_adv_win_scale and tcp_app_win:0 and a bit
- less for default tcp_app_win. See below about these variables.
+ Default: 131072 bytes.
+ This value results in initial window of 65535.
max: maximal size of receive buffer allowed for automatically
selected receiver buffers for TCP socket. This value does not override
net.core.rmem_max. Calling setsockopt() with SO_RCVBUF disables
automatic tuning of that socket's receive buffer size, in which
case this value is ignored.
- Default: between 87380B and 6MB, depending on RAM size.
+ Default: between 131072 and 6MB, depending on RAM size.
tcp_sack - BOOLEAN
Enable select acknowledgments (SACKS).
@@ -1196,7 +1216,7 @@ icmp_errors_use_inbound_ifaddr - BOOLEAN
If non-zero, the message will be sent with the primary address of
the interface that received the packet that caused the icmp error.
- This is the behaviour network many administrators will expect from
+ This is the behaviour many network administrators will expect from
a router. And it can make debugging complicated network layouts
much easier.
@@ -1425,6 +1445,25 @@ rp_filter - INTEGER
Default value is 0. Note that some distributions enable it
in startup scripts.
+src_valid_mark - BOOLEAN
+ - 0 - The fwmark of the packet is not included in reverse path
+ route lookup. This allows for asymmetric routing configurations
+ utilizing the fwmark in only one direction, e.g., transparent
+ proxying.
+
+ - 1 - The fwmark of the packet is included in reverse path route
+ lookup. This permits rp_filter to function when the fwmark is
+ used for routing traffic in both directions.
+
+ This setting also affects the utilization of fmwark when
+ performing source address selection for ICMP replies, or
+ determining addresses stored for the IPOPT_TS_TSANDADDR and
+ IPOPT_RR IP options.
+
+ The max value from conf/{all,interface}/src_valid_mark is used.
+
+ Default value is 0.
+
arp_filter - BOOLEAN
- 1 - Allows you to have multiple network interfaces on the same
subnet, and have the ARPs for each interface be answered
@@ -1775,6 +1814,27 @@ nexthop_compat_mode - BOOLEAN
and extraneous notifications.
Default: true (backward compat mode)
+fib_notify_on_flag_change - INTEGER
+ Whether to emit RTM_NEWROUTE notifications whenever RTM_F_OFFLOAD/
+ RTM_F_TRAP/RTM_F_OFFLOAD_FAILED flags are changed.
+
+ After installing a route to the kernel, user space receives an
+ acknowledgment, which means the route was installed in the kernel,
+ but not necessarily in hardware.
+ It is also possible for a route already installed in hardware to change
+ its action and therefore its flags. For example, a host route that is
+ trapping packets can be "promoted" to perform decapsulation following
+ the installation of an IPinIP/VXLAN tunnel.
+ The notifications will indicate to user-space the state of the route.
+
+ Default: 0 (Do not emit notifications.)
+
+ Possible values:
+
+ - 0 - Do not emit notifications.
+ - 1 - Emit notifications.
+ - 2 - Emit notifications only for RTM_F_OFFLOAD_FAILED flag change.
+
IPv6 Fragmentation:
ip6frag_high_thresh - INTEGER
@@ -1807,12 +1867,24 @@ seg6_flowlabel - INTEGER
``conf/default/*``:
Change the interface-specific default settings.
+ These settings would be used during creating new interfaces.
+
``conf/all/*``:
Change all the interface-specific settings.
[XXX: Other special features than forwarding?]
+conf/all/disable_ipv6 - BOOLEAN
+ Changing this value is same as changing ``conf/default/disable_ipv6``
+ setting and also all per-interface ``disable_ipv6`` settings to the same
+ value.
+
+ Reading this value does not have any particular meaning. It does not say
+ whether IPv6 support is enabled or disabled. Returned value can be 1
+ also in the case when some interface has ``disable_ipv6`` set to 0 and
+ has configured IPv6 addresses.
+
conf/all/forwarding - BOOLEAN
Enable global IPv6 forwarding between all interfaces.
@@ -1871,6 +1943,16 @@ accept_ra_defrtr - BOOLEAN
- enabled if accept_ra is enabled.
- disabled if accept_ra is disabled.
+ra_defrtr_metric - UNSIGNED INTEGER
+ Route metric for default route learned in Router Advertisement. This value
+ will be assigned as metric for the default route learned via IPv6 Router
+ Advertisement. Takes affect only if accept_ra_defrtr is enabled.
+
+ Possible values:
+ 1 to 0xFFFFFFFF
+
+ Default: IP6_RT_PRIO_USER i.e. 1024.
+
accept_ra_from_local - BOOLEAN
Accept RA with source-address that is found on local machine
if the RA is otherwise proper and able to be accepted.
diff --git a/Documentation/networking/netdev-FAQ.rst b/Documentation/networking/netdev-FAQ.rst
index ae2ae37cd921..a64c01b52b4c 100644
--- a/Documentation/networking/netdev-FAQ.rst
+++ b/Documentation/networking/netdev-FAQ.rst
@@ -272,6 +272,22 @@ to the mailing list, e.g.::
Posting as one thread is discouraged because it confuses patchwork
(as of patchwork 2.2.2).
+Can I reproduce the checks from patchwork on my local machine?
+--------------------------------------------------------------
+
+Checks in patchwork are mostly simple wrappers around existing kernel
+scripts, the sources are available at:
+
+https://github.com/kuba-moo/nipa/tree/master/tests
+
+Running all the builds and checks locally is a pain, can I post my patches and have the patchwork bot validate them?
+--------------------------------------------------------------------------------------------------------------------
+
+No, you must ensure that your patches are ready by testing them locally
+before posting to the mailing list. The patchwork build bot instance
+gets overloaded very easily and netdev@vger really doesn't need more
+traffic if we can help it.
+
Any other tips to help ensure my net/net-next patch gets OK'd?
--------------------------------------------------------------
Attention to detail. Re-read your own work as if you were the
diff --git a/Documentation/networking/netdev-features.rst b/Documentation/networking/netdev-features.rst
index a2d7d7160e39..d7b15bb64deb 100644
--- a/Documentation/networking/netdev-features.rst
+++ b/Documentation/networking/netdev-features.rst
@@ -182,3 +182,24 @@ stricter than Hardware LRO. A packet stream merged by Hardware GRO must
be re-segmentable by GSO or TSO back to the exact original packet stream.
Hardware GRO is dependent on RXCSUM since every packet successfully merged
by hardware must also have the checksum verified by hardware.
+
+* hsr-tag-ins-offload
+
+This should be set for devices which insert an HSR (High-availability Seamless
+Redundancy) or PRP (Parallel Redundancy Protocol) tag automatically.
+
+* hsr-tag-rm-offload
+
+This should be set for devices which remove HSR (High-availability Seamless
+Redundancy) or PRP (Parallel Redundancy Protocol) tags automatically.
