// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2018-2019 Intel Corporation #include #include #include #include #include #include #include #include "peci-hwmon.h" #define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000) #define DIMM_MASK_CHECK_RETRY_MAX -1 /* 60 x 5 secs = 5 minutes */ /* -1 = no timeout */ #define DIMM_TEMP_MAX_DEFAULT 90000 #define DIMM_TEMP_CRIT_DEFAULT 100000 #define BIOS_RST_CPL4 BIT(4) struct peci_dimmtemp { struct peci_client_manager *mgr; struct device *dev; char name[PECI_NAME_SIZE]; const struct cpu_gen_info *gen_info; struct workqueue_struct *work_queue; struct delayed_work work_handler; struct peci_sensor_data temp[DIMM_NUMS_MAX]; long temp_max[DIMM_NUMS_MAX]; long temp_crit[DIMM_NUMS_MAX]; u32 dimm_mask; int retry_count; u32 temp_config[DIMM_NUMS_MAX + 1]; struct hwmon_channel_info temp_info; const struct hwmon_channel_info *info[2]; struct hwmon_chip_info chip; char **dimmtemp_label; }; static const u8 support_model[] = { INTEL_FAM6_HASWELL_X, INTEL_FAM6_BROADWELL_X, INTEL_FAM6_SKYLAKE_X, INTEL_FAM6_SKYLAKE_XD, INTEL_FAM6_ICELAKE_X, INTEL_FAM6_ICELAKE_XD, }; static inline int read_ddr_dimm_temp_config(struct peci_dimmtemp *priv, int chan_rank, u8 *cfg_data) { return peci_client_read_package_config(priv->mgr, PECI_MBX_INDEX_DDR_DIMM_TEMP, chan_rank, cfg_data); } static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no) { int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; struct peci_rd_pci_cfg_local_msg rp_msg; struct peci_rd_end_pt_cfg_msg re_msg; u32 bios_reset_cpl_cfg; u8 cfg_data[4]; u8 cpu_seg, cpu_bus; int ret; if (!peci_sensor_need_update(&priv->temp[dimm_no])) return 0; ret = read_ddr_dimm_temp_config(priv, chan_rank, cfg_data); if (ret || cfg_data[dimm_order] == 0 || cfg_data[dimm_order] == 0xff) return -ENODATA; priv->temp[dimm_no].value = cfg_data[dimm_order] * 1000; /* * CPU can return invalid temperatures prior to BIOS-PCU handshake * RST_CPL4 completion so filter the invalid readings out. */ switch (priv->gen_info->model) { case INTEL_FAM6_ICELAKE_X: case INTEL_FAM6_ICELAKE_XD: re_msg.addr = priv->mgr->client->addr; re_msg.msg_type = PECI_ENDPTCFG_TYPE_LOCAL_PCI; re_msg.params.pci_cfg.seg = 0; re_msg.params.pci_cfg.bus = 31; re_msg.params.pci_cfg.device = 30; re_msg.params.pci_cfg.function = 1; re_msg.params.pci_cfg.reg = 0x94; re_msg.rx_len = 4; re_msg.domain_id = priv->mgr->client->domain_id; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_END_PT_CFG, sizeof(re_msg), &re_msg); if (ret || re_msg.cc != PECI_DEV_CC_SUCCESS) ret = -EAGAIN; if (ret) return ret; bios_reset_cpl_cfg = le32_to_cpup((__le32 *)re_msg.data); if (!(bios_reset_cpl_cfg & BIOS_RST_CPL4)) { dev_dbg(priv->dev, "DRAM parameters aren't calibrated, BIOS_RESET_CPL_CFG: 0x%x\n", bios_reset_cpl_cfg); return -EAGAIN; } break; default: /* TODO: Check reset completion for other CPUs if needed */ break; } switch (priv->gen_info->model) { case INTEL_FAM6_ICELAKE_X: case INTEL_FAM6_ICELAKE_XD: re_msg.addr = priv->mgr->client->addr; re_msg.rx_len = 4; re_msg.msg_type = PECI_ENDPTCFG_TYPE_LOCAL_PCI; re_msg.params.pci_cfg.seg = 0; re_msg.params.pci_cfg.bus = 13; re_msg.params.pci_cfg.device = 0; re_msg.params.pci_cfg.function = 2; re_msg.params.pci_cfg.reg = 0xd4; re_msg.domain_id = priv->mgr->client->domain_id; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_END_PT_CFG, sizeof(re_msg), &re_msg); if (ret || re_msg.cc != PECI_DEV_CC_SUCCESS || !