From 8563e19159b02ec26a6ec7dc7bac9766a8ac494c Mon Sep 17 00:00:00 2001 From: Ofir Bitton Date: Mon, 28 Dec 2020 14:36:47 +0200 Subject: habanalabs: separate common code to dedicated folders We separate some of the common code source files to different folders for a better maintainability and testability. Signed-off-by: Ofir Bitton Reviewed-by: Oded Gabbay Signed-off-by: Oded Gabbay --- drivers/misc/habanalabs/common/Makefile | 10 +- drivers/misc/habanalabs/common/mmu.c | 560 ---------------- drivers/misc/habanalabs/common/mmu/Makefile | 2 + drivers/misc/habanalabs/common/mmu/mmu.c | 560 ++++++++++++++++ drivers/misc/habanalabs/common/mmu/mmu_v1.c | 966 ++++++++++++++++++++++++++++ drivers/misc/habanalabs/common/mmu_v1.c | 966 ---------------------------- drivers/misc/habanalabs/common/pci.c | 407 ------------ drivers/misc/habanalabs/common/pci/Makefile | 2 + drivers/misc/habanalabs/common/pci/pci.c | 407 ++++++++++++ 9 files changed, 1945 insertions(+), 1935 deletions(-) delete mode 100644 drivers/misc/habanalabs/common/mmu.c create mode 100644 drivers/misc/habanalabs/common/mmu/Makefile create mode 100644 drivers/misc/habanalabs/common/mmu/mmu.c create mode 100644 drivers/misc/habanalabs/common/mmu/mmu_v1.c delete mode 100644 drivers/misc/habanalabs/common/mmu_v1.c delete mode 100644 drivers/misc/habanalabs/common/pci.c create mode 100644 drivers/misc/habanalabs/common/pci/Makefile create mode 100644 drivers/misc/habanalabs/common/pci/pci.c diff --git a/drivers/misc/habanalabs/common/Makefile b/drivers/misc/habanalabs/common/Makefile index eccd8c7dc62d..5d8b48288cf4 100644 --- a/drivers/misc/habanalabs/common/Makefile +++ b/drivers/misc/habanalabs/common/Makefile @@ -1,7 +1,13 @@ # SPDX-License-Identifier: GPL-2.0-only + +include $(src)/common/mmu/Makefile +habanalabs-y += $(HL_COMMON_MMU_FILES) + +include $(src)/common/pci/Makefile +habanalabs-y += $(HL_COMMON_PCI_FILES) + HL_COMMON_FILES := common/habanalabs_drv.o common/device.o common/context.o \ common/asid.o common/habanalabs_ioctl.o \ common/command_buffer.o common/hw_queue.o common/irq.o \ common/sysfs.o common/hwmon.o common/memory.o \ - common/command_submission.o common/mmu.o common/mmu_v1.o \ - common/firmware_if.o common/pci.o + common/command_submission.o common/firmware_if.o diff --git a/drivers/misc/habanalabs/common/mmu.c b/drivers/misc/habanalabs/common/mmu.c deleted file mode 100644 index 38234c243b21..000000000000 --- a/drivers/misc/habanalabs/common/mmu.c +++ /dev/null @@ -1,560 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 - -/* - * Copyright 2016-2020 HabanaLabs, Ltd. - * All Rights Reserved. - */ - -#include - -#include "habanalabs.h" - -bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) -{ - struct asic_fixed_properties *prop = &hdev->asic_prop; - - return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, - prop->dmmu.start_addr, - prop->dmmu.end_addr); -} - -/** - * hl_mmu_init() - initialize the MMU module. - * @hdev: habanalabs device structure. - * - * Return: 0 for success, non-zero for failure. - */ -int hl_mmu_init(struct hl_device *hdev) -{ - int rc = -EOPNOTSUPP; - - if (!hdev->mmu_enable) - return 0; - - if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { - rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); - if (rc) - return rc; - } - - if (hdev->mmu_func[MMU_HR_PGT].init != NULL) - rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); - - return rc; -} - -/** - * hl_mmu_fini() - release the MMU module. - * @hdev: habanalabs device structure. - * - * This function does the following: - * - Disable MMU in H/W. - * - Free the pgt_infos pool. - * - * All contexts should be freed before calling this function. - */ -void hl_mmu_fini(struct hl_device *hdev) -{ - if (!hdev->mmu_enable) - return; - - if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) - hdev->mmu_func[MMU_DR_PGT].fini(hdev); - - if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) - hdev->mmu_func[MMU_HR_PGT].fini(hdev); -} - -/** - * hl_mmu_ctx_init() - initialize a context for using the MMU module. - * @ctx: pointer to the context structure to initialize. - * - * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all - * page tables hops related to this context. - * Return: 0 on success, non-zero otherwise. - */ -int hl_mmu_ctx_init(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - int rc = -EOPNOTSUPP; - - if (!hdev->mmu_enable) - return 0; - - mutex_init(&ctx->mmu_lock); - - if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { - rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); - if (rc) - return rc; - } - - if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) - rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); - - return rc; -} - -/* - * hl_mmu_ctx_fini - disable a ctx from using the mmu module - * - * @ctx: pointer to the context structure - * - * This function does the following: - * - Free any pgts which were not freed yet - * - Free the mutex - * - Free DRAM default page mapping hops - */ -void hl_mmu_ctx_fini(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - - if (!hdev->mmu_enable) - return; - - if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) - hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); - - if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) - hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); - - mutex_destroy(&ctx->mmu_lock); -} - -/* - * hl_mmu_unmap_page - unmaps a virtual addr - * - * @ctx: pointer to the context structure - * @virt_addr: virt addr to map from - * @page_size: size of the page to unmap - * @flush_pte: whether to do a PCI flush - * - * This function does the following: - * - Check that the virt addr is mapped - * - Unmap the virt addr and frees pgts if possible - * - Returns 0 on success, -EINVAL if the given addr is not mapped - * - * Because this function changes the page tables in the device and because it - * changes the MMU hash, it must be protected by a lock. - * However, because it maps only a single page, the lock should be implemented - * in a higher level in order to protect the entire mapping of the memory area - * - * For optimization reasons PCI flush may be requested once after unmapping of - * large area. - */ -int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, - bool flush_pte) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - u64 real_virt_addr; - u32 real_page_size, npages; - int i, rc = 0, pgt_residency; - bool is_dram_addr; - - if (!hdev->mmu_enable) - return 0; - - is_dram_addr = hl_is_dram_va(hdev, virt_addr); - - if (is_dram_addr) - mmu_prop = &prop->dmmu; - else if ((page_size % prop->pmmu_huge.page_size) == 0) - mmu_prop = &prop->pmmu_huge; - else - mmu_prop = &prop->pmmu; - - pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; - /* - * The H/W handles mapping of specific page sizes. Hence if the page - * size is bigger, we break it to sub-pages and unmap them separately. - */ - if ((page_size % mmu_prop->page_size) == 0) { - real_page_size = mmu_prop->page_size; - } else { - /* - * MMU page size may differ from DRAM page size. - * In such case work with the DRAM page size and let the MMU - * scrambling routine to handle this mismatch when - * calculating the address to remove from the MMU page table - */ - if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) { - real_page_size = prop->dram_page_size; - } else { - dev_err(hdev->dev, - "page size of %u is not %uKB aligned, can't unmap\n", - page_size, mmu_prop->page_size >> 10); - - return -EFAULT; - } - } - - npages = page_size / real_page_size; - real_virt_addr = virt_addr; - - for (i = 0 ; i < npages ; i++) { - rc = hdev->mmu_func[pgt_residency].unmap(ctx, - real_virt_addr, is_dram_addr); - if (rc) - break; - - real_virt_addr += real_page_size; - } - - if (flush_pte) - hdev->mmu_func[pgt_residency].flush(ctx); - - return rc; -} - -/* - * hl_mmu_map_page - maps a virtual addr to physical addr - * - * @ctx: pointer to the context structure - * @virt_addr: virt addr to map from - * @phys_addr: phys addr to map to - * @page_size: physical page size - * @flush_pte: whether to do a PCI flush - * - * This function does the following: - * - Check that the virt addr is not mapped - * - Allocate pgts as necessary in order to map the virt addr to the phys - * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. - * - * Because this function changes the page tables in the device and because it - * changes the MMU hash, it must be protected by a lock. - * However, because it maps only a single page, the lock should be implemented - * in a higher level in order to protect the entire mapping of the memory area - * - * For optimization reasons PCI flush may be requested once after mapping of - * large area. - */ -int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, - u32 page_size, bool flush_pte) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - u64 real_virt_addr, real_phys_addr; - u32 real_page_size, npages; - int i, rc, pgt_residency, mapped_cnt = 0; - bool is_dram_addr; - - - if (!hdev->mmu_enable) - return 0; - - is_dram_addr = hl_is_dram_va(hdev, virt_addr); - - if (is_dram_addr) - mmu_prop = &prop->dmmu; - else if ((page_size % prop->pmmu_huge.page_size) == 0) - mmu_prop = &prop->pmmu_huge; - else - mmu_prop = &prop->pmmu; - - pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; - - /* - * The H/W handles mapping of specific page sizes. Hence if the page - * size is bigger, we break it to sub-pages and map them separately. - */ - if ((page_size % mmu_prop->page_size) == 0) { - real_page_size = mmu_prop->page_size; - } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) && - (prop->dram_page_size < mmu_prop->page_size)) { - /* - * MMU page size may differ from DRAM page size. - * In such case work with the DRAM page size and let the MMU - * scrambling routine handle this mismatch when calculating - * the address to place in the MMU page table. (in that case - * also make sure that the dram_page_size smaller than the - * mmu page size) - */ - real_page_size = prop->dram_page_size; - } else { - dev_err(hdev->dev, - "page size of %u is not %uKB aligned, can't map\n", - page_size, mmu_prop->page_size >> 10); - - return -EFAULT; - } - - /* - * Verify that the phys and virt addresses are aligned with the - * MMU page size (in dram this means checking the address and MMU - * after scrambling) - */ - if ((is_dram_addr && - ((hdev->asic_funcs->scramble_vaddr(hdev, phys_addr) & - (mmu_prop->page_size - 1)) || - (hdev->asic_funcs->scramble_vaddr(hdev, virt_addr) & - (mmu_prop->page_size - 1)))) || - (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || - (virt_addr & (real_page_size - 1))))) - dev_crit(hdev->dev, - "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", - phys_addr, virt_addr, real_page_size); - - npages = page_size / real_page_size; - real_virt_addr = virt_addr; - real_phys_addr = phys_addr; - - for (i = 0 ; i < npages ; i++) { - rc = hdev->mmu_func[pgt_residency].map(ctx, - real_virt_addr, real_phys_addr, - real_page_size, is_dram_addr); - if (rc) - goto err; - - real_virt_addr += real_page_size; - real_phys_addr += real_page_size; - mapped_cnt++; - } - - if (flush_pte) - hdev->mmu_func[pgt_residency].flush(ctx); - - return 0; - -err: - real_virt_addr = virt_addr; - for (i = 0 ; i < mapped_cnt ; i++) { - if (hdev->mmu_func[pgt_residency].unmap(ctx, - real_virt_addr, is_dram_addr)) - dev_warn_ratelimited(hdev->dev, - "failed to unmap va: 0x%llx\n", real_virt_addr); - - real_virt_addr += real_page_size; - } - - hdev->mmu_func[pgt_residency].flush(ctx); - - return rc; -} - -/* - * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page - * for mapping contiguous physical memory - * - * @ctx: pointer to the context structure - * @virt_addr: virt addr to map from - * @phys_addr: phys addr to map to - * @size: size to map - * - */ -int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, - u64 phys_addr, u32 size) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 curr_va, curr_pa; - u32 page_size; - bool flush_pte; - int rc = 0, off; - - if (hl_mem_area_inside_range(virt_addr, size, - prop->dmmu.start_addr, prop->dmmu.end_addr)) - page_size = prop->dmmu.page_size; - else if (hl_mem_area_inside_range(virt_addr, size, - prop->pmmu.start_addr, prop->pmmu.end_addr)) - page_size = prop->pmmu.page_size; - else if (hl_mem_area_inside_range(virt_addr, size, - prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) - page_size = prop->pmmu_huge.page_size; - else - return -EINVAL; - - for (off = 0 ; off < size ; off += page_size) { - curr_va = virt_addr + off; - curr_pa = phys_addr + off; - flush_pte = (off + page_size) >= size; - rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, - flush_pte); - if (rc) { - dev_err(hdev->dev, - "Map failed for va 0x%llx to pa 0x%llx\n", - curr_va, curr_pa); - goto unmap; - } - } - - return rc; - -unmap: - for (; off >= 0 ; off -= page_size) { - curr_va = virt_addr + off; - flush_pte = (off - (s32) page_size) < 0; - if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) - dev_warn_ratelimited(hdev->dev, - "failed to unmap va 0x%llx\n", curr_va); - } - - return rc; -} - -/* - * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page - * for unmapping contiguous physical memory - * - * @ctx: pointer to the context structure - * @virt_addr: virt addr to unmap - * @size: size to unmap - * - */ -int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 curr_va; - u32 page_size; - bool flush_pte; - int rc = 0, off; - - if (hl_mem_area_inside_range(virt_addr, size, - prop->dmmu.start_addr, prop->dmmu.end_addr)) - page_size = prop->dmmu.page_size; - else if (hl_mem_area_inside_range(virt_addr, size, - prop->pmmu.start_addr, prop->pmmu.end_addr)) - page_size = prop->pmmu.page_size; - else if (hl_mem_area_inside_range(virt_addr, size, - prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) - page_size = prop->pmmu_huge.page_size; - else - return -EINVAL; - - for (off = 0 ; off < size ; off += page_size) { - curr_va = virt_addr + off; - flush_pte = (off + page_size) >= size; - rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); - if (rc) - dev_warn_ratelimited(hdev->dev, - "Unmap failed for va 0x%llx\n", curr_va); - } - - return rc; -} - -/* - * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out - * - * @ctx: pointer to the context structure - * - */ -void hl_mmu_swap_out(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - - if (!hdev->mmu_enable) - return; - - if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) - hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); - - if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) - hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); -} - -/* - * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in - * - * @ctx: pointer to the context structure - * - */ -void hl_mmu_swap_in(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - - if (!hdev->mmu_enable) - return; - - if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) - hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); - - if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) - hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); -} - -int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) -{ - struct hl_mmu_hop_info hops; - u64 tmp_addr; - int rc; - - rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); - if (rc) - return rc; - - /* last hop holds the phys address and flags */ - tmp_addr = hops.hop_info[hops.used_hops - 1].hop_pte_val; - *phys_addr = (tmp_addr & HOP_PHYS_ADDR_MASK) | (virt_addr & FLAGS_MASK); - - return 0; -} - -int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, - struct hl_mmu_hop_info *hops) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - int rc; - bool is_dram_addr; - - if (!hdev->mmu_enable) - return -EOPNOTSUPP; - - hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ - - is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, - prop->dmmu.start_addr, - prop->dmmu.end_addr); - - /* host-residency is the same in PMMU and HPMMU, use one of them */ - mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; - - mutex_lock(&ctx->mmu_lock); - - if (mmu_prop->host_resident) - rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx, - virt_addr, hops); - else - rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx, - virt_addr, hops); - - mutex_unlock(&ctx->mmu_lock); - - return rc; -} - -int hl_mmu_if_set_funcs(struct hl_device *hdev) -{ - if (!hdev->mmu_enable) - return 0; - - switch (hdev->asic_type) { - case ASIC_GOYA: - case ASIC_GAUDI: - hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); - break; - default: - dev_err(hdev->dev, "Unrecognized ASIC type %d\n", - hdev->asic_type); - return -EOPNOTSUPP; - } - - return 0; -} - -/** - * hl_mmu_scramble_vaddr() - The generic mmu virtual address scrambling routine. - * @hdev: pointer to device data. - * @virt_addr: The virtual address to scramble. - * - * Return: The scrambled virtual address. - */ -u64 hl_mmu_scramble_vaddr(struct hl_device *hdev, u64 virt_addr) -{ - return virt_addr; -} diff --git a/drivers/misc/habanalabs/common/mmu/Makefile b/drivers/misc/habanalabs/common/mmu/Makefile new file mode 100644 index 000000000000..d852c3874658 --- /dev/null +++ b/drivers/misc/habanalabs/common/mmu/Makefile @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +HL_COMMON_MMU_FILES := common/mmu/mmu.o common/mmu/mmu_v1.o diff --git a/drivers/misc/habanalabs/common/mmu/mmu.c b/drivers/misc/habanalabs/common/mmu/mmu.c new file mode 100644 index 000000000000..97c51686fcfe --- /dev/null +++ b/drivers/misc/habanalabs/common/mmu/mmu.c @@ -0,0 +1,560 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2020 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include + +#include "../habanalabs.h" + +bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, + prop->dmmu.start_addr, + prop->dmmu.end_addr); +} + +/** + * hl_mmu_init() - initialize the MMU module. + * @hdev: habanalabs device structure. + * + * Return: 0 for success, non-zero for failure. + */ +int hl_mmu_init(struct hl_device *hdev) +{ + int rc = -EOPNOTSUPP; + + if (!hdev->mmu_enable) + return 0; + + if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { + rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); + if (rc) + return rc; + } + + if (hdev->mmu_func[MMU_HR_PGT].init != NULL) + rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); + + return rc; +} + +/** + * hl_mmu_fini() - release the MMU module. + * @hdev: habanalabs device structure. + * + * This function does the following: + * - Disable MMU in H/W. + * - Free the pgt_infos pool. + * + * All contexts should be freed before calling this function. + */ +void hl_mmu_fini(struct hl_device *hdev) +{ + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) + hdev->mmu_func[MMU_DR_PGT].fini(hdev); + + if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) + hdev->mmu_func[MMU_HR_PGT].fini(hdev); +} + +/** + * hl_mmu_ctx_init() - initialize a context for using the MMU module. + * @ctx: pointer to the context structure to initialize. + * + * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all + * page tables hops related to this context. + * Return: 0 on success, non-zero otherwise. + */ +int hl_mmu_ctx_init(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + int rc = -EOPNOTSUPP; + + if (!hdev->mmu_enable) + return 0; + + mutex_init(&ctx->mmu_lock); + + if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { + rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); + if (rc) + return rc; + } + + if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) + rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); + + return rc; +} + +/* + * hl_mmu_ctx_fini - disable a ctx from using the mmu module + * + * @ctx: pointer to the context structure + * + * This function does the following: + * - Free any pgts which were not freed yet + * - Free the mutex + * - Free DRAM default page mapping hops + */ +void hl_mmu_ctx_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) + hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) + hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); + + mutex_destroy(&ctx->mmu_lock); +} + +/* + * hl_mmu_unmap_page - unmaps a virtual addr + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @page_size: size of the page to unmap + * @flush_pte: whether to do a PCI flush + * + * This function does the following: + * - Check that the virt addr is mapped + * - Unmap the virt addr and frees pgts if possible + * - Returns 0 on success, -EINVAL if the given addr is not mapped + * + * Because this function changes the page tables in the device and because it + * changes the MMU hash, it must be protected by a lock. + * However, because it maps only a single page, the lock should be implemented + * in a higher level in order to protect the entire mapping of the memory area + * + * For optimization reasons PCI flush may be requested once after unmapping of + * large area. + */ +int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, + bool flush_pte) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + u64 real_virt_addr; + u32 real_page_size, npages; + int i, rc = 0, pgt_residency; + bool is_dram_addr; + + if (!hdev->mmu_enable) + return 0; + + is_dram_addr = hl_is_dram_va(hdev, virt_addr); + + if (is_dram_addr) + mmu_prop = &prop->dmmu; + else if ((page_size % prop->pmmu_huge.page_size) == 0) + mmu_prop = &prop->pmmu_huge; + else + mmu_prop = &prop->pmmu; + + pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; + /* + * The H/W handles mapping of specific page sizes. Hence if the page + * size is bigger, we break it to sub-pages and unmap them separately. + */ + if ((page_size % mmu_prop->page_size) == 0) { + real_page_size = mmu_prop->page_size; + } else { + /* + * MMU page size may differ from DRAM page size. + * In such case work with the DRAM page size and let the MMU + * scrambling routine to handle this mismatch when + * calculating the address to remove from the MMU page table + */ + if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) { + real_page_size = prop->dram_page_size; + } else { + dev_err(hdev->dev, + "page size of %u is not %uKB aligned, can't unmap\n", + page_size, mmu_prop->page_size >> 10); + + return -EFAULT; + } + } + + npages = page_size / real_page_size; + real_virt_addr = virt_addr; + + for (i = 0 ; i < npages ; i++) { + rc = hdev->mmu_func[pgt_residency].unmap(ctx, + real_virt_addr, is_dram_addr); + if (rc) + break; + + real_virt_addr += real_page_size; + } + + if (flush_pte) + hdev->mmu_func[pgt_residency].flush(ctx); + + return rc; +} + +/* + * hl_mmu_map_page - maps a virtual addr to physical addr + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @phys_addr: phys addr to map to + * @page_size: physical page size + * @flush_pte: whether to do a PCI flush + * + * This function does the following: + * - Check that the virt addr is not mapped + * - Allocate pgts as necessary in order to map the virt addr to the phys + * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. + * + * Because this function changes the page tables in the device and because it + * changes the MMU hash, it must be protected by a lock. + * However, because it maps only a single page, the lock should be implemented + * in a higher level in order to protect the entire mapping of the memory area + * + * For optimization reasons PCI flush may be requested once after mapping of + * large area. + */ +int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, + u32 page_size, bool flush_pte) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + u64 real_virt_addr, real_phys_addr; + u32 real_page_size, npages; + int i, rc, pgt_residency, mapped_cnt = 0; + bool is_dram_addr; + + + if (!hdev->mmu_enable) + return 0; + + is_dram_addr = hl_is_dram_va(hdev, virt_addr); + + if (is_dram_addr) + mmu_prop = &prop->dmmu; + else if ((page_size % prop->pmmu_huge.page_size) == 0) + mmu_prop = &prop->pmmu_huge; + else + mmu_prop = &prop->pmmu; + + pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; + + /* + * The H/W handles mapping of specific page sizes. Hence if the page + * size is bigger, we break it to sub-pages and map them separately. + */ + if ((page_size % mmu_prop->page_size) == 0) { + real_page_size = mmu_prop->page_size; + } else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) && + (prop->dram_page_size < mmu_prop->page_size)) { + /* + * MMU page size may differ from DRAM page size. + * In such case work with the DRAM page size and let the MMU + * scrambling routine handle this mismatch when calculating + * the address to place in the MMU page table. (in that case + * also make sure that the dram_page_size smaller than the + * mmu page size) + */ + real_page_size = prop->dram_page_size; + } else { + dev_err(hdev->dev, + "page size of %u is not %uKB aligned, can't map\n", + page_size, mmu_prop->page_size >> 10); + + return -EFAULT; + } + + /* + * Verify that the phys and virt addresses are aligned with the + * MMU page size (in dram this means checking the address and MMU + * after scrambling) + */ + if ((is_dram_addr && + ((hdev->asic_funcs->scramble_vaddr(hdev, phys_addr) & + (mmu_prop->page_size - 1)) || + (hdev->asic_funcs->scramble_vaddr(hdev, virt_addr) & + (mmu_prop->page_size - 1)))) || + (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || + (virt_addr & (real_page_size - 1))))) + dev_crit(hdev->dev, + "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", + phys_addr, virt_addr, real_page_size); + + npages = page_size / real_page_size; + real_virt_addr = virt_addr; + real_phys_addr = phys_addr; + + for (i = 0 ; i < npages ; i++) { + rc = hdev->mmu_func[pgt_residency].map(ctx, + real_virt_addr, real_phys_addr, + real_page_size, is_dram_addr); + if (rc) + goto err; + + real_virt_addr += real_page_size; + real_phys_addr += real_page_size; + mapped_cnt++; + } + + if (flush_pte) + hdev->mmu_func[pgt_residency].flush(ctx); + + return 0; + +err: + real_virt_addr = virt_addr; + for (i = 0 ; i < mapped_cnt ; i++) { + if (hdev->mmu_func[pgt_residency].unmap(ctx, + real_virt_addr, is_dram_addr)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap va: 0x%llx\n", real_virt_addr); + + real_virt_addr += real_page_size; + } + + hdev->mmu_func[pgt_residency].flush(ctx); + + return rc; +} + +/* + * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page + * for mapping contiguous physical memory + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @phys_addr: phys addr to map to + * @size: size to map + * + */ +int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, + u64 phys_addr, u32 size) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 curr_va, curr_pa; + u32 page_size; + bool flush_pte; + int rc = 0, off; + + if (hl_mem_area_inside_range(virt_addr, size, + prop->dmmu.start_addr, prop->dmmu.end_addr)) + page_size = prop->dmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu.start_addr, prop->pmmu.end_addr)) + page_size = prop->pmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) + page_size = prop->pmmu_huge.page_size; + else + return -EINVAL; + + for (off = 0 ; off < size ; off += page_size) { + curr_va = virt_addr + off; + curr_pa = phys_addr + off; + flush_pte = (off + page_size) >= size; + rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, + flush_pte); + if (rc) { + dev_err(hdev->dev, + "Map failed for va 0x%llx to pa 0x%llx\n", + curr_va, curr_pa); + goto unmap; + } + } + + return rc; + +unmap: + for (; off >= 0 ; off -= page_size) { + curr_va = virt_addr + off; + flush_pte = (off - (s32) page_size) < 0; + if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap va 0x%llx\n", curr_va); + } + + return rc; +} + +/* + * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page + * for unmapping contiguous physical memory + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to unmap + * @size: size to unmap + * + */ +int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 curr_va; + u32 page_size; + bool flush_pte; + int rc = 0, off; + + if (hl_mem_area_inside_range(virt_addr, size, + prop->dmmu.start_addr, prop->dmmu.end_addr)) + page_size = prop->dmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu.start_addr, prop->pmmu.end_addr)) + page_size = prop->pmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) + page_size = prop->pmmu_huge.page_size; + else + return -EINVAL; + + for (off = 0 ; off < size ; off += page_size) { + curr_va = virt_addr + off; + flush_pte = (off + page_size) >= size; + rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); + if (rc) + dev_warn_ratelimited(hdev->dev, + "Unmap failed for va 0x%llx\n", curr_va); + } + + return rc; +} + +/* + * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out + * + * @ctx: pointer to the context structure + * + */ +void hl_mmu_swap_out(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) + hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) + hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); +} + +/* + * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in + * + * @ctx: pointer to the context structure + * + */ +void hl_mmu_swap_in(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) + hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) + hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); +} + +int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) +{ + struct hl_mmu_hop_info hops; + u64 tmp_addr; + int rc; + + rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); + if (rc) + return rc; + + /* last hop holds the phys address and flags */ + tmp_addr = hops.hop_info[hops.used_hops - 1].hop_pte_val; + *phys_addr = (tmp_addr & HOP_PHYS_ADDR_MASK) | (virt_addr & FLAGS_MASK); + + return 0; +} + +int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, + struct hl_mmu_hop_info *hops) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + int rc; + bool is_dram_addr; + + if (!hdev->mmu_enable) + return -EOPNOTSUPP; + + hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ + + is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, + prop->dmmu.start_addr, + prop->dmmu.end_addr); + + /* host-residency is the same in PMMU and HPMMU, use one of them */ + mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; + + mutex_lock(&ctx->mmu_lock); + + if (mmu_prop->host_resident) + rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx, + virt_addr, hops); + else + rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx, + virt_addr, hops); + + mutex_unlock(&ctx->mmu_lock); + + return rc; +} + +int hl_mmu_if_set_funcs(struct hl_device *hdev) +{ + if (!hdev->mmu_enable) + return 0; + + switch (hdev->asic_type) { + case ASIC_GOYA: + case ASIC_GAUDI: + hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); + break; + default: + dev_err(hdev->dev, "Unrecognized ASIC type %d\n", + hdev->asic_type); + return -EOPNOTSUPP; + } + + return 0; +} + +/** + * hl_mmu_scramble_vaddr() - The generic mmu virtual address scrambling routine. + * @hdev: pointer to device data. + * @virt_addr: The virtual address to scramble. + * + * Return: The scrambled virtual address. + */ +u64 hl_mmu_scramble_vaddr(struct hl_device *hdev, u64 virt_addr) +{ + return virt_addr; +} diff --git a/drivers/misc/habanalabs/common/mmu/mmu_v1.c b/drivers/misc/habanalabs/common/mmu/mmu_v1.c new file mode 100644 index 000000000000..c5e93ff32586 --- /dev/null +++ b/drivers/misc/habanalabs/common/mmu/mmu_v1.c @@ -0,0 +1,966 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2019 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include "../habanalabs.h" +#include "../../include/hw_ip/mmu/mmu_general.h" + +#include + +static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); + +static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) +{ + struct pgt_info *pgt_info = NULL; + + hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, + (unsigned long) hop_addr) + if (hop_addr == pgt_info->shadow_addr) + break; + + return pgt_info; +} + +static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) +{ + struct hl_device *hdev = ctx->hdev; + + gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, + hdev->asic_prop.mmu_hop_table_size); + hash_del(&pgt_info->node); + kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); + kfree(pgt_info); +} + +static void free_hop(struct hl_ctx *ctx, u64 hop_addr) +{ + struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); + + _free_hop(ctx, pgt_info); +} + +static u64 alloc_hop(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct pgt_info *pgt_info; + u64 phys_addr, shadow_addr; + + pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); + if (!pgt_info) + return ULLONG_MAX; + + phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, + prop->mmu_hop_table_size); + if (!phys_addr) { + dev_err(hdev->dev, "failed to allocate page\n"); + goto pool_add_err; + } + + shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, + GFP_KERNEL); + if (!shadow_addr) + goto shadow_err; + + pgt_info->phys_addr = phys_addr; + pgt_info->shadow_addr = shadow_addr; + pgt_info->ctx = ctx; + pgt_info->num_of_ptes = 0; + hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); + + return shadow_addr; + +shadow_err: + gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr, + prop->mmu_hop_table_size); +pool_add_err: + kfree(pgt_info); + + return ULLONG_MAX; +} + +static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) +{ + return ctx->hdev->asic_prop.mmu_pgt_addr + + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); +} + +static inline u64 get_hop0_addr(struct hl_ctx *ctx) +{ + return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + + (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); +} + +static void flush(struct hl_ctx *ctx) +{ + /* flush all writes from all cores to reach PCI */ + mb(); + ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); +} + +/* transform the value to physical address when writing to H/W */ +static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) +{ + /* + * The value to write is actually the address of the next shadow hop + + * flags at the 12 LSBs. + * Hence in order to get the value to write to the physical PTE, we + * clear the 12 LSBs and translate the shadow hop to its associated + * physical hop, and add back the original 12 LSBs. + */ + u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | + (val & FLAGS_MASK); + + ctx->hdev->asic_funcs->write_pte(ctx->hdev, + get_phys_addr(ctx, shadow_pte_addr), + phys_val); + + *(u64 *) (uintptr_t) shadow_pte_addr = val; +} + +/* do not transform the value to physical address when writing to H/W */ +static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, + u64 val) +{ + ctx->hdev->asic_funcs->write_pte(ctx->hdev, + get_phys_addr(ctx, shadow_pte_addr), + val); + *(u64 *) (uintptr_t) shadow_pte_addr = val; +} + +/* clear the last and present bits */ +static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) +{ + /* no need to transform the value to physical address */ + write_final_pte(ctx, pte_addr, 0); +} + +static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) +{ + get_pgt_info(ctx, hop_addr)->num_of_ptes++; +} + +/* + * put_pte - decrement the num of ptes and free the hop if possible + * + * @ctx: pointer to the context structure + * @hop_addr: addr of the hop + * + * This function returns the number of ptes left on this hop. If the number is + * 0, it means the pte was freed. + */ +static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) +{ + struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); + int num_of_ptes_left; + + pgt_info->num_of_ptes--; + + /* + * Need to save the number of ptes left because free_hop might free + * the pgt_info + */ + num_of_ptes_left = pgt_info->num_of_ptes; + if (!num_of_ptes_left) + _free_hop(ctx, pgt_info); + + return num_of_ptes_left; +} + +static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, + u64 virt_addr, u64 mask, u64 shift) +{ + return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * + ((virt_addr & mask) >> shift); +} + +static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + u64 hop_addr, u64 vaddr) +{ + return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask, + mmu_prop->hop0_shift); +} + +static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + u64 hop_addr, u64 vaddr) +{ + return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask, + mmu_prop->hop1_shift); +} + +static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + u64 hop_addr, u64 vaddr) +{ + return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask, + mmu_prop->hop2_shift); +} + +static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + u64 hop_addr, u64 vaddr) +{ + return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask, + mmu_prop->hop3_shift); +} + +static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + u64 hop_addr, u64 vaddr) +{ + return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask, + mmu_prop->hop4_shift); +} + +static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) +{ + if (curr_pte & PAGE_PRESENT_MASK) + return curr_pte & HOP_PHYS_ADDR_MASK; + else + return ULLONG_MAX; +} + +static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, + bool *is_new_hop) +{ + u64 hop_addr = get_next_hop_addr(ctx, curr_pte); + + if (hop_addr == ULLONG_MAX) { + hop_addr = alloc_hop(ctx); + *is_new_hop = (hop_addr != ULLONG_MAX); + } + + return hop_addr; +} + +/* translates shadow address inside hop to a physical address */ +static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) +{ + u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); + u64 shadow_hop_addr = shadow_addr & ~page_mask; + u64 pte_offset = shadow_addr & page_mask; + u64 phys_hop_addr; + + if (shadow_hop_addr != get_hop0_addr(ctx)) + phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; + else + phys_hop_addr = get_phys_hop0_addr(ctx); + + return phys_hop_addr + pte_offset; +} + +static int dram_default_mapping_init(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, + hop2_pte_addr, hop3_pte_addr, pte_val; + int rc, i, j, hop3_allocated = 0; + + if ((!prop->dram_supports_virtual_memory) || + (!hdev->dram_default_page_mapping) || + (ctx->asid == HL_KERNEL_ASID_ID)) + return 0; + + num_of_hop3 = prop->dram_size_for_default_page_mapping; + do_div(num_of_hop3, prop->dram_page_size); + do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); + + /* add hop1 and hop2 */ + total_hops = num_of_hop3 + 2; + + ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); + if (!ctx->dram_default_hops) + return -ENOMEM; + + hop0_addr = get_hop0_addr(ctx); + + hop1_addr = alloc_hop(ctx); + if (hop1_addr == ULLONG_MAX) { + dev_err(hdev->dev, "failed to alloc hop 1\n"); + rc = -ENOMEM; + goto hop1_err; + } + + ctx->dram_default_hops[total_hops - 