+
+* hsr-fwd-offload
+
+This should be set for devices which forward HSR (High-availability Seamless
+Redundancy) frames from one port to another in hardware.
+
+* hsr-dup-offload
+
+This should be set for devices which duplicate outgoing HSR (High-availability
+Seamless Redundancy) or PRP (Parallel Redundancy Protocol) tags automatically
+frames in hardware.
diff --git a/Documentation/networking/phy.rst b/Documentation/networking/phy.rst
index b2f7ec794bc8..06adfc2afcf0 100644
--- a/Documentation/networking/phy.rst
+++ b/Documentation/networking/phy.rst
@@ -216,7 +216,7 @@ put into an unsupported state.
Lastly, once the controller is ready to handle network traffic, you call
phy_start(phydev). This tells the PAL that you are ready, and configures the
PHY to connect to the network. If the MAC interrupt of your network driver
-also handles PHY status changes, just set phydev->irq to PHY_IGNORE_INTERRUPT
+also handles PHY status changes, just set phydev->irq to PHY_MAC_INTERRUPT
before you call phy_start and use phy_mac_interrupt() from the network
driver. If you don't want to use interrupts, set phydev->irq to PHY_POLL.
phy_start() enables the PHY interrupts (if applicable) and starts the
@@ -267,6 +267,12 @@ Some of the interface modes are described below:
duplex, pause or other settings. This is dependent on the MAC and/or
PHY behaviour.
+``PHY_INTERFACE_MODE_5GBASER``
+ This is the IEEE 802.3 Clause 129 defined 5GBASE-R protocol. It is
+ identical to the 10GBASE-R protocol defined in Clause 49, with the
+ exception that it operates at half the frequency. Please refer to the
+ IEEE standard for the definition.
+
``PHY_INTERFACE_MODE_10GBASER``
This is the IEEE 802.3 Clause 49 defined 10GBASE-R protocol used with
various different mediums. Please refer to the IEEE standard for a
@@ -286,6 +292,11 @@ Some of the interface modes are described below:
Note: due to legacy usage, some 10GBASE-R usage incorrectly makes
use of this definition.
+``PHY_INTERFACE_MODE_100BASEX``
+ This defines IEEE 802.3 Clause 24. The link operates at a fixed data
+ rate of 125Mpbs using a 4B/5B encoding scheme, resulting in an underlying
+ data rate of 100Mpbs.
+
Pause frames / flow control
===========================
diff --git a/Documentation/networking/sfp-phylink.rst b/Documentation/networking/sfp-phylink.rst
index 5aec7c8857d0..328f8d39eeb3 100644
--- a/Documentation/networking/sfp-phylink.rst
+++ b/Documentation/networking/sfp-phylink.rst
@@ -163,7 +163,7 @@ this documentation.
err = phylink_of_phy_connect(priv->phylink, node, flags);
For the most part, ``flags`` can be zero; these flags are passed to
- the of_phy_attach() inside this function call if a PHY is specified
+ the phy_attach_direct() inside this function call if a PHY is specified
in the DT node ``node``.
``node`` should be the DT node which contains the network phy property,
diff --git a/Documentation/networking/snmp_counter.rst b/Documentation/networking/snmp_counter.rst
index 4edd0d38779e..423d138b5ff3 100644
--- a/Documentation/networking/snmp_counter.rst
+++ b/Documentation/networking/snmp_counter.rst
@@ -314,7 +314,7 @@ https://lwn.net/Articles/576263/
* TcpExtTCPOrigDataSent
This counter is explained by `kernel commit f19c29e3e391`_, I pasted the
-explaination below::
+explanation below::
TCPOrigDataSent: number of outgoing packets with original data (excluding
retransmission but including data-in-SYN). This counter is different from
@@ -324,7 +324,7 @@ explaination below::
* TCPSynRetrans
This counter is explained by `kernel commit f19c29e3e391`_, I pasted the
-explaination below::
+explanation below::
TCPSynRetrans: number of SYN and SYN/ACK retransmits to break down
retransmissions into SYN, fast-retransmits, timeout retransmits, etc.
@@ -332,7 +332,7 @@ explaination below::
* TCPFastOpenActiveFail
This counter is explained by `kernel commit f19c29e3e391`_, I pasted the
-explaination below::
+explanation below::
TCPFastOpenActiveFail: Fast Open attempts (SYN/data) failed because
the remote does not accept it or the attempts timed out.
@@ -382,7 +382,7 @@ Defined in `RFC1213 tcpAttemptFails`_.
Defined in `RFC1213 tcpOutRsts`_. The RFC says this counter indicates
the 'segments sent containing the RST flag', but in linux kernel, this
-couner indicates the segments kerenl tried to send. The sending
+counter indicates the segments kernel tried to send. The sending
process might be failed due to some errors (e.g. memory alloc failed).
.. _RFC1213 tcpOutRsts: https://tools.ietf.org/html/rfc1213#page-52
@@ -700,7 +700,7 @@ SACK option could have up to 4 blocks, they are checked
individually. E.g., if 3 blocks of a SACk is invalid, the
corresponding counter would be updated 3 times. The comment of the
`Add counters for discarded SACK blocks`_ patch has additional
-explaination:
+explanation:
.. _Add counters for discarded SACK blocks: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=18f02545a9a16c9a89778b91a162ad16d510bb32
@@ -829,7 +829,7 @@ PAWS check fails or the received sequence number is out of window.
* TcpExtTCPACKSkippedTimeWait
-Tha ACK is skipped in Time-Wait status, the reason would be either
+The ACK is skipped in Time-Wait status, the reason would be either
PAWS check failed or the received sequence number is out of window.
* TcpExtTCPACKSkippedChallenge
@@ -984,7 +984,7 @@ TcpExtSyncookiesRecv counter wont be updated.
Challenge ACK
=============
-For details of challenge ACK, please refer the explaination of
+For details of challenge ACK, please refer the explanation of
TcpExtTCPACKSkippedChallenge.
* TcpExtTCPChallengeACK
@@ -1002,7 +1002,7 @@ prune
=====
When a socket is under memory pressure, the TCP stack will try to
reclaim memory from the receiving queue and out of order queue. One of
-the reclaiming method is 'collapse', which means allocate a big sbk,
+the reclaiming method is 'collapse', which means allocate a big skb,
copy the contiguous skbs to the single big skb, and free these
contiguous skbs.
@@ -1163,7 +1163,7 @@ The server side nstat output::
IpExtOutOctets 52 0.0
IpExtInNoECTPkts 1 0.0
-Input a string in nc client side again ('world' in our exmaple)::
+Input a string in nc client side again ('world' in our example)::
nstatuser@nstat-a:~$ nc -v nstat-b 9000
Connection to nstat-b 9000 port [tcp/*] succeeded!
