summaryrefslogtreecommitdiff
path: root/poky/documentation/profile-manual
diff options
context:
space:
mode:
Diffstat (limited to 'poky/documentation/profile-manual')
-rw-r--r--poky/documentation/profile-manual/history.rst2
-rw-r--r--poky/documentation/profile-manual/profile-manual-arch.rst2
-rw-r--r--poky/documentation/profile-manual/profile-manual-arch.xml46
-rw-r--r--poky/documentation/profile-manual/profile-manual-customization.xsl29
-rw-r--r--poky/documentation/profile-manual/profile-manual-examples.rst2
-rw-r--r--poky/documentation/profile-manual/profile-manual-examples.xml40
-rw-r--r--poky/documentation/profile-manual/profile-manual-intro.rst6
-rw-r--r--poky/documentation/profile-manual/profile-manual-intro.xml107
-rw-r--r--poky/documentation/profile-manual/profile-manual-style.css987
-rw-r--r--poky/documentation/profile-manual/profile-manual-usage.rst48
-rw-r--r--poky/documentation/profile-manual/profile-manual-usage.xml2986
-rw-r--r--poky/documentation/profile-manual/profile-manual.rst2
-rwxr-xr-xpoky/documentation/profile-manual/profile-manual.xml180
13 files changed, 6 insertions, 4431 deletions
diff --git a/poky/documentation/profile-manual/history.rst b/poky/documentation/profile-manual/history.rst
index 3ffb7eacb..761b506ac 100644
--- a/poky/documentation/profile-manual/history.rst
+++ b/poky/documentation/profile-manual/history.rst
@@ -1,4 +1,4 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
***********************
Manual Revision History
diff --git a/poky/documentation/profile-manual/profile-manual-arch.rst b/poky/documentation/profile-manual/profile-manual-arch.rst
index 9e1e400e4..73cd0c29e 100644
--- a/poky/documentation/profile-manual/profile-manual-arch.rst
+++ b/poky/documentation/profile-manual/profile-manual-arch.rst
@@ -1,4 +1,4 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
*************************************************************
Overall Architecture of the Linux Tracing and Profiling Tools
diff --git a/poky/documentation/profile-manual/profile-manual-arch.xml b/poky/documentation/profile-manual/profile-manual-arch.xml
deleted file mode 100644
index 8eb7bbfab..000000000
--- a/poky/documentation/profile-manual/profile-manual-arch.xml
+++ /dev/null
@@ -1,46 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='profile-manual-arch'>
-
-<title>Overall Architecture of the Linux Tracing and Profiling Tools</title>
-
-<section id='architecture-of-the-tracing-and-profiling-tools'>
- <title>Architecture of the Tracing and Profiling Tools</title>
-
- <para>
- It may seem surprising to see a section covering an 'overall architecture'
- for what seems to be a random collection of tracing tools that together
- make up the Linux tracing and profiling space.
- The fact is, however, that in recent years this seemingly disparate
- set of tools has started to converge on a 'core' set of underlying
- mechanisms:
- </para>
-
- <para>
- <itemizedlist>
- <listitem>static tracepoints</listitem>
- <listitem>dynamic tracepoints
- <itemizedlist>
- <listitem>kprobes</listitem>
- <listitem>uprobes</listitem>
- </itemizedlist>
- </listitem>
- <listitem>the perf_events subsystem</listitem>
- <listitem>debugfs</listitem>
- </itemizedlist>
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Rather than enumerating here how each tool makes use of
- these common mechanisms, textboxes like this will make note of the
- specific usages in each tool as they come up in the course
- of the text.