1] = hop1_addr; + + hop2_addr = alloc_hop(ctx); + if (hop2_addr == ULLONG_MAX) { + dev_err(hdev->dev, "failed to alloc hop 2\n"); + rc = -ENOMEM; + goto hop2_err; + } + + ctx->dram_default_hops[total_hops - 2] = hop2_addr; + + for (i = 0 ; i < num_of_hop3 ; i++) { + ctx->dram_default_hops[i] = alloc_hop(ctx); + if (ctx->dram_default_hops[i] == ULLONG_MAX) { + dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); + rc = -ENOMEM; + goto hop3_err; + } + hop3_allocated++; + } + + /* need only pte 0 in hops 0 and 1 */ + pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; + write_pte(ctx, hop0_addr, pte_val); + + pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; + write_pte(ctx, hop1_addr, pte_val); + get_pte(ctx, hop1_addr); + + hop2_pte_addr = hop2_addr; + for (i = 0 ; i < num_of_hop3 ; i++) { + pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | + PAGE_PRESENT_MASK; + write_pte(ctx, hop2_pte_addr, pte_val); + get_pte(ctx, hop2_addr); + hop2_pte_addr += HL_PTE_SIZE; + } + + pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | + LAST_MASK | PAGE_PRESENT_MASK; + + for (i = 0 ; i < num_of_hop3 ; i++) { + hop3_pte_addr = ctx->dram_default_hops[i]; + for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { + write_final_pte(ctx, hop3_pte_addr, pte_val); + get_pte(ctx, ctx->dram_default_hops[i]); + hop3_pte_addr += HL_PTE_SIZE; + } + } + + flush(ctx); + + return 0; + +hop3_err: + for (i = 0 ; i < hop3_allocated ; i++) + free_hop(ctx, ctx->dram_default_hops[i]); + + free_hop(ctx, hop2_addr); +hop2_err: + free_hop(ctx, hop1_addr); +hop1_err: + kfree(ctx->dram_default_hops); + + return rc; +} + +static void dram_default_mapping_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, + hop2_pte_addr, hop3_pte_addr; + int i, j; + + if ((!prop->dram_supports_virtual_memory) || + (!hdev->dram_default_page_mapping) || + (ctx->asid == HL_KERNEL_ASID_ID)) + return; + + num_of_hop3 = prop->dram_size_for_default_page_mapping; + do_div(num_of_hop3, prop->dram_page_size); + do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); + + hop0_addr = get_hop0_addr(ctx); + /* add hop1 and hop2 */ + total_hops = num_of_hop3 + 2; + hop1_addr = ctx->dram_default_hops[total_hops - 1]; + hop2_addr = ctx->dram_default_hops[total_hops - 2]; + + for (i = 0 ; i < num_of_hop3 ; i++) { + hop3_pte_addr = ctx->dram_default_hops[i]; + for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { + clear_pte(ctx, hop3_pte_addr); + put_pte(ctx, ctx->dram_default_hops[i]); + hop3_pte_addr += HL_PTE_SIZE; + } + } + + hop2_pte_addr = hop2_addr; + hop2_pte_addr = hop2_addr; + for (i = 0 ; i < num_of_hop3 ; i++) { + clear_pte(ctx, hop2_pte_addr); + put_pte(ctx, hop2_addr); + hop2_pte_addr += HL_PTE_SIZE; + } + + clear_pte(ctx, hop1_addr); + put_pte(ctx, hop1_addr); + clear_pte(ctx, hop0_addr); + + kfree(ctx->dram_default_hops); + + flush(ctx); +} + +/** + * hl_mmu_v1_init() - initialize the MMU module. + * @hdev: habanalabs device structure. + * + * This function does the following: + * - Create a pool of pages for pgt_infos. + * - Create a shadow table for pgt + * + * Return: 0 for success, non-zero for failure. + */ +static int hl_mmu_v1_init(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + int rc; + + hdev->mmu_priv.dr.mmu_pgt_pool = + gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); + + if (!hdev->mmu_priv.dr.mmu_pgt_pool) { + dev_err(hdev->dev, "Failed to create page gen pool\n"); + return -ENOMEM; + } + + rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + + prop->mmu_hop0_tables_total_size, + prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, + -1); + if (rc) { + dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); + goto err_pool_add; + } + + hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, + prop->mmu_hop_table_size, + GFP_KERNEL | __GFP_ZERO); + if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { + rc = -ENOMEM; + goto err_pool_add; + } + + /* MMU H/W init will be done in device hw_init() */ + + return 0; + +err_pool_add: + gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); + + return rc; +} + +/** + * hl_mmu_fini() - release the MMU module. + * @hdev: habanalabs device structure. + * + * This function does the following: + * - Disable MMU in H/W. + * - Free the pgt_infos pool. + * + * All contexts should be freed before calling this function. + */ +static void hl_mmu_v1_fini(struct hl_device *hdev) +{ + /* MMU H/W fini was already done in device hw_fini() */ + + if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.hr.mmu_shadow_hop0)) { + kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); + gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); + } + + /* Make sure that if we arrive here again without init was called we + * won't cause kernel panic. This can happen for example if we fail + * during hard reset code at certain points + */ + hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; +} + +/** + * hl_mmu_ctx_init() - initialize a context for using the MMU module. + * @ctx: pointer to the context structure to initialize. + * + * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all + * page tables hops related to this context. + * Return: 0 on success, non-zero otherwise. + */ +static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx) +{ + hash_init(ctx->mmu_shadow_hash); + return dram_default_mapping_init(ctx); +} + +/* + * hl_mmu_ctx_fini - disable a ctx from using the mmu module + * + * @ctx: pointer to the context structure + * + * This function does the following: + * - Free any pgts which were not freed yet + * - Free the mutex + * - Free DRAM default page mapping hops + */ +static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + struct pgt_info *pgt_info; + struct hlist_node *tmp; + int i; + + dram_default_mapping_fini(ctx); + + if (!hash_empty(ctx->mmu_shadow_hash)) + dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", + ctx->asid); + + hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { + dev_err_ratelimited(hdev->dev, + "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", + pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); + _free_hop(ctx, pgt_info); + } +} + +static int _hl_mmu_v1_unmap(struct hl_ctx *ctx, + u64 virt_addr, bool is_dram_addr) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + u64 hop0_addr = 0, hop0_pte_addr = 0, + hop1_addr = 0, hop1_pte_addr = 0, + hop2_addr = 0, hop2_pte_addr = 0, + hop3_addr = 0, hop3_pte_addr = 0, + hop4_addr = 0, hop4_pte_addr = 0, + curr_pte; + bool is_huge, clear_hop3 = true; + + /* shifts and masks are the same in PMMU and HPMMU, use one of them */ + mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; + + hop0_addr = get_hop0_addr(ctx); + hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); + + curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; + + hop1_addr = get_next_hop_addr(ctx, curr_pte); + + if (hop1_addr == ULLONG_MAX) + goto not_mapped; + + hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); + + curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; + + hop2_addr = get_next_hop_addr(ctx, curr_pte); + + if (hop2_addr == ULLONG_MAX) + goto not_mapped; + + hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); + + curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; + + hop3_addr = get_next_hop_addr(ctx, curr_pte); + + if (hop3_addr == ULLONG_MAX) + goto not_mapped; + + hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); + + curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; + + is_huge = curr_pte & LAST_MASK; + + if (is_dram_addr && !is_huge) { + dev_err(hdev->dev, + "DRAM unmapping should use huge pages only\n"); + return -EFAULT; + } + + if (!is_huge) { + hop4_addr = get_next_hop_addr(ctx, curr_pte); + + if (hop4_addr == ULLONG_MAX) + goto not_mapped; + + hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, + virt_addr); + + curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; + + clear_hop3 = false; + } + + if (hdev->dram_default_page_mapping && is_dram_addr) { + u64 default_pte = (prop->mmu_dram_default_page_addr & + HOP_PHYS_ADDR_MASK) | LAST_MASK | + PAGE_PRESENT_MASK; + if (curr_pte == default_pte) { + dev_err(hdev->dev, + "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", + virt_addr); + goto not_mapped; + } + + if (!(curr_pte & PAGE_PRESENT_MASK)) { + dev_err(hdev->dev, + "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", + virt_addr); + goto not_mapped; + } + + write_final_pte(ctx, hop3_pte_addr, default_pte); + put_pte(ctx, hop3_addr); + } else { + if (!(curr_pte & PAGE_PRESENT_MASK)) + goto not_mapped; + + if (hop4_addr) + clear_pte(ctx, hop4_pte_addr); + else + clear_pte(ctx, hop3_pte_addr); + + if (hop4_addr && !put_pte(ctx, hop4_addr)) + clear_hop3 = true; + + if (!clear_hop3) + goto mapped; + + clear_pte(ctx, hop3_pte_addr); + + if (put_pte(ctx, hop3_addr)) + goto mapped; + + clear_pte(ctx, hop2_pte_addr); + + if (put_pte(ctx, hop2_addr)) + goto mapped; + + clear_pte(ctx, hop1_pte_addr); + + if (put_pte(ctx, hop1_addr)) + goto mapped; + + clear_pte(ctx, hop0_pte_addr); + } + +mapped: + return 0; + +not_mapped: + dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", + virt_addr); + + return -EINVAL; +} + +static int _hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, + u32 page_size, bool is_dram_addr) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + u64 hop0_addr = 0, hop0_pte_addr = 0, + hop1_addr = 0, hop1_pte_addr = 0, + hop2_addr = 0, hop2_pte_addr = 0, + hop3_addr = 0, hop3_pte_addr = 0, + hop4_addr = 0, hop4_pte_addr = 0, + curr_pte = 0; + bool hop1_new = false, hop2_new = false, hop3_new = false, + hop4_new = false, is_huge; + int rc = -ENOMEM; + + /* + * This mapping function can map a page or a huge page. For huge page + * there are only 3 hops rather than 4. Currently the DRAM allocation + * uses huge pages only but user memory could have been allocated with + * one of the two page sizes. Since this is a common code for all the + * three cases, we need this hugs page check. + */ + if (is_dram_addr) { + mmu_prop = &prop->dmmu; + is_huge = true; + } else if (page_size == prop->pmmu_huge.page_size) { + mmu_prop = &prop->pmmu_huge; + is_huge = true; + } else { + mmu_prop = &prop->pmmu; + is_huge = false; + } + + hop0_addr = get_hop0_addr(ctx); + hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); + curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; + + hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); + if (hop1_addr == ULLONG_MAX) + goto err; + + hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); + curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; + + hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); + if (hop2_addr == ULLONG_MAX) + goto err; + + hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); + curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; + + hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); + if (hop3_addr == ULLONG_MAX) + goto err; + + hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); + curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; + + if (!is_huge) { + hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); + if (hop4_addr == ULLONG_MAX) + goto err; + + hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, + virt_addr); + curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; + } + + if (hdev->dram_default_page_mapping && is_dram_addr) { + u64 default_pte = (prop->mmu_dram_default_page_addr & + HOP_PHYS_ADDR_MASK) | LAST_MASK | + PAGE_PRESENT_MASK; + + if (curr_pte != default_pte) { + dev_err(hdev->dev, + "DRAM: mapping already exists for virt_addr 0x%llx\n", + virt_addr); + rc = -EINVAL; + goto err; + } + + if (hop1_new || hop2_new || hop3_new || hop4_new) { + dev_err(hdev->dev, + "DRAM mapping should not allocate more hops\n"); + rc = -EFAULT; + goto err; + } + } else if (curr_pte & PAGE_PRESENT_MASK) { + dev_err(hdev->dev, + "mapping already exists for virt_addr 0x%llx\n", + virt_addr); + + dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", + *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); + dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", + *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); + dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", + *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); + dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", + *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); + + if (!is_huge) + dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", + *(u64 *) (uintptr_t) hop4_pte_addr, + hop4_pte_addr); + + rc = -EINVAL; + goto err; + } + + curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK + | PAGE_PRESENT_MASK; + + if (is_huge) + write_final_pte(ctx, hop3_pte_addr, curr_pte); + else + write_final_pte(ctx, hop4_pte_addr, curr_pte); + + if (hop1_new) { + curr_pte = + (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; + write_pte(ctx, hop0_pte_addr, curr_pte); + } + if (hop2_new) { + curr_pte = + (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; + write_pte(ctx, hop1_pte_addr, curr_pte); + get_pte(ctx, hop1_addr); + } + if (hop3_new) { + curr_pte = + (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; + write_pte(ctx, hop2_pte_addr, curr_pte); + get_pte(ctx, hop2_addr); + } + + if (!is_huge) { + if (hop4_new) { + curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) | + PAGE_PRESENT_MASK; + write_pte(ctx, hop3_pte_addr, curr_pte); + get_pte(ctx, hop3_addr); + } + + get_pte(ctx, hop4_addr); + } else { + get_pte(ctx, hop3_addr); + } + + return 0; + +err: + if (hop4_new) + free_hop(ctx, hop4_addr); + if (hop3_new) + free_hop(ctx, hop3_addr); + if (hop2_new) + free_hop(ctx, hop2_addr); + if (hop1_new) + free_hop(ctx, hop1_addr); + + return rc; +} + +/* + * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out + * + * @ctx: pointer to the context structure + * + */ +static void hl_mmu_v1_swap_out(struct hl_ctx *ctx) +{ + +} + +/* + * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in + * + * @ctx: pointer to the context structure + * + */ +static void hl_mmu_v1_swap_in(struct hl_ctx *ctx) +{ + +} + +static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, + struct hl_mmu_properties *mmu_prop, + int hop_num, u64 hop_addr, u64 virt_addr) +{ + switch (hop_num) { + case 0: + return get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); + case 1: + return get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); + case 2: + return get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); + case 3: + return get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); + case 4: + return get_hop4_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); + default: + break; + } + return U64_MAX; +} + +static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, + struct hl_mmu_hop_info *hops) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_mmu_properties *mmu_prop; + bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge; + int i, used_hops; + + is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, + prop->dmmu.start_addr, + prop->dmmu.end_addr); + is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, + prop->pmmu.start_addr, + prop->pmmu.end_addr); + is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, + prop->pmmu_huge.page_size, + prop->pmmu_huge.start_addr, + prop->pmmu_huge.end_addr); + if (is_dram_addr) { + mmu_prop = &prop->dmmu; + is_huge = true; + } else if (is_pmmu_addr) { + mmu_prop = &prop->pmmu; + is_huge = false; + } else if (is_pmmu_h_addr) { + mmu_prop = &prop->pmmu_huge; + is_huge = true; + } else { + return -EINVAL; + } + + used_hops = mmu_prop->num_hops; + + /* huge pages use lesser hops */ + if (is_huge) + used_hops--; + + hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx); + hops->hop_info[0].hop_pte_addr = + get_hop_pte_addr(ctx, mmu_prop, 0, + hops->hop_info[0].hop_addr, virt_addr); + hops->hop_info[0].hop_pte_val = + hdev->asic_funcs->read_pte(hdev, + hops->hop_info[0].hop_pte_addr); + + for (i = 1 ; i < used_hops ; i++) { + hops->hop_info[i].hop_addr = + get_next_hop_addr(ctx, + hops->hop_info[i - 1].hop_pte_val); + if (hops->hop_info[i].hop_addr == ULLONG_MAX) + return -EFAULT; + + hops->hop_info[i].hop_pte_addr = + get_hop_pte_addr(ctx, mmu_prop, i, + hops->hop_info[i].hop_addr, + virt_addr); + hops->hop_info[i].hop_pte_val = + hdev->asic_funcs->read_pte(hdev, + hops->hop_info[i].hop_pte_addr); + + if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) + return -EFAULT; + + if (hops->hop_info[i].hop_pte_val & LAST_MASK) + break; + } + + /* if passed over all hops then no last hop was found */ + if (i == mmu_prop->num_hops) + return -EFAULT; + + if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) + return -EFAULT; + + hops->used_hops = i + 1; + + return 0; +} + +/* + * hl_mmu_v1_prepare - prepare mmu for working with mmu v1 + * + * @hdev: pointer to the device structure + */ +void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) +{ + mmu->init = hl_mmu_v1_init; + mmu->fini = hl_mmu_v1_fini; + mmu->ctx_init = hl_mmu_v1_ctx_init; + mmu->ctx_fini = hl_mmu_v1_ctx_fini; + mmu->map = _hl_mmu_v1_map; + mmu->unmap = _hl_mmu_v1_unmap; + mmu->flush = flush; + mmu->swap_out = hl_mmu_v1_swap_out; + mmu->swap_in = hl_mmu_v1_swap_in; + mmu->get_tlb_info = hl_mmu_v1_get_tlb_info; +} diff --git a/drivers/misc/habanalabs/common/mmu_v1.c b/drivers/misc/habanalabs/common/mmu_v1.c deleted file mode 100644 index 06d8a44dd5d4..000000000000 --- a/drivers/misc/habanalabs/common/mmu_v1.c +++ /dev/null @@ -1,966 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 - -/* - * Copyright 2016-2019 HabanaLabs, Ltd. - * All Rights Reserved. - */ - -#include "habanalabs.h" -#include "../include/hw_ip/mmu/mmu_general.h" - -#include - -static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr); - -static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) -{ - struct pgt_info *pgt_info = NULL; - - hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, - (unsigned long) hop_addr) - if (hop_addr == pgt_info->shadow_addr) - break; - - return pgt_info; -} - -static void _free_hop(struct hl_ctx *ctx, struct pgt_info *pgt_info) -{ - struct hl_device *hdev = ctx->hdev; - - gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, - hdev->asic_prop.mmu_hop_table_size); - hash_del(&pgt_info->node); - kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); - kfree(pgt_info); -} - -static void free_hop(struct hl_ctx *ctx, u64 hop_addr) -{ - struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); - - _free_hop(ctx, pgt_info); -} - -static u64 alloc_hop(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct pgt_info *pgt_info; - u64 phys_addr, shadow_addr; - - pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); - if (!pgt_info) - return ULLONG_MAX; - - phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, - prop->mmu_hop_table_size); - if (!phys_addr) { - dev_err(hdev->dev, "failed to allocate page\n"); - goto pool_add_err; - } - - shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size, - GFP_KERNEL); - if (!shadow_addr) - goto shadow_err; - - pgt_info->phys_addr = phys_addr; - pgt_info->shadow_addr = shadow_addr; - pgt_info->ctx = ctx; - pgt_info->num_of_ptes = 0; - hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); - - return shadow_addr; - -shadow_err: - gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr, - prop->mmu_hop_table_size); -pool_add_err: - kfree(pgt_info); - - return ULLONG_MAX; -} - -static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx) -{ - return ctx->hdev->asic_prop.mmu_pgt_addr + - (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); -} - -static inline u64 get_hop0_addr(struct hl_ctx *ctx) -{ - return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + - (ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size); -} - -static void flush(struct hl_ctx *ctx) -{ - /* flush all writes from all cores to reach PCI */ - mb(); - ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx)); -} - -/* transform the value to physical address when writing to H/W */ -static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) -{ - /* - * The value to write is actually the address of the next shadow hop + - * flags at the 12 LSBs. - * Hence in order to get the value to write to the physical PTE, we - * clear the 12 LSBs and translate the shadow hop to its associated - * physical hop, and add back the original 12 LSBs. - */ - u64 phys_val = get_phys_addr(ctx, val & HOP_PHYS_ADDR_MASK) | - (val & FLAGS_MASK); - - ctx->hdev->asic_funcs->write_pte(ctx->hdev, - get_phys_addr(ctx, shadow_pte_addr), - phys_val); - - *(u64 *) (uintptr_t) shadow_pte_addr = val; -} - -/* do not transform the value to physical address when writing to H/W */ -static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, - u64 val) -{ - ctx->hdev->asic_funcs->write_pte(ctx->hdev, - get_phys_addr(ctx, shadow_pte_addr), - val); - *(u64 *) (uintptr_t) shadow_pte_addr = val; -} - -/* clear the last and present bits */ -static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr) -{ - /* no need to transform the value to physical address */ - write_final_pte(ctx, pte_addr, 0); -} - -static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr) -{ - get_pgt_info(ctx, hop_addr)->num_of_ptes++; -} - -/* - * put_pte - decrement the num of ptes and free the hop if possible - * - * @ctx: pointer to the context structure - * @hop_addr: addr of the hop - * - * This function returns the number of ptes left on this hop. If the number is - * 0, it means the pte was freed. - */ -static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr) -{ - struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr); - int num_of_ptes_left; - - pgt_info->num_of_ptes--; - - /* - * Need to save the number of ptes left because free_hop might free - * the pgt_info - */ - num_of_ptes_left = pgt_info->num_of_ptes; - if (!num_of_ptes_left) - _free_hop(ctx, pgt_info); - - return num_of_ptes_left; -} - -static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr, - u64 virt_addr, u64 mask, u64 shift) -{ - return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * - ((virt_addr & mask) >> shift); -} - -static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - u64 hop_addr, u64 vaddr) -{ - return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop0_mask, - mmu_prop->hop0_shift); -} - -static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - u64 hop_addr, u64 vaddr) -{ - return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop1_mask, - mmu_prop->hop1_shift); -} - -static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - u64 hop_addr, u64 vaddr) -{ - return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop2_mask, - mmu_prop->hop2_shift); -} - -static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - u64 hop_addr, u64 vaddr) -{ - return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop3_mask, - mmu_prop->hop3_shift); -} - -static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - u64 hop_addr, u64 vaddr) -{ - return get_hopN_pte_addr(ctx, hop_addr, vaddr, mmu_prop->hop4_mask, - mmu_prop->hop4_shift); -} - -static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) -{ - if (curr_pte & PAGE_PRESENT_MASK) - return curr_pte & HOP_PHYS_ADDR_MASK; - else - return ULLONG_MAX; -} - -static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, - bool *is_new_hop) -{ - u64 hop_addr = get_next_hop_addr(ctx, curr_pte); - - if (hop_addr == ULLONG_MAX) { - hop_addr = alloc_hop(ctx); - *is_new_hop = (hop_addr != ULLONG_MAX); - } - - return hop_addr; -} - -/* translates shadow address inside hop to a physical address */ -static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) -{ - u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1); - u64 shadow_hop_addr = shadow_addr & ~page_mask; - u64 pte_offset = shadow_addr & page_mask; - u64 phys_hop_addr; - - if (shadow_hop_addr != get_hop0_addr(ctx)) - phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr; - else - phys_hop_addr = get_phys_hop0_addr(ctx); - - return phys_hop_addr + pte_offset; -} - -static int dram_default_mapping_init(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, - hop2_pte_addr, hop3_pte_addr, pte_val; - int rc, i, j, hop3_allocated = 0; - - if ((!prop->dram_supports_virtual_memory) || - (!hdev->dram_default_page_mapping) || - (ctx->asid == HL_KERNEL_ASID_ID)) - return 0; - - num_of_hop3 = prop->dram_size_for_default_page_mapping; - do_div(num_of_hop3, prop->dram_page_size); - do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); - - /* add hop1 and hop2 */ - total_hops = num_of_hop3 + 2; - - ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL); - if (!ctx->dram_default_hops) - return -ENOMEM; - - hop0_addr = get_hop0_addr(ctx); - - hop1_addr = alloc_hop(ctx); - if (hop1_addr == ULLONG_MAX) { - dev_err(hdev->dev, "failed to alloc hop 1\n"); - rc = -ENOMEM; - goto hop1_err; - } - - ctx->dram_default_hops[total_hops - 1] = hop1_addr; - - hop2_addr = alloc_hop(ctx); - if (hop2_addr == ULLONG_MAX) { - dev_err(hdev->dev, "failed to alloc hop 2\n"); - rc = -ENOMEM; - goto hop2_err; - } - - ctx->dram_default_hops[total_hops - 2] = hop2_addr; - - for (i = 0 ; i < num_of_hop3 ; i++) { - ctx->dram_default_hops[i] = alloc_hop(ctx); - if (ctx->dram_default_hops[i] == ULLONG_MAX) { - dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i); - rc = -ENOMEM; - goto hop3_err; - } - hop3_allocated++; - } - - /* need only pte 0 in hops 0 and 1 */ - pte_val = (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; - write_pte(ctx, hop0_addr, pte_val); - - pte_val = (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; - write_pte(ctx, hop1_addr, pte_val); - get_pte(ctx, hop1_addr); - - hop2_pte_addr = hop2_addr; - for (i = 0 ; i < num_of_hop3 ; i++) { - pte_val = (ctx->dram_default_hops[i] & HOP_PHYS_ADDR_MASK) | - PAGE_PRESENT_MASK; - write_pte(ctx, hop2_pte_addr, pte_val); - get_pte(ctx, hop2_addr); - hop2_pte_addr += HL_PTE_SIZE; - } - - pte_val = (prop->mmu_dram_default_page_addr & HOP_PHYS_ADDR_MASK) | - LAST_MASK | PAGE_PRESENT_MASK; - - for (i = 0 ; i < num_of_hop3 ; i++) { - hop3_pte_addr = ctx->dram_default_hops[i]; - for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { - write_final_pte(ctx, hop3_pte_addr, pte_val); - get_pte(ctx, ctx->dram_default_hops[i]); - hop3_pte_addr += HL_PTE_SIZE; - } - } - - flush(ctx); - - return 0; - -hop3_err: - for (i = 0 ; i < hop3_allocated ; i++) - free_hop(ctx, ctx->dram_default_hops[i]); - - free_hop(ctx, hop2_addr); -hop2_err: - free_hop(ctx, hop1_addr); -hop1_err: - kfree(ctx->dram_default_hops); - - return rc; -} - -static void dram_default_mapping_fini(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr, - hop2_pte_addr, hop3_pte_addr; - int i, j; - - if ((!prop->dram_supports_virtual_memory) || - (!hdev->dram_default_page_mapping) || - (ctx->asid == HL_KERNEL_ASID_ID)) - return; - - num_of_hop3 = prop->dram_size_for_default_page_mapping; - do_div(num_of_hop3, prop->dram_page_size); - do_div(num_of_hop3, PTE_ENTRIES_IN_HOP); - - hop0_addr = get_hop0_addr(ctx); - /* add hop1 and hop2 */ - total_hops = num_of_hop3 + 2; - hop1_addr = ctx->dram_default_hops[total_hops - 1]; - hop2_addr = ctx->dram_default_hops[total_hops - 2]; - - for (i = 0 ; i < num_of_hop3 ; i++) { - hop3_pte_addr = ctx->dram_default_hops[i]; - for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) { - clear_pte(ctx, hop3_pte_addr); - put_pte(ctx, ctx->dram_default_hops[i]); - hop3_pte_addr += HL_PTE_SIZE; - } - } - - hop2_pte_addr = hop2_addr; - hop2_pte_addr = hop2_addr; - for (i = 0 ; i < num_of_hop3 ; i++) { - clear_pte(ctx, hop2_pte_addr); - put_pte(ctx, hop2_addr); - hop2_pte_addr += HL_PTE_SIZE; - } - - clear_pte(ctx, hop1_addr); - put_pte(ctx, hop1_addr); - clear_pte(ctx, hop0_addr); - - kfree(ctx->dram_default_hops); - - flush(ctx); -} - -/** - * hl_mmu_v1_init() - initialize the MMU module. - * @hdev: habanalabs device structure. - * - * This function does the following: - * - Create a pool of pages for pgt_infos. - * - Create a shadow table for pgt - * - * Return: 0 for success, non-zero for failure. - */ -static int hl_mmu_v1_init(struct hl_device *hdev) -{ - struct asic_fixed_properties *prop = &hdev->asic_prop; - int rc; - - hdev->mmu_priv.dr.mmu_pgt_pool = - gen_pool_create(__ffs(prop->mmu_hop_table_size), -1); - - if (!hdev->mmu_priv.dr.mmu_pgt_pool) { - dev_err(hdev->dev, "Failed to create page gen pool\n"); - return -ENOMEM; - } - - rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + - prop->mmu_hop0_tables_total_size, - prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size, - -1); - if (rc) { - dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); - goto err_pool_add; - } - - hdev->mmu_priv.dr.mmu_shadow_hop0 = kvmalloc_array(prop->max_asid, - prop->mmu_hop_table_size, - GFP_KERNEL | __GFP_ZERO); - if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { - rc = -ENOMEM; - goto err_pool_add; - } - - /* MMU H/W init will be done in device hw_init() */ - - return 0; - -err_pool_add: - gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); - - return rc; -} - -/** - * hl_mmu_fini() - release the MMU module. - * @hdev: habanalabs device structure. - * - * This function does the following: - * - Disable MMU in H/W. - * - Free the pgt_infos pool. - * - * All contexts should be freed before calling this function. - */ -static void hl_mmu_v1_fini(struct hl_device *hdev) -{ - /* MMU H/W fini was already done in device hw_fini() */ - - if (!ZERO_OR_NULL_PTR(hdev->mmu_priv.hr.mmu_shadow_hop0)) { - kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); - gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); - } - - /* Make sure that if we arrive here again without init was called we - * won't cause kernel panic. This can happen for example if we fail - * during hard reset code at certain points - */ - hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; -} - -/** - * hl_mmu_ctx_init() - initialize a context for using the MMU module. - * @ctx: pointer to the context structure to initialize. - * - * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all - * page tables hops related to this context. - * Return: 0 on success, non-zero otherwise. - */ -static int hl_mmu_v1_ctx_init(struct hl_ctx *ctx) -{ - hash_init(ctx->mmu_shadow_hash); - return dram_default_mapping_init(ctx); -} - -/* - * hl_mmu_ctx_fini - disable a ctx from using the mmu module - * - * @ctx: pointer to the context structure - * - * This function does the following: - * - Free any pgts which were not freed yet - * - Free the mutex - * - Free DRAM default page mapping hops - */ -static void hl_mmu_v1_ctx_fini(struct hl_ctx *ctx) -{ - struct hl_device *hdev = ctx->hdev; - struct pgt_info *pgt_info; - struct hlist_node *tmp; - int i; - - dram_default_mapping_fini(ctx); - - if (!hash_empty(ctx->mmu_shadow_hash)) - dev_err(hdev->dev, "ctx %d is freed while it has pgts in use\n", - ctx->asid); - - hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) { - dev_err_ratelimited(hdev->dev, - "pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n", - pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes); - _free_hop(ctx, pgt_info); - } -} - -static int _hl_mmu_v1_unmap(struct hl_ctx *ctx, - u64 virt_addr, bool is_dram_addr) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - u64 hop0_addr = 0, hop0_pte_addr = 0, - hop1_addr = 0, hop1_pte_addr = 0, - hop2_addr = 0, hop2_pte_addr = 0, - hop3_addr = 0, hop3_pte_addr = 0, - hop4_addr = 0, hop4_pte_addr = 0, - curr_pte; - bool is_huge, clear_hop3 = true; - - /* shifts and masks are the same in PMMU and HPMMU, use one of them */ - mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; - - hop0_addr = get_hop0_addr(ctx); - hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); - - curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; - - hop1_addr = get_next_hop_addr(ctx, curr_pte); - - if (hop1_addr == ULLONG_MAX) - goto not_mapped; - - hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); - - curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; - - hop2_addr = get_next_hop_addr(ctx, curr_pte); - - if (hop2_addr == ULLONG_MAX) - goto not_mapped; - - hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); - - curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; - - hop3_addr = get_next_hop_addr(ctx, curr_pte); - - if (hop3_addr == ULLONG_MAX) - goto not_mapped; - - hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); - - curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; - - is_huge = curr_pte & LAST_MASK; - - if (is_dram_addr && !is_huge) { - dev_err(hdev->dev, - "DRAM unmapping should use huge pages only\n"); - return -EFAULT; - } - - if (!is_huge) { - hop4_addr = get_next_hop_addr(ctx, curr_pte); - - if (hop4_addr == ULLONG_MAX) - goto not_mapped; - - hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, - virt_addr); - - curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; - - clear_hop3 = false; - } - - if (hdev->dram_default_page_mapping && is_dram_addr) { - u64 default_pte = (prop->mmu_dram_default_page_addr & - HOP_PHYS_ADDR_MASK) | LAST_MASK | - PAGE_PRESENT_MASK; - if (curr_pte == default_pte) { - dev_err(hdev->dev, - "DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n", - virt_addr); - goto not_mapped; - } - - if (!(curr_pte & PAGE_PRESENT_MASK)) { - dev_err(hdev->dev, - "DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n", - virt_addr); - goto not_mapped; - } - - write_final_pte(ctx, hop3_pte_addr, default_pte); - put_pte(ctx, hop3_addr); - } else { - if (!(curr_pte & PAGE_PRESENT_MASK)) - goto not_mapped; - - if (hop4_addr) - clear_pte(ctx, hop4_pte_addr); - else - clear_pte(ctx, hop3_pte_addr); - - if (hop4_addr && !put_pte(ctx, hop4_addr)) - clear_hop3 = true; - - if (!clear_hop3) - goto mapped; - - clear_pte(ctx, hop3_pte_addr); - - if (put_pte(ctx, hop3_addr)) - goto mapped; - - clear_pte(ctx, hop2_pte_addr); - - if (put_pte(ctx, hop2_addr)) - goto mapped; - - clear_pte(ctx, hop1_pte_addr); - - if (put_pte(ctx, hop1_addr)) - goto mapped; - - clear_pte(ctx, hop0_pte_addr); - } - -mapped: - return 0; - -not_mapped: - dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", - virt_addr); - - return -EINVAL; -} - -static int _hl_mmu_v1_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, - u32 page_size, bool is_dram_addr) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - u64 hop0_addr = 0, hop0_pte_addr = 0, - hop1_addr = 0, hop1_pte_addr = 0, - hop2_addr = 0, hop2_pte_addr = 0, - hop3_addr = 0, hop3_pte_addr = 0, - hop4_addr = 0, hop4_pte_addr = 0, - curr_pte = 0; - bool hop1_new = false, hop2_new = false, hop3_new = false, - hop4_new = false, is_huge; - int rc = -ENOMEM; - - /* - * This mapping function can map a page or a huge page. For huge page - * there are only 3 hops rather than 4. Currently the DRAM allocation - * uses huge pages only but user memory could have been allocated with - * one of the two page sizes. Since this is a common code for all the - * three cases, we need this hugs page check. - */ - if (is_dram_addr) { - mmu_prop = &prop->dmmu; - is_huge = true; - } else if (page_size == prop->pmmu_huge.page_size) { - mmu_prop = &prop->pmmu_huge; - is_huge = true; - } else { - mmu_prop = &prop->pmmu; - is_huge = false; - } - - hop0_addr = get_hop0_addr(ctx); - hop0_pte_addr = get_hop0_pte_addr(ctx, mmu_prop, hop0_addr, virt_addr); - curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr; - - hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new); - if (hop1_addr == ULLONG_MAX) - goto err; - - hop1_pte_addr = get_hop1_pte_addr(ctx, mmu_prop, hop1_addr, virt_addr); - curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr; - - hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new); - if (hop2_addr == ULLONG_MAX) - goto err; - - hop2_pte_addr = get_hop2_pte_addr(ctx, mmu_prop, hop2_addr, virt_addr); - curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr; - - hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new); - if (hop3_addr == ULLONG_MAX) - goto err; - - hop3_pte_addr = get_hop3_pte_addr(ctx, mmu_prop, hop3_addr, virt_addr); - curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr; - - if (!is_huge) { - hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new); - if (hop4_addr == ULLONG_MAX) - goto err; - - hop4_pte_addr = get_hop4_pte_addr(ctx, mmu_prop, hop4_addr, - virt_addr); - curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr; - } - - if (hdev->dram_default_page_mapping && is_dram_addr) { - u64 default_pte = (prop->mmu_dram_default_page_addr & - HOP_PHYS_ADDR_MASK) | LAST_MASK | - PAGE_PRESENT_MASK; - - if (curr_pte != default_pte) { - dev_err(hdev->dev, - "DRAM: mapping already exists for virt_addr 0x%llx\n", - virt_addr); - rc = -EINVAL; - goto err; - } - - if (hop1_new || hop2_new || hop3_new || hop4_new) { - dev_err(hdev->dev, - "DRAM mapping should not allocate more hops\n"); - rc = -EFAULT; - goto err; - } - } else if (curr_pte & PAGE_PRESENT_MASK) { - dev_err(hdev->dev, - "mapping already exists for virt_addr 0x%llx\n", - virt_addr); - - dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n", - *(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr); - dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n", - *(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr); - dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n", - *(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr); - dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n", - *(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr); - - if (!is_huge) - dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n", - *(u64 *) (uintptr_t) hop4_pte_addr, - hop4_pte_addr); - - rc = -EINVAL; - goto err; - } - - curr_pte = (phys_addr & HOP_PHYS_ADDR_MASK) | LAST_MASK - | PAGE_PRESENT_MASK; - - if (is_huge) - write_final_pte(ctx, hop3_pte_addr, curr_pte); - else - write_final_pte(ctx, hop4_pte_addr, curr_pte); - - if (hop1_new) { - curr_pte = - (hop1_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; - write_pte(ctx, hop0_pte_addr, curr_pte); - } - if (hop2_new) { - curr_pte = - (hop2_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; - write_pte(ctx, hop1_pte_addr, curr_pte); - get_pte(ctx, hop1_addr); - } - if (hop3_new) { - curr_pte = - (hop3_addr & HOP_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK; - write_pte(ctx, hop2_pte_addr, curr_pte); - get_pte(ctx, hop2_addr); - } - - if (!is_huge) { - if (hop4_new) { - curr_pte = (hop4_addr & HOP_PHYS_ADDR_MASK) | - PAGE_PRESENT_MASK; - write_pte(ctx, hop3_pte_addr, curr_pte); - get_pte(ctx, hop3_addr); - } - - get_pte(ctx, hop4_addr); - } else { - get_pte(ctx, hop3_addr); - } - - return 0; - -err: - if (hop4_new) - free_hop(ctx, hop4_addr); - if (hop3_new) - free_hop(ctx, hop3_addr); - if (hop2_new) - free_hop(ctx, hop2_addr); - if (hop1_new) - free_hop(ctx, hop1_addr); - - return rc; -} - -/* - * hl_mmu_v1_swap_out - marks all mapping of the given ctx as swapped out - * - * @ctx: pointer to the context structure - * - */ -static void hl_mmu_v1_swap_out(struct hl_ctx *ctx) -{ - -} - -/* - * hl_mmu_v1_swap_in - marks all mapping of the given ctx as swapped in - * - * @ctx: pointer to the context structure - * - */ -static void hl_mmu_v1_swap_in(struct hl_ctx *ctx) -{ - -} - -static inline u64 get_hop_pte_addr(struct hl_ctx *ctx, - struct hl_mmu_properties *mmu_prop, - int hop_num, u64 hop_addr, u64 virt_addr) -{ - switch (hop_num) { - case 0: - return get_hop0_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); - case 1: - return get_hop1_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); - case 2: - return get_hop2_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); - case 3: - return get_hop3_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); - case 4: - return get_hop4_pte_addr(ctx, mmu_prop, hop_addr, virt_addr); - default: - break; - } - return U64_MAX; -} - -static int hl_mmu_v1_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, - struct hl_mmu_hop_info *hops) -{ - struct hl_device *hdev = ctx->hdev; - struct asic_fixed_properties *prop = &hdev->asic_prop; - struct hl_mmu_properties *mmu_prop; - bool is_dram_addr, is_pmmu_addr, is_pmmu_h_addr, is_huge; - int i, used_hops; - - is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, - prop->dmmu.start_addr, - prop->dmmu.end_addr); - is_pmmu_addr = hl_mem_area_inside_range(virt_addr, prop->pmmu.page_size, - prop->pmmu.start_addr, - prop->pmmu.end_addr); - is_pmmu_h_addr = hl_mem_area_inside_range(virt_addr, - prop->pmmu_huge.page_size, - prop->pmmu_huge.start_addr, - prop->pmmu_huge.end_addr); - if (is_dram_addr) { - mmu_prop = &prop->dmmu; - is_huge = true; - } else if (is_pmmu_addr) { - mmu_prop = &prop->pmmu; - is_huge = false; - } else if (is_pmmu_h_addr) { - mmu_prop = &prop->pmmu_huge; - is_huge = true; - } else { - return -EINVAL; - } - - used_hops = mmu_prop->num_hops; - - /* huge pages use lesser hops */ - if (is_huge) - used_hops--; - - hops->hop_info[0].hop_addr = get_phys_hop0_addr(ctx); - hops->hop_info[0].hop_pte_addr = - get_hop_pte_addr(ctx, mmu_prop, 0, - hops->hop_info[0].hop_addr, virt_addr); - hops->hop_info[0].hop_pte_val = - hdev->asic_funcs->read_pte(hdev, - hops->hop_info[0].hop_pte_addr); - - for (i = 1 ; i < used_hops ; i++) { - hops->hop_info[i].hop_addr = - get_next_hop_addr(ctx, - hops->hop_info[i - 1].hop_pte_val); - if (hops->hop_info[i].hop_addr == ULLONG_MAX) - return -EFAULT; - - hops->hop_info[i].hop_pte_addr = - get_hop_pte_addr(ctx, mmu_prop, i, - hops->hop_info[i].hop_addr, - virt_addr); - hops->hop_info[i].hop_pte_val = - hdev->asic_funcs->read_pte(hdev, - hops->hop_info[i].hop_pte_addr); - - if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) - return -EFAULT; - - if (hops->hop_info[i].hop_pte_val & LAST_MASK) - break; - } - - /* if passed over all hops then no last hop was found */ - if (i == mmu_prop->num_hops) - return -EFAULT; - - if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) - return -EFAULT; - - hops->used_hops = i + 1; - - return 0; -} - -/* - * hl_mmu_v1_prepare - prepare mmu for working with mmu v1 - * - * @hdev: pointer to the device structure - */ -void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu) -{ - mmu->init = hl_mmu_v1_init; - mmu->fini = hl_mmu_v1_fini; - mmu->ctx_init = hl_mmu_v1_ctx_init; - mmu->ctx_fini = hl_mmu_v1_ctx_fini; - mmu->map = _hl_mmu_v1_map; - mmu->unmap = _hl_mmu_v1_unmap; - mmu->flush = flush; - mmu->swap_out = hl_mmu_v1_swap_out; - mmu->swap_in = hl_mmu_v1_swap_in; - mmu->get_tlb_info = hl_mmu_v1_get_tlb_info; -} diff --git a/drivers/misc/habanalabs/common/pci.c b/drivers/misc/habanalabs/common/pci.c deleted file mode 100644 index b4725e6101f6..000000000000 --- a/drivers/misc/habanalabs/common/pci.c +++ /dev/null @@ -1,407 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 - -/* - * Copyright 2016-2019 HabanaLabs, Ltd. - * All Rights Reserved. - */ - -#include "habanalabs.h" -#include "../include/hw_ip/pci/pci_general.h" - -#include - -#define HL_PLDM_PCI_ELBI_TIMEOUT_MSEC (HL_PCI_ELBI_TIMEOUT_MSEC * 10) - -#define IATU_REGION_CTRL_REGION_EN_MASK BIT(31) -#define IATU_REGION_CTRL_MATCH_MODE_MASK BIT(30) -#define IATU_REGION_CTRL_NUM_MATCH_EN_MASK BIT(19) -#define IATU_REGION_CTRL_BAR_NUM_MASK GENMASK(10, 8) - -/** - * hl_pci_bars_map() - Map PCI BARs. - * @hdev: Pointer to hl_device structure. - * @name: Array of BAR names. - * @is_wc: Array with flag per BAR whether a write-combined mapping is needed. - * - * Request PCI regions and map them to kernel virtual addresses. - * - * Return: 0 on success, non-zero for failure. - */ -int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], - bool is_wc[3]) -{ - struct pci_dev *pdev = hdev->pdev; - int rc, i, bar; - - rc = pci_request_regions(pdev, HL_NAME); - if (rc) { - dev_err(hdev->dev, "Cannot obtain PCI resources\n"); - return rc; - } - - for (i = 0 ; i < 3 ; i++) { - bar = i * 2; /* 64-bit BARs */ - hdev->pcie_bar[bar] = is_wc[i] ? - pci_ioremap_wc_bar(pdev, bar) : - pci_ioremap_bar(pdev, bar); - if (!hdev->pcie_bar[bar]) { - dev_err(hdev->dev, "pci_ioremap%s_bar failed for %s\n", - is_wc[i] ? "_wc" : "", name[i]); - rc = -ENODEV; - goto err; - } - } - - return 0; - -err: - for (i = 2 ; i >= 0 ; i--) { - bar = i * 2; /* 64-bit BARs */ - if (hdev->pcie_bar[bar]) - iounmap(hdev->pcie_bar[bar]); - } - - pci_release_regions(pdev); - - return rc; -} - -/** - * hl_pci_bars_unmap() - Unmap PCI BARS. - * @hdev: Pointer to hl_device structure. - * - * Release all PCI BARs and unmap their virtual addresses. - */ -static void hl_pci_bars_unmap(struct hl_device *hdev) -{ - struct pci_dev *pdev = hdev->pdev; - int i, bar; - - for (i = 2 ; i >= 0 ; i--) { - bar = i * 2; /* 64-bit BARs */ - iounmap(hdev->pcie_bar[bar]); - } - - pci_release_regions(pdev); -} - -/** - * hl_pci_elbi_write() - Write through the ELBI interface. - * @hdev: Pointer to hl_device structure. - * @addr: Address to write to - * @data: Data to write - * - * Return: 0 on success, negative value for failure. - */ -static int hl_pci_elbi_write(struct hl_device *hdev, u64 addr, u32 data) -{ - struct pci_dev *pdev = hdev->pdev; - ktime_t timeout; - u64 msec; - u32 val; - - if (hdev->pldm) - msec = HL_PLDM_PCI_ELBI_TIMEOUT_MSEC; - else - msec = HL_PCI_ELBI_TIMEOUT_MSEC; - - /* Clear previous status */ - pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, 0); - - pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_ADDR, (u32) addr); - pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_DATA, data); - pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_CTRL, - PCI_CONFIG_ELBI_CTRL_WRITE); - - timeout = ktime_add_ms(ktime_get(), msec); - for (;;) { - pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, &val); - if (val & PCI_CONFIG_ELBI_STS_MASK) - break; - if (ktime_compare(ktime_get(), timeout) > 0) { - pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, - &val); - break; - } - - usleep_range(300, 500); - } - - if ((val & PCI_CONFIG_ELBI_STS_MASK) == PCI_CONFIG_ELBI_STS_DONE) - return 0; - - if (val & PCI_CONFIG_ELBI_STS_ERR) - return -EIO; - - if (!(val & PCI_CONFIG_ELBI_STS_MASK)) { - dev_err(hdev->dev, "ELBI write didn't finish in time\n"); - return -EIO; - } - - dev_err(hdev->dev, "ELBI write has undefined bits in status\n"); - return -EIO; -} - -/** - * hl_pci_iatu_write() - iatu write routine. - * @hdev: Pointer to hl_device structure. - * @addr: Address to write to - * @data: Data to write - * - * Return: 0 on success, negative value for failure. - */ -int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data) -{ - struct asic_fixed_properties *prop = &hdev->asic_prop; - u32 dbi_offset; - int rc; - - dbi_offset = addr & 0xFFF; - - /* Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail - * in case the firmware security is enabled - */ - hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0x00300000); - - rc = hl_pci_elbi_write(hdev, prop->pcie_dbi_base_address + dbi_offset, - data); - - if (rc) - return -EIO; - - return 0; -} - -/** - * hl_pci_reset_link_through_bridge() - Reset PCI link. - * @hdev: Pointer to hl_device structure. - */ -static void hl_pci_reset_link_through_bridge(struct hl_device *hdev) -{ - struct pci_dev *pdev = hdev->pdev; - struct pci_dev *parent_port; - u16 val; - - parent_port = pdev->bus->self; - pci_read_config_word(parent_port, PCI_BRIDGE_CONTROL, &val); - val |= PCI_BRIDGE_CTL_BUS_RESET; - pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val); - ssleep(1); - - val &= ~(PCI_BRIDGE_CTL_BUS_RESET); - pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val); - ssleep(3); -} - -/** - * hl_pci_set_inbound_region() - Configure inbound region - * @hdev: Pointer to hl_device structure. - * @region: Inbound region number. - * @pci_region: Inbound region parameters. - * - * Configure the iATU inbound region. - * - * Return: 0 on success, negative value for failure. - */ -int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, - struct hl_inbound_pci_region *pci_region) -{ - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 bar_phys_base, region_base, region_end_address; - u32 offset, ctrl_reg_val; - int rc = 0; - - /* region offset */ - offset = (0x200 * region) + 0x100; - - if (pci_region->mode == PCI_ADDRESS_MATCH_MODE) { - bar_phys_base = hdev->pcie_bar_phys[pci_region->bar]; - region_base = bar_phys_base + pci_region->offset_in_bar; - region_end_address = region_base + pci_region->size - 1; - - rc |= hl_pci_iatu_write(hdev, offset + 0x8, - lower_32_bits(region_base)); - rc |= hl_pci_iatu_write(hdev, offset + 0xC, - upper_32_bits(region_base)); - rc |= hl_pci_iatu_write(hdev, offset + 0x10, - lower_32_bits(region_end_address)); - } - - /* Point to the specified address */ - rc |= hl_pci_iatu_write(hdev, offset + 0x14, - lower_32_bits(pci_region->addr)); - rc |= hl_pci_iatu_write(hdev, offset + 0x18, - upper_32_bits(pci_region->addr)); - rc |= hl_pci_iatu_write(hdev, offset + 0x0, 0); - - /* Enable + bar/address match + match enable + bar number */ - ctrl_reg_val = FIELD_PREP(IATU_REGION_CTRL_REGION_EN_MASK, 1); - ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_MATCH_MODE_MASK, - pci_region->mode); - ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_NUM_MATCH_EN_MASK, 1); - - if (pci_region->mode == PCI_BAR_MATCH_MODE) - ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_BAR_NUM_MASK, - pci_region->bar); - - rc |= hl_pci_iatu_write(hdev, offset + 0x4, ctrl_reg_val); - - /* Return the DBI window to the default location - * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail - * in case the firmware security is enabled - */ - hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0); - - if (rc) - dev_err(hdev->dev, "failed to map bar %u to 0x%08llx\n", - pci_region->bar, pci_region->addr); - - return rc; -} - -/** - * hl_pci_set_outbound_region() - Configure outbound region 0 - * @hdev: Pointer to hl_device structure. - * @pci_region: Outbound region parameters. - * - * Configure the iATU outbound region 0. - * - * Return: 0 on success, negative value for failure. - */ -int hl_pci_set_outbound_region(struct hl_device *hdev, - struct hl_outbound_pci_region *pci_region) -{ - struct asic_fixed_properties *prop = &hdev->asic_prop; - u64 outbound_region_end_address; - int rc = 0; - - /* Outbound Region 0 */ - outbound_region_end_address = - pci_region->addr + pci_region->size - 1; - rc |= hl_pci_iatu_write(hdev, 0x008, - lower_32_bits(pci_region->addr)); - rc |= hl_pci_iatu_write(hdev, 0x00C, - upper_32_bits(pci_region->addr)); - rc |= hl_pci_iatu_write(hdev, 0x010, - lower_32_bits(outbound_region_end_address)); - rc |= hl_pci_iatu_write(hdev, 0x014, 0); - - if ((hdev->power9_64bit_dma_enable) && (hdev->dma_mask == 64)) - rc |= hl_pci_iatu_write(hdev, 0x018, 0x08000000); - else - rc |= hl_pci_iatu_write(hdev, 0x018, 0); - - rc |= hl_pci_iatu_write(hdev, 0x020, - upper_32_bits(outbound_region_end_address)); - /* Increase region size */ - rc |= hl_pci_iatu_write(hdev, 0x000, 0x00002000); - /* Enable */ - rc |= hl_pci_iatu_write(hdev, 0x004, 0x80000000); - - /* Return the DBI window to the default location - * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail - * in case the firmware security is enabled - */ - hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0); - - return rc; -} - -/** - * hl_pci_set_dma_mask() - Set DMA masks for the device. - * @hdev: Pointer to hl_device structure. - * - * This function sets the DMA masks (regular and consistent) for a specified - * value. If it doesn't succeed, it tries to set it to a fall-back value - * - * Return: 0 on success, non-zero for failure. - */ -static int hl_pci_set_dma_mask(struct hl_device *hdev) -{ - struct pci_dev *pdev = hdev->pdev; - int rc; - - /* set DMA mask */ - rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask)); - if (rc) { - dev_err(hdev->dev, - "Failed to set pci dma mask to %d bits, error %d\n", - hdev->dma_mask, rc); - return rc; - } - - rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask)); - if (rc) { - dev_err(hdev->dev, - "Failed to set pci consistent dma mask to %d bits, error %d\n", - hdev->dma_mask, rc); - return rc; - } - - return 0; -} - -/** - * hl_pci_init() - PCI initialization code. - * @hdev: Pointer to hl_device structure. - * - * Set DMA masks, initialize the PCI controller and map the PCI BARs. - * - * Return: 0 on success, non-zero for failure. - */ -int hl_pci_init(struct hl_device *hdev) -{ - struct pci_dev *pdev = hdev->pdev; - int rc; - - if (hdev->reset_pcilink) - hl_pci_reset_link_through_bridge(hdev); - - rc = pci_enable_device_mem(pdev); - if (rc) { - dev_err(hdev->dev, "can't enable PCI device\n"); - return rc; - } - - pci_set_master(pdev); - - rc = hdev->asic_funcs->pci_bars_map(hdev); - if (rc) { - dev_err(hdev->dev, "Failed to initialize PCI BARs\n"); - goto disable_device; - } - - rc = hdev->asic_funcs->init_iatu(hdev); - if (rc) { - dev_err(hdev->dev, "Failed to initialize iATU\n"); - goto unmap_pci_bars; - } - - rc = hl_pci_set_dma_mask(hdev); - if (rc) - goto unmap_pci_bars; - - return 0; - -unmap_pci_bars: - hl_pci_bars_unmap(hdev); -disable_device: - pci_clear_master(pdev); - pci_disable_device(pdev); - - return rc; -} - -/** - * hl_fw_fini() - PCI finalization code. - * @hdev: Pointer to hl_device structure - * - * Unmap PCI bars and disable PCI device. - */ -void hl_pci_fini(struct hl_device *hdev) -{ - hl_pci_bars_unmap(hdev); - - pci_clear_master(hdev->pdev); - pci_disable_device(hdev->pdev); -} diff --git a/drivers/misc/habanalabs/common/pci/Makefile b/drivers/misc/habanalabs/common/pci/Makefile new file mode 100644 index 000000000000..dc922a686683 --- /dev/null +++ b/drivers/misc/habanalabs/common/pci/Makefile @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +HL_COMMON_PCI_FILES := common/pci/pci.o diff --git a/drivers/misc/habanalabs/common/pci/pci.c b/drivers/misc/habanalabs/common/pci/pci.c new file mode 100644 index 000000000000..c56ec1574127 --- /dev/null +++ b/drivers/misc/habanalabs/common/pci/pci.c @@ -0,0 +1,407 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2019 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include "../habanalabs.h" +#include "../../include/hw_ip/pci/pci_general.h" + +#include + +#define HL_PLDM_PCI_ELBI_TIMEOUT_MSEC (HL_PCI_ELBI_TIMEOUT_MSEC * 10) + +#define IATU_REGION_CTRL_REGION_EN_MASK BIT(31) +#define IATU_REGION_CTRL_MATCH_MODE_MASK BIT(30) +#define IATU_REGION_CTRL_NUM_MATCH_EN_MASK BIT(19) +#define IATU_REGION_CTRL_BAR_NUM_MASK GENMASK(10, 8) + +/** + * hl_pci_bars_map() - Map PCI BARs. + * @hdev: Pointer to hl_device structure. + * @name: Array of BAR names. + * @is_wc: Array with flag per BAR whether a write-combined mapping is needed. + * + * Request PCI regions and map them to kernel virtual addresses. + * + * Return: 0 on success, non-zero for failure. + */ +int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3], + bool is_wc[3]) +{ + struct pci_dev *pdev = hdev->pdev; + int rc, i, bar; + + rc = pci_request_regions(pdev, HL_NAME); + if (rc) { + dev_err(hdev->dev, "Cannot obtain PCI resources\n"); + return rc; + } + + for (i = 0 ; i < 3 ; i++) { + bar = i * 2; /* 64-bit BARs */ + hdev->pcie_bar[bar] = is_wc[i] ? + pci_ioremap_wc_bar(pdev, bar) : + pci_ioremap_bar(pdev, bar); + if (!hdev->pcie_bar[bar]) { + dev_err(hdev->dev, "pci_ioremap%s_bar failed for %s\n", + is_wc[i] ? "_wc" : "", name[i]); + rc = -ENODEV; + goto err; + } + } + + return 0; + +err: + for (i = 2 ; i >= 0 ; i--) { + bar = i * 2; /* 64-bit BARs */ + if (hdev->pcie_bar[bar]) + iounmap(hdev->pcie_bar[bar]); + } + + pci_release_regions(pdev); + + return rc; +} + +/** + * hl_pci_bars_unmap() - Unmap PCI BARS. + * @hdev: Pointer to hl_device structure. + * + * Release all PCI BARs and unmap their virtual addresses. + */ +static void hl_pci_bars_unmap(struct hl_device *hdev) +{ + struct pci_dev *pdev = hdev->pdev; + int i, bar; + + for (i = 2 ; i >= 0 ; i--) { + bar = i * 2; /* 64-bit BARs */ + iounmap(hdev->pcie_bar[bar]); + } + + pci_release_regions(pdev); +} + +/** + * hl_pci_elbi_write() - Write through the ELBI interface. + * @hdev: Pointer to hl_device structure. + * @addr: Address to write to + * @data: Data to write + * + * Return: 0 on success, negative value for failure. + */ +static int hl_pci_elbi_write(struct hl_device *hdev, u64 addr, u32 data) +{ + struct pci_dev *pdev = hdev->pdev; + ktime_t timeout; + u64 msec; + u32 val; + + if (hdev->pldm) + msec = HL_PLDM_PCI_ELBI_TIMEOUT_MSEC; + else + msec = HL_PCI_ELBI_TIMEOUT_MSEC; + + /* Clear previous status */ + pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, 0); + + pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_ADDR, (u32) addr); + pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_DATA, data); + pci_write_config_dword(pdev, mmPCI_CONFIG_ELBI_CTRL, + PCI_CONFIG_ELBI_CTRL_WRITE); + + timeout = ktime_add_ms(ktime_get(), msec); + for (;;) { + pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, &val); + if (val & PCI_CONFIG_ELBI_STS_MASK) + break; + if (ktime_compare(ktime_get(), timeout) > 0) { + pci_read_config_dword(pdev, mmPCI_CONFIG_ELBI_STS, + &val); + break; + } + + usleep_range(300, 500); + } + + if ((val & PCI_CONFIG_ELBI_STS_MASK) == PCI_CONFIG_ELBI_STS_DONE) + return 0; + + if (val & PCI_CONFIG_ELBI_STS_ERR) + return -EIO; + + if (!(val & PCI_CONFIG_ELBI_STS_MASK)) { + dev_err(hdev->dev, "ELBI write didn't finish in time\n"); + return -EIO; + } + + dev_err(hdev->dev, "ELBI write has undefined bits in status\n"); + return -EIO; +} + +/** + * hl_pci_iatu_write() - iatu write routine. + * @hdev: Pointer to hl_device structure. + * @addr: Address to write to + * @data: Data to write + * + * Return: 0 on success, negative value for failure. + */ +int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u32 dbi_offset; + int rc; + + dbi_offset = addr & 0xFFF; + + /* Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail + * in case the firmware security is enabled + */ + hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0x00300000); + + rc = hl_pci_elbi_write(hdev, prop->pcie_dbi_base_address + dbi_offset, + data); + + if (rc) + return -EIO; + + return 0; +} + +/** + * hl_pci_reset_link_through_bridge() - Reset PCI link. + * @hdev: Pointer to hl_device structure. + */ +static void hl_pci_reset_link_through_bridge(struct hl_device *hdev) +{ + struct pci_dev *pdev = hdev->pdev; + struct pci_dev *parent_port; + u16 val; + + parent_port = pdev->bus->self; + pci_read_config_word(parent_port, PCI_BRIDGE_CONTROL, &val); + val |= PCI_BRIDGE_CTL_BUS_RESET; + pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val); + ssleep(1); + + val &= ~(PCI_BRIDGE_CTL_BUS_RESET); + pci_write_config_word(parent_port, PCI_BRIDGE_CONTROL, val); + ssleep(3); +} + +/** + * hl_pci_set_inbound_region() - Configure inbound region + * @hdev: Pointer to hl_device structure. + * @region: Inbound region number. + * @pci_region: Inbound region parameters. + * + * Configure the iATU inbound region. + * + * Return: 0 on success, negative value for failure. + */ +int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region, + struct hl_inbound_pci_region *pci_region) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 bar_phys_base, region_base, region_end_address; + u32 offset, ctrl_reg_val; + int rc = 0; + + /* region offset */ + offset = (0x200 * region) + 0x100; + + if (pci_region->mode == PCI_ADDRESS_MATCH_MODE) { + bar_phys_base = hdev->pcie_bar_phys[pci_region->bar]; + region_base = bar_phys_base + pci_region->offset_in_bar; + region_end_address = region_base + pci_region->size - 1; + + rc |= hl_pci_iatu_write(hdev, offset + 0x8, + lower_32_bits(region_base)); + rc |= hl_pci_iatu_write(hdev, offset + 0xC, + upper_32_bits(region_base)); + rc |= hl_pci_iatu_write(hdev, offset + 0x10, + lower_32_bits(region_end_address)); + } + + /* Point to the specified address */ + rc |= hl_pci_iatu_write(hdev, offset + 0x14, + lower_32_bits(pci_region->addr)); + rc |= hl_pci_iatu_write(hdev, offset + 0x18, + upper_32_bits(pci_region->addr)); + rc |= hl_pci_iatu_write(hdev, offset + 0x0, 0); + + /* Enable + bar/address match + match enable + bar number */ + ctrl_reg_val = FIELD_PREP(IATU_REGION_CTRL_REGION_EN_MASK, 1); + ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_MATCH_MODE_MASK, + pci_region->mode); + ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_NUM_MATCH_EN_MASK, 1); + + if (pci_region->mode == PCI_BAR_MATCH_MODE) + ctrl_reg_val |= FIELD_PREP(IATU_REGION_CTRL_BAR_NUM_MASK, + pci_region->bar); + + rc |= hl_pci_iatu_write(hdev, offset + 0x4, ctrl_reg_val); + + /* Return the DBI window to the default location + * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail + * in case the firmware security is enabled + */ + hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0); + + if (rc) + dev_err(hdev->dev, "failed to map bar %u to 0x%08llx\n", + pci_region->bar, pci_region->addr); + + return rc; +} + +/** + * hl_pci_set_outbound_region() - Configure outbound region 0 + * @hdev: Pointer to hl_device structure. + * @pci_region: Outbound region parameters. + * + * Configure the iATU outbound region 0. + * + * Return: 0 on success, negative value for failure. + */ +int hl_pci_set_outbound_region(struct hl_device *hdev, + struct hl_outbound_pci_region *pci_region) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 outbound_region_end_address; + int rc = 0; + + /* Outbound Region 0 */ + outbound_region_end_address = + pci_region->addr + pci_region->size - 1; + rc |= hl_pci_iatu_write(hdev, 0x008, + lower_32_bits(pci_region->addr)); + rc |= hl_pci_iatu_write(hdev, 0x00C, + upper_32_bits(pci_region->addr)); + rc |= hl_pci_iatu_write(hdev, 0x010, + lower_32_bits(outbound_region_end_address)); + rc |= hl_pci_iatu_write(hdev, 0x014, 0); + + if ((hdev->power9_64bit_dma_enable) && (hdev->dma_mask == 64)) + rc |= hl_pci_iatu_write(hdev, 0x018, 0x08000000); + else + rc |= hl_pci_iatu_write(hdev, 0x018, 0); + + rc |= hl_pci_iatu_write(hdev, 0x020, + upper_32_bits(outbound_region_end_address)); + /* Increase region size */ + rc |= hl_pci_iatu_write(hdev, 0x000, 0x00002000); + /* Enable */ + rc |= hl_pci_iatu_write(hdev, 0x004, 0x80000000); + + /* Return the DBI window to the default location + * Ignore result of writing to pcie_aux_dbi_reg_addr as it could fail + * in case the firmware security is enabled + */ + hl_pci_elbi_write(hdev, prop->pcie_aux_dbi_reg_addr, 0); + + return rc; +} + +/** + * hl_pci_set_dma_mask() - Set DMA masks for the device. + * @hdev: Pointer to hl_device structure. + * + * This function sets the DMA masks (regular and consistent) for a specified + * value. If it doesn't succeed, it tries to set it to a fall-back value + * + * Return: 0 on success, non-zero for failure. + */ +static int hl_pci_set_dma_mask(struct hl_device *hdev) +{ + struct pci_dev *pdev = hdev->pdev; + int rc; + + /* set DMA mask */ + rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask)); + if (rc) { + dev_err(hdev->dev, + "Failed to set pci dma mask to %d bits, error %d\n", + hdev->dma_mask, rc); + return rc; + } + + rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(hdev->dma_mask)); + if (rc) { + dev_err(hdev->dev, + "Failed to set pci consistent dma mask to %d bits, error %d\n", + hdev->dma_mask, rc); + return rc; + } + + return 0; +} + +/** + * hl_pci_init() - PCI initialization code. + * @hdev: Pointer to hl_device structure. + * + * Set DMA masks, initialize the PCI controller and map the PCI BARs. + * + * Return: 0 on success, non-zero for failure. + */ +int hl_pci_init(struct hl_device *hdev) +{ + struct pci_dev *pdev = hdev->pdev; + int rc; + + if (hdev->reset_pcilink) + hl_pci_reset_link_through_bridge(hdev); + + rc = pci_enable_device_mem(pdev); + if (rc) { + dev_err(hdev->dev, "can't enable PCI device\n"); + return rc; + } + + pci_set_master(pdev); + + rc = hdev->asic_funcs->pci_bars_map(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to initialize PCI BARs\n"); + goto disable_device; + } + + rc = hdev->asic_funcs->init_iatu(hdev); + if (rc) { + dev_err(hdev->dev, "Failed to initialize iATU\n"); + goto unmap_pci_bars; + } + + rc = hl_pci_set_dma_mask(hdev); + if (rc) + goto unmap_pci_bars; + + return 0; + +unmap_pci_bars: + hl_pci_bars_unmap(hdev); +disable_device: + pci_clear_master(pdev); + pci_disable_device(pdev); + + return rc; +} + +/** + * hl_fw_fini() - PCI finalization code. + * @hdev: Pointer to hl_device structure + * + * Unmap PCI bars and disable PCI device. + */ +void hl_pci_fini(struct hl_device *hdev) +{ + hl_pci_bars_unmap(hdev); + + pci_clear_master(hdev->pdev); + pci_disable_device(hdev->pdev); +} -- cgit v1.2.3