@@ -1211,7 +1211,7 @@ replied an ACK. But kernel handled them in different ways. When the
TCP window scale option is not used, kernel will try to enable fast
path immediately when the connection comes into the established state,
but if the TCP window scale option is used, kernel will disable the
-fast path at first, and try to enable it after kerenl receives
+fast path at first, and try to enable it after kernel receives
packets. We could use the 'ss' command to verify whether the window
scale option is used. e.g. run below command on either server or
client::
@@ -1343,7 +1343,7 @@ Check TcpExtTCPAbortOnMemory on client::
nstatuser@nstat-a:~$ nstat | grep -i abort
TcpExtTCPAbortOnMemory 54 0.0
-Check orphane socket count on client::
+Check orphaned socket count on client::
nstatuser@nstat-a:~$ ss -s
Total: 131 (kernel 0)
@@ -1685,7 +1685,7 @@ Send 3 SYN repeatly to nstat-b::
nstatuser@nstat-a:~$ for i in {1..3}; do sudo tcpreplay -i ens3 /tmp/syn_fixcsum.pcap; done
-Check snmp cunter on nstat-b::
+Check snmp counter on nstat-b::
nstatuser@nstat-b:~$ nstat | grep -i skip
TcpExtTCPACKSkippedSynRecv 1 0.0
@@ -1770,7 +1770,7 @@ string 'foo' in our example::
Connection from nstat-a 42132 received!
foo
-On nstat-a, the tcpdump should have caputred the ACK. We should check
+On nstat-a, the tcpdump should have captured the ACK. We should check
the source port numbers of the two nc clients::
nstatuser@nstat-a:~$ ss -ta '( dport = :9000 || dport = :9001 )' | tee
@@ -1778,7 +1778,7 @@ the source port numbers of the two nc clients::
ESTAB 0 0 192.168.122.250:50208 192.168.122.251:9000
ESTAB 0 0 192.168.122.250:42132 192.168.122.251:9001
-Run tcprewrite, change port 9001 to port 9000, chagne port 42132 to
+Run tcprewrite, change port 9001 to port 9000, change port 42132 to
port 50208::
nstatuser@nstat-a:~$ tcprewrite --infile /tmp/seq_pre.pcap --outfile /tmp/seq.pcap -r 9001:9000 -r 42132:50208 --fixcsum
diff --git a/Documentation/networking/timestamping.rst b/Documentation/networking/timestamping.rst
index 03f7beade470..f682e88fa87e 100644
--- a/Documentation/networking/timestamping.rst
+++ b/Documentation/networking/timestamping.rst
@@ -55,7 +55,8 @@ struct __kernel_sock_timeval format.
SO_TIMESTAMP_OLD returns incorrect timestamps after the year 2038
on 32 bit machines.
-1.2 SO_TIMESTAMPNS (also SO_TIMESTAMPNS_OLD and SO_TIMESTAMPNS_NEW):
+1.2 SO_TIMESTAMPNS (also SO_TIMESTAMPNS_OLD and SO_TIMESTAMPNS_NEW)
+-------------------------------------------------------------------
This option is identical to SO_TIMESTAMP except for the returned data type.
Its struct timespec allows for higher resolution (ns) timestamps than the
diff --git a/Documentation/networking/tls-offload.rst b/Documentation/networking/tls-offload.rst
index 9af3334d9ad0..5f0dea3d571e 100644
--- a/Documentation/networking/tls-offload.rst
+++ b/Documentation/networking/tls-offload.rst
@@ -534,3 +534,6 @@ offload. Hence, TLS TX device feature flag requires TX csum offload being set.
Disabling the latter implies clearing the former. Disabling TX checksum offload
should not affect old connections, and drivers should make sure checksum
calculation does not break for them.
+Similarly, device-offloaded TLS decryption implies doing RXCSUM. If the user
+does not want to enable RX csum offload, TLS RX device feature is disabled
+as well.
diff --git a/Documentation/power/index.rst b/Documentation/power/index.rst
index ced8a8007434..a0f5244fb427 100644
--- a/Documentation/power/index.rst
+++ b/Documentation/power/index.rst
@@ -30,6 +30,7 @@ Power Management
userland-swsusp
powercap/powercap
+ powercap/dtpm
regulator/consumer
regulator/design
diff --git a/Documentation/power/powercap/dtpm.rst b/Documentation/power/powercap/dtpm.rst
new file mode 100644
index 000000000000..a38dee3d815b
--- /dev/null
+++ b/Documentation/power/powercap/dtpm.rst
@@ -0,0 +1,212 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================================
+Dynamic Thermal Power Management framework
+==========================================
+
+On the embedded world, the complexity of the SoC leads to an
+increasing number of hotspots which need to be monitored and mitigated
+as a whole in order to prevent the temperature to go above the
+normative and legally stated 'skin temperature'.
+
+Another aspect is to sustain the performance for a given power budget,
+for example virtual reality where the user can feel dizziness if the
+performance is capped while a big CPU is processing something else. Or
+reduce the battery charging because the dissipated power is too high
+compared with the power consumed by other devices.
+
+The user space is the most adequate place to dynamically act on the
+different devices by limiting their power given an application
+profile: it has the knowledge of the platform.
+
+The Dynamic Thermal Power Management (DTPM) is a technique acting on
+the device power by limiting and/or balancing a power budget among
+different devices.
+
+The DTPM framework provides an unified interface to act on the
+device power.
+
+Overview
+========
+
+The DTPM framework relies on the powercap framework to create the
+powercap entries in the sysfs directory and implement the backend
+driver to do the connection with the power manageable device.
+
+The DTPM is a tree representation describing the power constraints
+shared between devices, not their physical positions.
+
+The nodes of the tree are a virtual description aggregating the power
+characteristics of the children nodes and their power limitations.
+
+The leaves of the tree are the real power manageable devices.
+
+For instance::
+
+ SoC
+ |
+ `-- pkg
+ |
+ |-- pd0 (cpu0-3)
+ |
+ `-- pd1 (cpu4-5)
+
+The pkg power will be the sum of pd0 and pd1 power numbers::
+
+ SoC (400mW - 3100mW)
+ |
+ `-- pkg (400mW - 3100mW)
+ |
+ |-- pd0 (100mW - 700mW)
+ |
+ `-- pd1 (300mW - 2400mW)
+
+When the nodes are inserted in the tree, their power characteristics are propagated to the parents::
+
+ SoC (600mW - 5900mW)
+ |
+ |-- pkg (400mW - 3100mW)
+ | |
+ | |-- pd0 (100mW - 700mW)
+ | |
+ | `-- pd1 (300mW - 2400mW)
+ |
+ `-- pd2 (200mW - 2800mW)
+
+Each node have a weight on a 2^10 basis reflecting the percentage of power consumption along the siblings::
+
+ SoC (w=1024)
+ |
+ |-- pkg (w=538)
+ | |
+ | |-- pd0 (w=231)
+ | |
+ | `-- pd1 (w=794)
+ |
+ `-- pd2 (w=486)
+
+ Note the sum of weights at the same level are equal to 1024.