- </informalexample>
-</section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/poky/documentation/profile-manual/profile-manual-customization.xsl b/poky/documentation/profile-manual/profile-manual-customization.xsl
deleted file mode 100644
index d995e0b3c..000000000
--- a/poky/documentation/profile-manual/profile-manual-customization.xsl
+++ /dev/null
@@ -1,29 +0,0 @@
-<?xml version='1.0'?>
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns="http://www.w3.org/1999/xhtml" xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
-
- <xsl:import href="http://downloads.yoctoproject.org/mirror/docbook-mirror/docbook-xsl-1.76.1/xhtml/docbook.xsl" />
-
-<!--
-
- <xsl:import href="../template/1.76.1/docbook-xsl-1.76.1/xhtml/docbook.xsl" />
-
- <xsl:import href="http://docbook.sourceforge.net/release/xsl/1.76.1/xhtml/docbook.xsl" />
-
--->
-
- <xsl:include href="../template/permalinks.xsl"/>
- <xsl:include href="../template/section.title.xsl"/>
- <xsl:include href="../template/component.title.xsl"/>
- <xsl:include href="../template/division.title.xsl"/>
- <xsl:include href="../template/formal.object.heading.xsl"/>
-
- <xsl:param name="html.stylesheet" select="'profile-manual-style.css'" />
- <xsl:param name="chapter.autolabel" select="1" />
- <xsl:param name="appendix.autolabel" select="A" />
- <xsl:param name="section.autolabel" select="1" />
- <xsl:param name="section.label.includes.component.label" select="1" />
- <xsl:param name="generate.id.attributes" select="1" />
-
-</xsl:stylesheet>
diff --git a/poky/documentation/profile-manual/profile-manual-examples.rst b/poky/documentation/profile-manual/profile-manual-examples.rst
index 32ccd37b8..97a9e9e21 100644
--- a/poky/documentation/profile-manual/profile-manual-examples.rst
+++ b/poky/documentation/profile-manual/profile-manual-examples.rst
@@ -1,4 +1,4 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
*******************
Real-World Examples
diff --git a/poky/documentation/profile-manual/profile-manual-examples.xml b/poky/documentation/profile-manual/profile-manual-examples.xml
deleted file mode 100644
index 91e06fcd1..000000000
--- a/poky/documentation/profile-manual/profile-manual-examples.xml
+++ /dev/null
@@ -1,40 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='profile-manual-examples'>
-
-<title>Real-World Examples</title>
-
-<para>
- This chapter contains real-world examples.
-</para>
-
-<section id='slow-write-speed-on-live-images'>
- <title>Slow Write Speed on Live Images</title>
-
- <para>
- In one of our previous releases (denzil), users noticed that booting
- off of a live image and writing to disk was noticeably slower.
- This included the boot itself, especially the first one, since first
- boots tend to do a significant amount of writing due to certain
- post-install scripts.
- </para>
-
- <para>
- The problem (and solution) was discovered by using the Yocto tracing
- tools, in this case 'perf stat', 'perf script', 'perf record'
- and 'perf report'.
- </para>
-
- <para>
- See all the unvarnished details of how this bug was diagnosed and
- solved here: Yocto Bug #3049
- </para>
-</section>
-
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/poky/documentation/profile-manual/profile-manual-intro.rst b/poky/documentation/profile-manual/profile-manual-intro.rst
index 994b1c508..4e1008b05 100644
--- a/poky/documentation/profile-manual/profile-manual-intro.rst
+++ b/poky/documentation/profile-manual/profile-manual-intro.rst
@@ -1,11 +1,9 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
******************************************
Yocto Project Profiling and Tracing Manual
******************************************
-.. _profile-intro:
-
Introduction
============
@@ -30,8 +28,6 @@ The final section of this 'HOWTO' is a collection of real-world examples
which we'll be continually adding to as we solve more problems using the
tools - feel free to add your own examples to the list!
-.. _profile-manual-general-setup:
-
General Setup
=============
diff --git a/poky/documentation/profile-manual/profile-manual-intro.xml b/poky/documentation/profile-manual/profile-manual-intro.xml
deleted file mode 100644
index a2d2f80ec..000000000
--- a/poky/documentation/profile-manual/profile-manual-intro.xml
+++ /dev/null
@@ -1,107 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='profile-manual-intro'>
-
-<title>Yocto Project Profiling and Tracing Manual</title>
- <section id='profile-intro'>
- <title>Introduction</title>
-
- <para>
- Yocto bundles a number of tracing and profiling tools - this 'HOWTO'
- describes their basic usage and shows by example how to make use
- of them to examine application and system behavior.
- </para>
-
- <para>
- The tools presented are for the most part completely open-ended and
- have quite good and/or extensive documentation of their own which
- can be used to solve just about any problem you might come across
- in Linux.
- Each section that describes a particular tool has links to that
- tool's documentation and website.
- </para>
-
- <para>
- The purpose of this 'HOWTO' is to present a set of common and
- generally useful tracing and profiling idioms along with their
- application (as appropriate) to each tool, in the context of a
- general-purpose 'drill-down' methodology that can be applied
- to solving a large number (90%?) of problems.
- For help with more advanced usages and problems, please see
- the documentation and/or websites listed for each tool.
- </para>
-
- <para>
- The final section of this 'HOWTO' is a collection of real-world
- examples which we'll be continually adding to as we solve more
- problems using the tools - feel free to add your own examples
- to the list!
- </para>
- </section>
-
- <section id='profile-manual-general-setup'>
- <title>General Setup</title>
-
- <para>
- Most of the tools are available only in 'sdk' images or in images
- built after adding 'tools-profile' to your local.conf.
- So, in order to be able to access all of the tools described here,
- please first build and boot an 'sdk' image e.g.