(re_msg.data[3] & BIT(7))) { /* Use default or previous value */ ret = 0; break; } re_msg.msg_type = PECI_ENDPTCFG_TYPE_LOCAL_PCI; re_msg.params.pci_cfg.reg = 0xd0; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_END_PT_CFG, sizeof(re_msg), &re_msg); if (ret || re_msg.cc != PECI_DEV_CC_SUCCESS) { /* Use default or previous value */ ret = 0; break; } cpu_seg = re_msg.data[2]; cpu_bus = re_msg.data[0]; re_msg.addr = priv->mgr->client->addr; re_msg.msg_type = PECI_ENDPTCFG_TYPE_MMIO; re_msg.params.mmio.seg = cpu_seg; re_msg.params.mmio.bus = cpu_bus; /* * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7 */ re_msg.params.mmio.device = 0x1a + chan_rank / 2; re_msg.params.mmio.function = 0; re_msg.params.mmio.bar = 0; re_msg.params.mmio.addr_type = PECI_ENDPTCFG_ADDR_TYPE_MMIO_Q; re_msg.params.mmio.offset = 0x224e0 + dimm_order * 4; if (chan_rank % 2) re_msg.params.mmio.offset += 0x4000; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_END_PT_CFG, sizeof(re_msg), &re_msg); if (ret || re_msg.cc != PECI_DEV_CC_SUCCESS || re_msg.data[1] == 0 || re_msg.data[2] == 0) { /* Use default or previous value */ ret = 0; break; } priv->temp_max[dimm_no] = re_msg.data[1] * 1000; priv->temp_crit[dimm_no] = re_msg.data[2] * 1000; break; case INTEL_FAM6_SKYLAKE_X: rp_msg.addr = priv->mgr->client->addr; rp_msg.bus = 2; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 11, Function 2: IMC 0 channel 2 -> rank 2 * Device 12, Function 2: IMC 1 channel 0 -> rank 3 * Device 12, Function 6: IMC 1 channel 1 -> rank 4 * Device 13, Function 2: IMC 1 channel 2 -> rank 5 */ rp_msg.device = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0); rp_msg.function = chan_rank % 3 == 1 ? 6 : 2; rp_msg.reg = 0x120 + dimm_order * 4; rp_msg.rx_len = 4; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_PCI_CFG_LOCAL, sizeof(rp_msg), &rp_msg); if (ret || rp_msg.cc != PECI_DEV_CC_SUCCESS || rp_msg.pci_config[1] == 0 || rp_msg.pci_config[2] == 0) { /* Use default or previous value */ ret = 0; break; } priv->temp_max[dimm_no] = rp_msg.pci_config[1] * 1000; priv->temp_crit[dimm_no] = rp_msg.pci_config[2] * 1000; break; case INTEL_FAM6_SKYLAKE_XD: rp_msg.addr = priv->mgr->client->addr; rp_msg.bus = 2; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 12, Function 2: IMC 1 channel 0 -> rank 2 * Device 12, Function 6: IMC 1 channel 1 -> rank 3 */ rp_msg.device = 10 + chan_rank / 2 * 2; rp_msg.function = (chan_rank % 2) ? 6 : 2; rp_msg.reg = 0x120 + dimm_order * 4; rp_msg.rx_len = 4; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_PCI_CFG_LOCAL, sizeof(rp_msg), &rp_msg); if (ret || rp_msg.cc != PECI_DEV_CC_SUCCESS || rp_msg.pci_config[1] == 0 || rp_msg.pci_config[2] == 0) { /* Use default or previous value */ ret = 0; break; } priv->temp_max[dimm_no] = rp_msg.pci_config[1] * 1000; priv->temp_crit[dimm_no] = rp_msg.pci_config[2] * 1000; break; case INTEL_FAM6_HASWELL_X: case INTEL_FAM6_BROADWELL_X: rp_msg.addr = priv->mgr->client->addr; rp_msg.bus = 1; /* * Device 20, Function 0: IMC 0 channel 0 -> rank 0 * Device 20, Function 1: IMC 0 channel 1 -> rank 1 * Device 