+
+When a power limitation is applied to a node, then it is distributed along the children given their weights. For example, if we set a power limitation of 3200mW at the 'SoC' root node, the resulting tree will be::
+
+ SoC (w=1024) <--- power_limit = 3200mW
+ |
+ |-- pkg (w=538) --> power_limit = 1681mW
+ | |
+ | |-- pd0 (w=231) --> power_limit = 378mW
+ | |
+ | `-- pd1 (w=794) --> power_limit = 1303mW
+ |
+ `-- pd2 (w=486) --> power_limit = 1519mW
+
+
+Flat description
+----------------
+
+A root node is created and it is the parent of all the nodes. This
+description is the simplest one and it is supposed to give to user
+space a flat representation of all the devices supporting the power
+limitation without any power limitation distribution.
+
+Hierarchical description
+------------------------
+
+The different devices supporting the power limitation are represented
+hierarchically. There is one root node, all intermediate nodes are
+grouping the child nodes which can be intermediate nodes also or real
+devices.
+
+The intermediate nodes aggregate the power information and allows to
+set the power limit given the weight of the nodes.
+
+User space API
+==============
+
+As stated in the overview, the DTPM framework is built on top of the
+powercap framework. Thus the sysfs interface is the same, please refer
+to the powercap documentation for further details.
+
+ * power_uw: Instantaneous power consumption. If the node is an
+ intermediate node, then the power consumption will be the sum of all
+ children power consumption.
+
+ * max_power_range_uw: The power range resulting of the maximum power
+ minus the minimum power.
+
+ * name: The name of the node. This is implementation dependent. Even
+ if it is not recommended for the user space, several nodes can have
+ the same name.
+
+ * constraint_X_name: The name of the constraint.
+
+ * constraint_X_max_power_uw: The maximum power limit to be applicable
+ to the node.
+
+ * constraint_X_power_limit_uw: The power limit to be applied to the
+ node. If the value contained in constraint_X_max_power_uw is set,
+ the constraint will be removed.
+
+ * constraint_X_time_window_us: The meaning of this file will depend
+ on the constraint number.
+
+Constraints
+-----------
+
+ * Constraint 0: The power limitation is immediately applied, without
+ limitation in time.
+
+Kernel API
+==========
+
+Overview
+--------
+
+The DTPM framework has no power limiting backend support. It is
+generic and provides a set of API to let the different drivers to
+implement the backend part for the power limitation and create the
+power constraints tree.
+
+It is up to the platform to provide the initialization function to
+allocate and link the different nodes of the tree.
+
+A special macro has the role of declaring a node and the corresponding
+initialization function via a description structure. This one contains
+an optional parent field allowing to hook different devices to an
+already existing tree at boot time.
+
+For instance::
+
+ struct dtpm_descr my_descr = {
+ .name = "my_name",
+ .init = my_init_func,
+ };
+
+ DTPM_DECLARE(my_descr);
+
+The nodes of the DTPM tree are described with dtpm structure. The
+steps to add a new power limitable device is done in three steps:
+
+ * Allocate the dtpm node
+ * Set the power number of the dtpm node
+ * Register the dtpm node
+
+The registration of the dtpm node is done with the powercap
+ops. Basically, it must implements the callbacks to get and set the
+power and the limit.
+
+Alternatively, if the node to be inserted is an intermediate one, then
+a simple function to insert it as a future parent is available.
+
+If a device has its power characteristics changing, then the tree must
+be updated with the new power numbers and weights.
+
+Nomenclature
+------------
+
+ * dtpm_alloc() : Allocate and initialize a dtpm structure
+
+ * dtpm_register() : Add the dtpm node to the tree
+
+ * dtpm_unregister() : Remove the dtpm node from the tree
+
+ * dtpm_update_power() : Update the power characteristics of the dtpm node
diff --git a/Documentation/power/runtime_pm.rst b/Documentation/power/runtime_pm.rst
index 0553008b6279..d9c777b18f7a 100644
--- a/Documentation/power/runtime_pm.rst
+++ b/Documentation/power/runtime_pm.rst
@@ -579,7 +579,7 @@ should be used. Of course, for this purpose the device's runtime PM has to be
enabled earlier by calling pm_runtime_enable().
Note, if the device may execute pm_runtime calls during the probe (such as
-if it is registers with a subsystem that may call back in) then the
+if it is registered with a subsystem that may call back in) then the
pm_runtime_get_sync() call paired with a pm_runtime_put() call will be
appropriate to ensure that the device is not put back to sleep during the
probe. This can happen with systems such as the network device layer.
@@ -587,11 +587,11 @@ probe. This can happen with systems such as the network device layer.
It may be desirable to suspend the device once ->probe() has finished.
Therefore the driver core uses the asynchronous pm_request_idle() to submit a
request to execute the subsystem-level idle callback for the device at that
-time. A driver that makes use of the runtime autosuspend feature, may want to
+time. A driver that makes use of the runtime autosuspend feature may want to
update the last busy mark before returning from ->probe().
Moreover, the driver core prevents runtime PM callbacks from racing with the bus
-notifier callback in __device_release_driver(), which is necessary, because the
+notifier callback in __device_release_driver(), which is necessary because the
notifier is used by some subsystems to carry out operations affecting the
runtime PM functionality. It does so by calling pm_runtime_get_sync() before
driver_sysfs_remove() and the BUS_NOTIFY_UNBIND_DRIVER notifications. This
@@ -603,7 +603,7 @@ calling pm_runtime_suspend() from their ->remove() routines, the driver core
executes pm_runtime_put_sync() after running the BUS_NOTIFY_UNBIND_DRIVER
notifications in __device_release_driver(). This requires bus types and
drivers to make their ->remove() callbacks avoid races with runtime PM directly,
-but also it allows of more flexibility in the handling of devices during the
+but it also allows more flexibility in the handling of devices during the
removal of their drivers.
Drivers in ->remove() callback should undo the runtime PM changes done
@@ -693,7 +693,7 @@ that the device appears to be runtime-suspended and its state is fine, so it
may be left in runtime suspend provided that all of its descendants are also
left in runtime suspend. If that happens, the PM core will not execute any
system suspend and resume callbacks for all of those devices, except for the
-complete callback, which is then entirely responsible for handling the device
+.complete() callback, which is then entirely responsible for handling the device
as appropriate. This only applies to system suspend transitions that are not
related to hibernation (see Documentation/driver-api/pm/devices.rst for more
information).
@@ -706,7 +706,7 @@ out the following operations:
right before executing the subsystem-level .prepare() callback for it and
pm_runtime_barrier() is called for every device right before executing the
subsystem-level .suspend() callback for it. In addition to that the PM core
- calls __pm_runtime_disable() with 'false' as the second argument for every
+ calls __pm_runtime_disable() with 'false' as the second argument for every
device right before executing the subsystem-level .suspend_late() callback
for it.