- <literallayout class='monospaced'>
- $ bitbake core-image-sato-sdk
- </literallayout>
- or alternatively by adding 'tools-profile' to the
- EXTRA_IMAGE_FEATURES line in your local.conf:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile"
- </literallayout>
- If you use the 'tools-profile' method, you don't need to build an
- sdk image - the tracing and profiling tools will be included in
- non-sdk images as well e.g.:
- <literallayout class='monospaced'>
- $ bitbake core-image-sato
- </literallayout>
- <note><para>
- By default, the Yocto build system strips symbols from the
- binaries it packages, which makes it difficult to use some
- of the tools.
- </para><para>You can prevent that by setting the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'><filename>INHIBIT_PACKAGE_STRIP</filename></ulink>
- variable to "1" in your
- <filename>local.conf</filename> when you build the image:
- </para>
- </note>
- <literallayout class='monospaced'>
- INHIBIT_PACKAGE_STRIP = "1"
- </literallayout>
- The above setting will noticeably increase the size of your image.
- </para>
-
- <para>
- If you've already built a stripped image, you can generate
- debug packages (xxx-dbg) which you can manually install as
- needed.
- </para>
-
- <para>
- To generate debug info for packages, you can add dbg-pkgs to
- EXTRA_IMAGE_FEATURES in local.conf. For example:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
- </literallayout>
- Additionally, in order to generate the right type of
- debuginfo, we also need to set
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_DEBUG_SPLIT_STYLE'><filename>PACKAGE_DEBUG_SPLIT_STYLE</filename></ulink>
- in the <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
- </literallayout>
- </para>
- </section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/poky/documentation/profile-manual/profile-manual-style.css b/poky/documentation/profile-manual/profile-manual-style.css
deleted file mode 100644
index 8502c1109..000000000
--- a/poky/documentation/profile-manual/profile-manual-style.css
+++ /dev/null
@@ -1,987 +0,0 @@
-/*
-
- SPDX-License-Identifier: CC-BY-2.0-UK
-
- Generic XHTML / DocBook XHTML CSS Stylesheet.
-
- Browser wrangling and typographic design by
- Oyvind Kolas / pippin@gimp.org
-
- Customised for Poky by
- Matthew Allum / mallum@o-hand.com
-
- Thanks to:
- Liam R. E. Quin
- William Skaggs
- Jakub Steiner
-
- Structure
- ---------
-
- The stylesheet is divided into the following sections:
-
- Positioning
- Margins, paddings, width, font-size, clearing.
- Decorations
- Borders, style
- Colors
- Colors
- Graphics
- Graphical backgrounds
- Nasty IE tweaks
- Workarounds needed to make it work in internet explorer,
- currently makes the stylesheet non validating, but up until
- this point it is validating.
- Mozilla extensions
- Transparency for footer
- Rounded corners on boxes
-
-*/
-
-
- /*************** /
- / Positioning /
-/ ***************/
-
-body {
- font-family: Verdana, Sans, sans-serif;
-
- min-width: 640px;
- width: 80%;
- margin: 0em auto;
- padding: 2em 5em 5em 5em;
- color: #333;
-}
-
-h1,h2,h3,h4,h5,h6,h7 {
- font-family: Arial, Sans;
- color: #00557D;
- clear: both;
-}
-
-h1 {
- font-size: 2em;
- text-align: left;
- padding: 0em 0em 0em 0em;
- margin: 2em 0em 0em 0em;
-}
-
-h2.subtitle {
- margin: 0.10em 0em 3.0em 0em;
- padding: 0em 0em 0em 0em;
- font-size: 1.8em;
- padding-left: 20%;
- font-weight: normal;
- font-style: italic;
-}
-
-h2 {
- margin: 2em 0em 0.66em 0em;
- padding: 0.5em 0em 0em 0em;
- font-size: 1.5em;
- font-weight: bold;
-}
-
-h3.subtitle {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
- font-size: 142.14%;
- text-align: right;
-}
-
-h3 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 140%;
- font-weight: bold;
-}
-
-h4 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 120%;
- font-weight: bold;
-}
-
-h5 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 110%;
- font-weight: bold;
-}
-
-h6 {
- margin: 1em 0em 0em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 110%;