21, Function 0: IMC 0 channel 2 -> rank 2 * Device 21, Function 1: IMC 0 channel 3 -> rank 3 * Device 23, Function 0: IMC 1 channel 0 -> rank 4 * Device 23, Function 1: IMC 1 channel 1 -> rank 5 * Device 24, Function 0: IMC 1 channel 2 -> rank 6 * Device 24, Function 1: IMC 1 channel 3 -> rank 7 */ rp_msg.device = 20 + chan_rank / 2 + chan_rank / 4; rp_msg.function = chan_rank % 2; rp_msg.reg = 0x120 + dimm_order * 4; rp_msg.rx_len = 4; ret = peci_command(priv->mgr->client->adapter, PECI_CMD_RD_PCI_CFG_LOCAL, sizeof(rp_msg), &rp_msg); if (ret || rp_msg.cc != PECI_DEV_CC_SUCCESS || rp_msg.pci_config[1] == 0 || rp_msg.pci_config[2] == 0) { /* Use default or previous value */ ret = 0; break; } priv->temp_max[dimm_no] = rp_msg.pci_config[1] * 1000; priv->temp_crit[dimm_no] = rp_msg.pci_config[2] * 1000; break; default: return -EOPNOTSUPP; } peci_sensor_mark_updated(&priv->temp[dimm_no]); return 0; } static int dimmtemp_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); if (attr != hwmon_temp_label) return -EOPNOTSUPP; *str = (const char *)priv->dimmtemp_label[channel]; return 0; } static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); int ret; ret = get_dimm_temp(priv, channel); if (ret) return ret; switch (attr) { case hwmon_temp_input: *val = priv->temp[channel].value; break; case hwmon_temp_max: *val = priv->temp_max[channel]; break; case hwmon_temp_crit: *val = priv->temp_crit[channel]; break; default: ret = -EOPNOTSUPP; break; } return ret; } static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct peci_dimmtemp *priv = data; if (priv->temp_config[channel] & BIT(attr) && priv->dimm_mask & BIT(channel)) return 0444; return 0; } static const struct hwmon_ops dimmtemp_ops = { .is_visible = dimmtemp_is_visible, .read_string = dimmtemp_read_string, .read = dimmtemp_read, }; static int check_populated_dimms(struct peci_dimmtemp *priv) { u32 chan_rank_max = priv->gen_info->chan_rank_max; u32 dimm_idx_max = priv->gen_info->dimm_idx_max; int chan_rank; u8 cfg_data[4]; for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) { int ret, idx; ret = read_ddr_dimm_temp_config(priv, chan_rank, cfg_data); if (ret) { if (ret == -EAGAIN) continue; priv->dimm_mask = 0; return ret; } for (idx = 0; idx < dimm_idx_max; idx++) { if (cfg_data[idx]) { uint chan = chan_rank * dimm_idx_max + idx; priv->dimm_mask |= BIT(chan); priv->temp_max[chan] = DIMM_TEMP_MAX_DEFAULT; priv->temp_crit[chan] = DIMM_TEMP_CRIT_DEFAULT; } } } if (!priv->dimm_mask) return -EAGAIN; dev_dbg(priv->dev, "Scanned populated DIMMs: 0x%x\n", priv->dimm_mask); return 0; } static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan) { int rank, idx; priv->dimmtemp_label[chan] = devm_kzalloc(priv->dev, PECI_HWMON_LABEL_STR_LEN, GFP_KERNEL); if (!priv->dimmtemp_label[chan]) return -ENOMEM; rank = chan / priv->gen_info->dimm_idx_max; idx = chan % priv->gen_info->dimm_idx_max; snprintf(priv->dimmtemp_label[chan], PECI_HWMON_LABEL_STR_LEN, "DIMM %c%d", 'A' + rank, idx + 1); return 0; } static int create_dimm_temp_info(struct peci_dimmtemp *priv) { int ret, i, config_idx, channels; struct device *dev; ret = check_populated_dimms(priv); if (ret) { if (ret == -EAGAIN) { if (DIMM_MASK_CHECK_RETRY_MAX == -1 || priv->retry_count < DIMM_MASK_CHECK_RETRY_MAX) { queue_delayed_work(priv->work_queue, &priv->work_handler, DIMM_MASK_CHECK_DELAY_JIFFIES); priv->retry_count++; dev_dbg(priv->dev, "Deferred DIMM temp info creation\n"); } else { dev_err(priv->dev, "Timeout DIMM temp info creation\n"); ret = -ETIMEDOUT; } } return ret; } channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max; priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL); if (!priv->dimmtemp_label) return -ENOMEM; for (i = 0, config_idx = 0; i < channels; i++) if (priv->dimm_mask & BIT(i)) { while (i >= config_idx) priv->temp_config[config_idx++] = HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT; ret = create_dimm_temp_label(priv, i); if (ret) return ret; } priv->chip.ops = &dimmtemp_ops; priv->chip.info = priv->info; priv->info[0] = &priv->temp_info; priv->temp_info.type = hwmon_temp; priv->temp_info.config = priv->temp_config; dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, &priv->chip, NULL); if (IS_ERR(dev)) { dev_err(priv->dev, "Failed to register hwmon device\n"); return PTR_ERR(dev); } dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name); return 0; } static void create_dimm_temp_info_delayed(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct peci_dimmtemp *priv = container_of(dwork, struct peci_dimmtemp, work_handler); int ret; ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) dev_dbg(priv->dev, "Failed to create DIMM temp info\n"); } static int peci_dimmtemp_probe(struct platform_device *pdev) { struct peci_client_manager *mgr = dev_get_drvdata(pdev->dev.parent); struct device *dev = &pdev->dev; struct peci_dimmtemp *priv; int ret, i; if ((mgr->client->adapter->cmd_mask & (BIT(PECI_CMD_GET_TEMP) | BIT(PECI_CMD_RD_PKG_CFG))) != (BIT(PECI_CMD_GET_TEMP) | BIT(PECI_CMD_RD_PKG_CFG))) return -ENODEV; for (i = 0; i < ARRAY_SIZE(support_model); i++) { if (mgr->gen_info->model == support_model[i]) break; } if (i == ARRAY_SIZE(support_model)) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); priv->mgr = mgr; priv->dev = dev; priv->gen_info = mgr->gen_info; snprintf(priv->name, PECI_NAME_SIZE, "peci_dimmtemp.cpu%d.%d", mgr->client->addr - PECI_BASE_ADDR, mgr->client->domain_id); priv->work_queue = alloc_ordered_workqueue(priv->name, 0); if (!priv->work_queue) return -ENOMEM; INIT_DELAYED_WORK(&priv->work_handler, create_dimm_temp_info_delayed); ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) { dev_dbg(dev, "Failed to create DIMM temp info\n"); goto err_free_wq; } return 0; err_free_wq: destroy_workqueue(priv->work_queue); return ret; } static int peci_dimmtemp_remove(struct platform_device *pdev) { struct peci_dimmtemp *priv = dev_get_drvdata(&pdev->dev); cancel_delayed_work_sync(&priv->work_handler); destroy_workqueue(priv->work_queue); return 0; } static const struct platform_device_id peci_dimmtemp_ids[] = { { .name = "peci-dimmtemp", .driver_data = 0 }, { } }; MODULE_DEVICE_TABLE(platform, peci_dimmtemp_ids); static struct platform_driver peci_dimmtemp_driver = { .probe = peci_dimmtemp_probe, .remove = peci_dimmtemp_remove, .id_table = peci_dimmtemp_ids, .driver = { .name = KBUILD_MODNAME, }, }; module_platform_driver(peci_dimmtemp_driver); MODULE_AUTHOR("Jae Hyun Yoo "); MODULE_DESCRIPTION("PECI dimmtemp driver"); MODULE_LICENSE("GPL v2");