@@ -783,7 +783,7 @@ driver/base/power/generic_ops.c:
`int pm_generic_restore_noirq(struct device *dev);`
- invoke the ->restore_noirq() callback provided by the device's driver
-These functions are the defaults used by the PM core, if a subsystem doesn't
+These functions are the defaults used by the PM core if a subsystem doesn't
provide its own callbacks for ->runtime_idle(), ->runtime_suspend(),
->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(),
->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(),
diff --git a/Documentation/process/magic-number.rst b/Documentation/process/magic-number.rst
index e02ff5ffb653..c6dfe060ec2f 100644
--- a/Documentation/process/magic-number.rst
+++ b/Documentation/process/magic-number.rst
@@ -135,7 +135,6 @@ FW_HEADER_MAGIC 0x65726F66 fw_header ``drivers/atm/fo
SLOT_MAGIC 0x67267321 slot ``drivers/hotplug/cpqphp.h``
SLOT_MAGIC 0x67267322 slot ``drivers/hotplug/acpiphp.h``
LO_MAGIC 0x68797548 nbd_device ``include/linux/nbd.h``
-OPROFILE_MAGIC 0x6f70726f super_block ``drivers/oprofile/oprofilefs.h``
M3_STATE_MAGIC 0x734d724d m3_state ``sound/oss/maestro3.c``
VMALLOC_MAGIC 0x87654320 snd_alloc_track ``sound/core/memory.c``
KMALLOC_MAGIC 0x87654321 snd_alloc_track ``sound/core/memory.c``
diff --git a/Documentation/scheduler/schedutil.txt b/Documentation/scheduler/schedutil.txt
new file mode 100644
index 000000000000..78f6b91e2291
--- /dev/null
+++ b/Documentation/scheduler/schedutil.txt
@@ -0,0 +1,169 @@
+
+
+NOTE; all this assumes a linear relation between frequency and work capacity,
+we know this is flawed, but it is the best workable approximation.
+
+
+PELT (Per Entity Load Tracking)
+-------------------------------
+
+With PELT we track some metrics across the various scheduler entities, from
+individual tasks to task-group slices to CPU runqueues. As the basis for this
+we use an Exponentially Weighted Moving Average (EWMA), each period (1024us)
+is decayed such that y^32 = 0.5. That is, the most recent 32ms contribute
+half, while the rest of history contribute the other half.
+
+Specifically:
+
+ ewma_sum(u) := u_0 + u_1*y + u_2*y^2 + ...
+
+ ewma(u) = ewma_sum(u) / ewma_sum(1)
+
+Since this is essentially a progression of an infinite geometric series, the
+results are composable, that is ewma(A) + ewma(B) = ewma(A+B). This property
+is key, since it gives the ability to recompose the averages when tasks move
+around.
+
+Note that blocked tasks still contribute to the aggregates (task-group slices
+and CPU runqueues), which reflects their expected contribution when they
+resume running.
+
+Using this we track 2 key metrics: 'running' and 'runnable'. 'Running'
+reflects the time an entity spends on the CPU, while 'runnable' reflects the
+time an entity spends on the runqueue. When there is only a single task these
+two metrics are the same, but once there is contention for the CPU 'running'
+will decrease to reflect the fraction of time each task spends on the CPU
+while 'runnable' will increase to reflect the amount of contention.
+
+For more detail see: kernel/sched/pelt.c
+
+
+Frequency- / CPU Invariance
+---------------------------
+
+Because consuming the CPU for 50% at 1GHz is not the same as consuming the CPU
+for 50% at 2GHz, nor is running 50% on a LITTLE CPU the same as running 50% on
+a big CPU, we allow architectures to scale the time delta with two ratios, one
+Dynamic Voltage and Frequency Scaling (DVFS) ratio and one microarch ratio.
+
+For simple DVFS architectures (where software is in full control) we trivially
+compute the ratio as:
+
+ f_cur
+ r_dvfs := -----
+ f_max
+
+For more dynamic systems where the hardware is in control of DVFS we use
+hardware counters (Intel APERF/MPERF, ARMv8.4-AMU) to provide us this ratio.
+For Intel specifically, we use:
+
+ APERF
+ f_cur := ----- * P0
+ MPERF
+
+ 4C-turbo; if available and turbo enabled
+ f_max := { 1C-turbo; if turbo enabled
+ P0; otherwise
+
+ f_cur
+ r_dvfs := min( 1, ----- )
+ f_max
+
+We pick 4C turbo over 1C turbo to make it slightly more sustainable.
+
+r_cpu is determined as the ratio of highest performance level of the current
+CPU vs the highest performance level of any other CPU in the system.
+
+ r_tot = r_dvfs * r_cpu
+
+The result is that the above 'running' and 'runnable' metrics become invariant
+of DVFS and CPU type. IOW. we can transfer and compare them between CPUs.
+
+For more detail see:
+
+ - kernel/sched/pelt.h:update_rq_clock_pelt()
+ - arch/x86/kernel/smpboot.c:"APERF/MPERF frequency ratio computation."
+ - Documentation/scheduler/sched-capacity.rst:"1. CPU Capacity + 2. Task utilization"
+
+
+UTIL_EST / UTIL_EST_FASTUP
+--------------------------
+
+Because periodic tasks have their averages decayed while they sleep, even
+though when running their expected utilization will be the same, they suffer a
+(DVFS) ramp-up after they are running again.
+
+To alleviate this (a default enabled option) UTIL_EST drives an Infinite
+Impulse Response (IIR) EWMA with the 'running' value on dequeue -- when it is
+highest. A further default enabled option UTIL_EST_FASTUP modifies the IIR
+filter to instantly increase and only decay on decrease.
+
+A further runqueue wide sum (of runnable tasks) is maintained of:
+
+ util_est := \Sum_t max( t_running, t_util_est_ewma )
+
+For more detail see: kernel/sched/fair.c:util_est_dequeue()
+
+
+UCLAMP
+------
+
+It is possible to set effective u_min and u_max clamps on each CFS or RT task;
+the runqueue keeps an max aggregate of these clamps for all running tasks.
+
+For more detail see: include/uapi/linux/sched/types.h
+
+
+Schedutil / DVFS
+----------------
+
+Every time the scheduler load tracking is updated (task wakeup, task
+migration, time progression) we call out to schedutil to update the hardware
+DVFS state.
+
+The basis is the CPU runqueue's 'running' metric, which per the above it is
+the frequency invariant utilization estimate of the CPU. From this we compute
+a desired frequency like:
+
+ max( running, util_est ); if UTIL_EST
+ u_cfs := { running; otherwise
+
+ clamp( u_cfs + u_rt , u_min, u_max ); if UCLAMP_TASK
+ u_clamp := { u_cfs + u_rt; otherwise
+
+ u := u_clamp + u_irq + u_dl; [approx. see source for more detail]
+
+ f_des := min( f_max, 1.25 u * f_max )
+
+XXX IO-wait; when the update is due to a task wakeup from IO-completion we
+boost 'u' above.
+
+This frequency is then used to select a P-state/OPP or directly munged into a
+CPPC style request to the hardware.
+
+XXX: deadline tasks (Sporadic Task Model) allows us to calculate a hard f_min
+required to satisfy the workload.
+
+Because these callbacks are directly from the scheduler, the DVFS hardware
+interaction should be 'fast' and non-blocking. Schedutil supports
+rate-limiting DVFS requests for when hardware interaction is slow and
+expensive, this reduces effectiveness.
+
+For more information see: kernel/sched/cpufreq_schedutil.c
+
+
+NOTES
+-----
+
+ - On low-load scenarios, where DVFS is most relevant, the 'running' numbers
+ will closely reflect utilization.
+
+ - In saturated scenarios task movement will cause some transient dips,
+ suppose we have a CPU saturated with 4 tasks, then when we migrate a task
+ to an idle CPU, the old CPU will have a 'running' value of 0.75 while the
+ new CPU will gain 0.25. This is inevitable and time progression will
+ correct this. XXX do we still guarantee f_max due to no idle-time?
+
+ - Much of the above is about avoiding DVFS dips, and independent DVFS domains
+ having to re-learn / ramp-up when load shifts.
+
diff --git a/Documentation/translations/it_IT/process/magic-number.rst b/Documentation/translations/it_IT/process/magic-number.rst
index 0243d32a0b59..1af30f4228f2 100644
--- a/Documentation/translations/it_IT/process/magic-number.rst
+++ b/Documentation/translations/it_IT/process/magic-number.rst
@@ -141,7 +141,6 @@ FW_HEADER_MAGIC 0x65726F66 fw_header ``drivers/atm/fo
SLOT_MAGIC 0x67267321 slot ``drivers/hotplug/cpqphp.h``
SLOT_MAGIC 0x67267322 slot ``drivers/hotplug/acpiphp.h``
LO_MAGIC 0x68797548 nbd_device ``include/linux/nbd.h``
-OPROFILE_MAGIC 0x6f70726f super_block ``drivers/oprofile/oprofilefs.h``
M3_STATE_MAGIC 0x734d724d m3_state ``sound/oss/maestro3.c``
VMALLOC_MAGIC 0x87654320 snd_alloc_track ``sound/core/memory.c``
KMALLOC_MAGIC 0x87654321 snd_alloc_track ``sound/core/memory.c``
diff --git a/Documentation/translations/zh_CN/process/magic-number.rst b/Documentation/translations/zh_CN/process/magic-number.rst
index de182bf4191c..7bb9d4165ed3 100644
--- a/Documentation/translations/zh_CN/process/magic-number.rst
+++ b/Documentation/translations/zh_CN/process/magic-number.rst
@@ -124,7 +124,6 @@ FW_HEADER_MAGIC 0x65726F66 fw_header ``drivers/atm/fo
SLOT_MAGIC 0x67267321 slot ``drivers/hotplug/cpqphp.h``
SLOT_MAGIC 0x67267322 slot ``drivers/hotplug/acpiphp.h``
LO_MAGIC 0x68797548 nbd_device ``include/linux/nbd.h``
-OPROFILE_MAGIC 0x6f70726f super_block ``drivers/oprofile/oprofilefs.h``
M3_STATE_MAGIC 0x734d724d m3_state ``sound/oss/maestro3.c``
VMALLOC_MAGIC 0x87654320 snd_alloc_track ``sound/core/memory.c``
KMALLOC_MAGIC 0x87654321 snd_alloc_track ``sound/core/memory.c``
diff --git a/Documentation/usb/gadget-testing.rst b/Documentation/usb/gadget-testing.rst
index 2eeb3e9299e4..2085e7b24eeb 100644
--- a/Documentation/usb/gadget-testing.rst
+++ b/Documentation/usb/gadget-testing.rst
@@ -91,9 +91,9 @@ The ECM function provides these attributes in its function directory:
and after creating the functions/ecm.<instance name> they contain default
values: qmult is 5, dev_addr and host_addr are randomly selected.
-Except for ifname they can be written to until the function is linked to a
-configuration. The ifname is read-only and contains the name of the interface
-which was assigned by the net core, e. g. usb0.
+The ifname can be written to if the function is not bound. A write must be an
+interface pattern such as "usb%d", which will cause the net core to choose the
+next free usbX interface. By default, it is set to "usb%d".
Testing the ECM function
------------------------
@@ -131,9 +131,9 @@ The ECM subset function provides these attributes in its function directory:
and after creating the functions/ecm.<instance name> they contain default
values: qmult is 5, dev_addr and host_addr are randomly selected.
-Except for ifname they can be written to until the function is linked to a
-configuration. The ifname is read-only and contains the name of the interface
-which was assigned by the net core, e. g. usb0.
+The ifname can be written to if the function is not bound. A write must be an
+interface pattern such as "usb%d", which will cause the net core to choose the
+next free usbX interface. By default, it is set to "usb%d".
Testing the ECM subset function
-------------------------------
@@ -171,9 +171,9 @@ The EEM function provides these attributes in its function directory:
and after creating the functions/eem.<instance name> they contain default
values: qmult is 5, dev_addr and host_addr are randomly selected.
-Except for ifname they can be written to until the function is linked to a
-configuration. The ifname is read-only and contains the name of the interface
-which was assigned by the net core, e. g. usb0.
+The ifname can be written to if the function is not bound. A write must be an
+interface pattern such as "usb%d", which will cause the net core to choose the
+next free usbX interface. By default, it is set to "usb%d".
Testing the EEM function
------------------------
@@ -453,9 +453,9 @@ The NCM function provides these attributes in its function directory:
and after creating the functions/ncm.<instance name> they contain default
values: qmult is 5, dev_addr and host_addr are randomly selected.
-Except for ifname they can be written to until the function is linked to a
-configuration. The ifname is read-only and contains the name of the interface
-which was assigned by the net core, e. g. usb0.
+The ifname can be written to if the function is not bound. A write must be an
+interface pattern such as "usb%d", which will cause the net core to choose the
+next free usbX interface. By default, it is set to "usb%d".
Testing the NCM function
------------------------
@@ -591,9 +591,9 @@ The RNDIS function provides these attributes in its function directory:
and after creating the functions/rndis.<instance name> they contain default
values: qmult is 5, dev_addr and host_addr are randomly selected.
-Except for ifname they can be written to until the function is linked to a
-configuration. The ifname is read-only and contains the name of the interface
-which was assigned by the net core, e. g. usb0.
+The ifname can be written to if the function is not bound. A write must be an
+interface pattern such as "usb%d", which will cause the net core to choose the
+next free usbX interface. By default, it is set to "usb%d".
Testing the RNDIS function
--------------------------
diff --git a/Documentation/usb/raw-gadget.rst b/Documentation/usb/raw-gadget.rst
index 68d879a8009e..818a1648b387 100644
--- a/Documentation/usb/raw-gadget.rst
+++ b/Documentation/usb/raw-gadget.rst
@@ -2,83 +2,93 @@
USB Raw Gadget
==============
-USB Raw Gadget is a kernel module that provides a userspace interface for
-the USB Gadget subsystem. Essentially it allows to emulate USB devices
-from userspace. Enabled with CONFIG_USB_RAW_GADGET. Raw Gadget is
-currently a strictly debugging feature and shouldn't be used in
-production, use GadgetFS instead.
+USB Raw Gadget is a gadget driver that gives userspace low-level control over
+the gadget's communication process.
+
+Like any other gadget driver, Raw Gadget implements USB devices via the
+USB gadget API. Unlike most gadget drivers, Raw Gadget does not implement
+any concrete USB functions itself but requires userspace to do that.
+
+Raw Gadget is currently a strictly debugging feature and should not be used
+in production. Use GadgetFS instead.
+
+Enabled with CONFIG_USB_RAW_GADGET.
Comparison to GadgetFS
~~~~~~~~~~~~~~~~~~~~~~
-Raw Gadget is similar to GadgetFS, but provides a more low-level and
-direct access to the USB Gadget layer for the userspace. The key
-differences are:
+Raw Gadget is similar to GadgetFS but provides more direct access to the
+USB gadget layer for userspace. The key differences are:
-1. Every USB request is passed to the userspace to get a response, while
+1. Raw Gadget passes every USB request to userspace to get a response, while
GadgetFS responds to some USB requests internally based on the provided
- descriptors. However note, that the UDC driver might respond to some
- requests on its own and never forward them to the Gadget layer.
+ descriptors. Note that the UDC driver might respond to some requests on
+ its own and never forward them to the gadget layer.
-2. GadgetFS performs some sanity checks on the provided USB descriptors,
- while Raw Gadget allows you to provide arbitrary data as responses to
- USB requests.
+2. Raw Gadget allows providing arbitrary data as responses to USB requests,
+ while GadgetFS performs sanity checks on the provided USB descriptors.
+ This makes Raw Gadget suitable for fuzzing by providing malformed data as
+ responses to USB requests.
3. Raw Gadget provides a way to select a UDC device/driver to bind to,
- while GadgetFS currently binds to the first available UDC.
+ while GadgetFS currently binds to the first available UDC. This allows
+ having multiple Raw Gadget instances bound to different UDCs.
4. Raw Gadget explicitly exposes information about endpoints addresses and
- capabilities allowing a user to write UDC-agnostic gadgets.
+ capabilities. This allows the user to write UDC-agnostic gadgets.
-5. Raw Gadget has ioctl-based interface instead of a filesystem-based one.
+5. Raw Gadget has an ioctl-based interface instead of a filesystem-based
+ one.
Userspace interface
~~~~~~~~~~~~~~~~~~~
-To create a Raw Gadget instance open /dev/raw-gadget. Multiple raw-gadget
-instances (bound to different UDCs) can be used at the same time. The
-interaction with the opened file happens through the ioctl() calls, see
-comments in include/uapi/linux/usb/raw_gadget.h for details.
+The user can interact with Raw Gadget by opening ``/dev/raw-gadget`` and
+issuing ioctl calls; see the comments in include/uapi/linux/usb/raw_gadget.h
+for details. Multiple Raw Gadget instances (bound to different UDCs) can be
+used at the same time.
-The typical usage of Raw Gadget looks like:
+A typical usage scenario of Raw Gadget:
-1. Open Raw Gadget instance via /dev/raw-gadget.
-2. Initialize the instance via USB_RAW_IOCTL_INIT.
-3. Launch the instance with USB_RAW_IOCTL_RUN.
-4. In a loop issue USB_RAW_IOCTL_EVENT_FETCH calls to receive events from
- Raw Gadget and react to those depending on what kind of USB device
- needs to be emulated.
+1. Create a Raw Gadget instance by opening ``/dev/raw-gadget``.
+2. Initialize the instance via ``USB_RAW_IOCTL_INIT``.
+3. Launch the instance with ``USB_RAW_IOCTL_RUN``.
+4. In a loop issue ``USB_RAW_IOCTL_EVENT_FETCH`` to receive events from
+ Raw Gadget and react to those depending on what kind of USB gadget must
+ be implemented.
-Note, that some UDC drivers have fixed addresses assigned to endpoints, and
-therefore arbitrary endpoint addresses can't be used in the descriptors.
-Nevertheles, Raw Gadget provides a UDC-agnostic way to write USB gadgets.
-Once a USB_RAW_EVENT_CONNECT event is received via USB_RAW_IOCTL_EVENT_FETCH,
-the USB_RAW_IOCTL_EPS_INFO ioctl can be used to find out information about
-endpoints that the UDC driver has. Based on that information, the user must
-chose UDC endpoints that will be used for the gadget being emulated, and
-properly assign addresses in endpoint descriptors.
+Note that some UDC drivers have fixed addresses assigned to endpoints, and
+therefore arbitrary endpoint addresses cannot be used in the descriptors.
+Nevertheless, Raw Gadget provides a UDC-agnostic way to write USB gadgets.
+Once ``USB_RAW_EVENT_CONNECT`` is received via ``USB_RAW_IOCTL_EVENT_FETCH``,
+``USB_RAW_IOCTL_EPS_INFO`` can be used to find out information about the
+endpoints that the UDC driver has. Based on that, userspace must choose UDC
+endpoints for the gadget and assign addresses in the endpoint descriptors
+correspondingly.
-You can find usage examples (along with a test suite) here:
+Raw Gadget usage examples and a test suite:
https://github.com/xairy/raw-gadget
Internal details
~~~~~~~~~~~~~~~~
-Currently every endpoint read/write ioctl submits a USB request and waits until
-its completion. This is the desired mode for coverage-guided fuzzing (as we'd
-like all USB request processing happen during the lifetime of a syscall),
-and must be kept in the implementation. (This might be slow for real world
-applications, thus the O_NONBLOCK improvement suggestion below.)
+Every Raw Gadget endpoint read/write ioctl submits a USB request and waits
+until its completion. This is done deliberately to assist with coverage-guided
+fuzzing by having a single syscall fully process a single USB request. This
+feature must be kept in the implementation.
Potential future improvements
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Report more events (suspend, resume, etc.) through USB_RAW_IOCTL_EVENT_FETCH.
+- Report more events (suspend, resume, etc.) through
+ ``USB_RAW_IOCTL_EVENT_FETCH``.
-- Support O_NONBLOCK I/O.
+- Support ``O_NONBLOCK`` I/O. This would be another mode of operation, where
+ Raw Gadget would not wait until the completion of each USB request.
- Support USB 3 features (accept SS endpoint companion descriptor when
- enabling endpoints; allow providing stream_id for bulk transfers).
+ enabling endpoints; allow providing ``stream_id`` for bulk transfers).
-- Support ISO transfer features (expose frame_number for completed requests).
+- Support ISO transfer features (expose ``frame_number`` for completed
+ requests).
diff --git a/Documentation/userspace-api/index.rst b/Documentation/userspace-api/index.rst
index acd2cc2a538d..d29b020e5622 100644
--- a/Documentation/userspace-api/index.rst
+++ b/Documentation/userspace-api/index.rst
@@ -24,6 +24,7 @@ place where this information is gathered.
ioctl/index
iommu
media/index
+ sysfs-platform_profile
.. only:: subproject and html
diff --git a/Documentation/userspace-api/sysfs-platform_profile.rst b/Documentation/userspace-api/sysfs-platform_profile.rst
new file mode 100644
index 000000000000..c33a71263d9e
--- /dev/null
+++ b/Documentation/userspace-api/sysfs-platform_profile.rst
@@ -0,0 +1,42 @@
+=====================================================================
+Platform Profile Selection (e.g. /sys/firmware/acpi/platform_profile)
+=====================================================================
+
+On modern systems the platform performance, temperature, fan and other
+hardware related characteristics are often dynamically configurable. The
+platform configuration is often automatically adjusted to the current
+conditions by some automatic mechanism (which may very well live outside
+the kernel).
+
+These auto platform adjustment mechanisms often can be configured with
+one of several platform profiles, with either a bias towards low power
+operation or towards performance.
+
+The purpose of the platform_profile attribute is to offer a generic sysfs
+API for selecting the platform profile of these automatic mechanisms.
+
+Note that this API is only for selecting the platform profile, it is
+NOT a goal of this API to allow monitoring the resulting performance
+characteristics. Monitoring performance is best done with device/vendor
+specific tools such as e.g. turbostat.
+
+Specifically when selecting a high performance profile the actual achieved
+performance may be limited by various factors such as: the heat generated
+by other components, room temperature, free air flow at the bottom of a
+laptop, etc. It is explicitly NOT a goal of this API to let userspace know
+about any sub-optimal conditions which are impeding reaching the requested
+performance level.
+
+Since numbers on their own cannot represent the multiple variables that a
+profile will adjust (power consumption, heat generation, etc) this API
+uses strings to describe the various profiles. To make sure that userspace
+gets a consistent experience the sysfs-platform_profile ABI document defines
+a fixed set of profile names. Drivers *must* map their internal profile
+representation onto this fixed set.
+
+If there is no good match when mapping then a new profile name may be
+added. Drivers which wish to introduce new profile names must:
+
+ 1. Explain why the existing profile names canot be used.
+ 2. Add the new profile name, along with a clear description of the
+ expected behaviour, to the sysfs-platform_profile ABI documentation.
diff --git a/Documentation/virt/kvm/api.rst b/Documentation/virt/kvm/api.rst
index c136e254b496..99ceb978c8b0 100644
--- a/Documentation/virt/kvm/api.rst
+++ b/Documentation/virt/kvm/api.rst
@@ -360,10 +360,9 @@ since the last call to this ioctl. Bit 0 is the first page in the
memory slot. Ensure the entire structure is cleared to avoid padding
issues.
-If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
-the address space for which you want to return the dirty bitmap.
-They must be less than the value that KVM_CHECK_EXTENSION returns for
-the KVM_CAP_MULTI_ADDRESS_SPACE capability.
+If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies
+the address space for which you want to return the dirty bitmap. See
+KVM_SET_USER_MEMORY_REGION for details on the usage of slot field.
The bits in the dirty bitmap are cleared before the ioctl returns, unless
KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is enabled. For more information,
@@ -1281,6 +1280,9 @@ field userspace_addr, which must point at user addressable memory for
the entire memory slot size. Any object may back this memory, including
anonymous memory, ordinary files, and hugetlbfs.
+On architectures that support a form of address tagging, userspace_addr must
+be an untagged address.
+
It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
be identical. This allows large pages in the guest to be backed by large
pages in the host.
@@ -1333,7 +1335,7 @@ documentation when it pops into existence).
:Capability: KVM_CAP_ENABLE_CAP_VM
:Architectures: all
-:Type: vcpu ioctl
+:Type: vm ioctl
:Parameters: struct kvm_enable_cap (in)
:Returns: 0 on success; -1 on error
@@ -4432,7 +4434,7 @@ to I/O ports.
:Capability: KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
:Architectures: x86, arm, arm64, mips
:Type: vm ioctl
-:Parameters: struct kvm_dirty_log (in)
+:Parameters: struct kvm_clear_dirty_log (in)
:Returns: 0 on success, -1 on error
::
@@ -4459,10 +4461,9 @@ in KVM's dirty bitmap, and dirty tracking is re-enabled for that page
(for example via write-protection, or by clearing the dirty bit in
a page table entry).
-If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
-the address space for which you want to return the dirty bitmap.
-They must be less than the value that KVM_CHECK_EXTENSION returns for
-the KVM_CAP_MULTI_ADDRESS_SPACE capability.
+If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of slot field specifies
+the address space for which you want to clear the dirty status. See
+KVM_SET_USER_MEMORY_REGION for details on the usage of slot field.
This ioctl is mostly useful when KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
is enabled; for more information, see the description of the capability.
diff --git a/Documentation/virt/kvm/nested-vmx.rst b/Documentation/virt/kvm/nested-vmx.rst
index 6ab4e35cee23..ac2095d41f02 100644
--- a/Documentation/virt/kvm/nested-vmx.rst
+++ b/Documentation/virt/kvm/nested-vmx.rst
@@ -37,8 +37,10 @@ call L2.
Running nested VMX
------------------
-The nested VMX feature is disabled by default. It can be enabled by giving
-the "nested=1" option to the kvm-intel module.
+The nested VMX feature is enabled by default since Linux kernel v4.20. For
+older Linux kernel, it can be enabled by giving the "nested=1" option to the
+kvm-intel module.
+
No modifications are required to user space (qemu). However, qemu's default
emulated CPU type (qemu64) does not list the "VMX" CPU feature, so it must be
diff --git a/Documentation/virt/kvm/running-nested-guests.rst b/Documentation/virt/kvm/running-nested-guests.rst
index d0a1fc754c84..bd70c69468ae 100644
--- a/Documentation/virt/kvm/running-nested-guests.rst
+++ b/Documentation/virt/kvm/running-nested-guests.rst
@@ -74,7 +74,7 @@ few:
Enabling "nested" (x86)
-----------------------
-From Linux kernel v4.19 onwards, the ``nested`` KVM parameter is enabled
+From Linux kernel v4.20 onwards, the ``nested`` KVM parameter is enabled
by default for Intel and AMD. (Though your Linux distribution might
override this default.)