- font-weight: bold;
-}
-
-.authorgroup {
- background-color: transparent;
- background-repeat: no-repeat;
- padding-top: 256px;
- background-image: url("figures/profile-title.png");
- background-position: left top;
- margin-top: -256px;
- padding-right: 50px;
- margin-left: 0px;
- text-align: right;
- width: 740px;
-}
-
-h3.author {
- margin: 0em 0me 0em 0em;
- padding: 0em 0em 0em 0em;
- font-weight: normal;
- font-size: 100%;
- color: #333;
- clear: both;
-}
-
-.author tt.email {
- font-size: 66%;
-}
-
-.titlepage hr {
- width: 0em;
- clear: both;
-}
-
-.revhistory {
- padding-top: 2em;
- clear: both;
-}
-
-.toc,
-.list-of-tables,
-.list-of-examples,
-.list-of-figures {
- padding: 1.33em 0em 2.5em 0em;
- color: #00557D;
-}
-
-.toc p,
-.list-of-tables p,
-.list-of-figures p,
-.list-of-examples p {
- padding: 0em 0em 0em 0em;
- padding: 0em 0em 0.3em;
- margin: 1.5em 0em 0em 0em;
-}
-
-.toc p b,
-.list-of-tables p b,
-.list-of-figures p b,
-.list-of-examples p b{
- font-size: 100.0%;
- font-weight: bold;
-}
-
-.toc dl,
-.list-of-tables dl,
-.list-of-figures dl,
-.list-of-examples dl {
- margin: 0em 0em 0.5em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.toc dt {
- margin: 0em 0em 0em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.toc dd {
- margin: 0em 0em 0em 2.6em;
- padding: 0em 0em 0em 0em;
-}
-
-div.glossary dl,
-div.variablelist dl {
-}
-
-.glossary dl dt,
-.variablelist dl dt,
-.variablelist dl dt span.term {
- font-weight: normal;
- width: 20em;
- text-align: right;
-}
-
-.variablelist dl dt {
- margin-top: 0.5em;
-}
-
-.glossary dl dd,
-.variablelist dl dd {
- margin-top: -1em;
- margin-left: 25.5em;
-}
-
-.glossary dd p,
-.variablelist dd p {
- margin-top: 0em;
- margin-bottom: 1em;
-}
-
-
-div.calloutlist table td {
- padding: 0em 0em 0em 0em;
- margin: 0em 0em 0em 0em;
-}
-
-div.calloutlist table td p {
- margin-top: 0em;
- margin-bottom: 1em;
-}
-
-div p.copyright {
- text-align: left;
-}
-
-div.legalnotice p.legalnotice-title {
- margin-bottom: 0em;
-}
-
-p {
- line-height: 1.5em;
- margin-top: 0em;
-
-}
-
-dl {
- padding-top: 0em;
-}
-
-hr {
- border: solid 1px;
-}
-
-
-.mediaobject,
-.mediaobjectco {
- text-align: center;
-}
-
-img {
- border: none;
-}
-
-ul {
- padding: 0em 0em 0em 1.5em;
-}
-
-ul li {
- padding: 0em 0em 0em 0em;
-}
-
-ul li p {
- text-align: left;
-}
-
-table {
- width :100%;
-}
-
-th {
- padding: 0.25em;
- text-align: left;
- font-weight: normal;
- vertical-align: top;
-}
-
-td {
- padding: 0.25em;
- vertical-align: top;
-}
-
-p a[id] {
- margin: 0px;
- padding: 0px;
- display: inline;
- background-image: none;
-}
-
-a {
- text-decoration: underline;
- color: #444;
-}
-
-pre {
- overflow: auto;
-}
-
-a:hover {
- text-decoration: underline;
- /*font-weight: bold;*/
-}
-
-/* This style defines how the permalink character
- appears by itself and when hovered over with
- the mouse. */
-
-[alt='Permalink'] { color: #eee; }
-[alt='Permalink']:hover { color: black; }
-
-
-div.informalfigure,
-div.informalexample,
-div.informaltable,
-div.figure,
-div.table,
-div.example {
- margin: 1em 0em;
- padding: 1em;
- page-break-inside: avoid;
-}
-
-
-div.informalfigure p.title b,
-div.informalexample p.title b,
-div.informaltable p.title b,
-div.figure p.title b,
-div.example p.title b,
-div.table p.title b{
- padding-top: 0em;
- margin-top: 0em;
- font-size: 100%;
- font-weight: normal;
-}
-
-.mediaobject .caption,
-.mediaobject .caption p {
- text-align: center;
- font-size: 80%;
- padding-top: 0.5em;
- padding-bottom: 0.5em;
-}
-
-.epigraph {
- padding-left: 55%;
- margin-bottom: 1em;
-}
-
-.epigraph p {
- text-align: left;
-}
-
-.epigraph .quote {
- font-style: italic;
-}
-.epigraph .attribution {
- font-style: normal;
- text-align: right;
-}
-
-span.application {
- font-style: italic;
-}
-
-.programlisting {
- font-family: monospace;
- font-size: 80%;
- white-space: pre;
- margin: 1.33em 0em;
- padding: 1.33em;
-}
-
-.tip,
-.warning,
-.caution,
-.note {
- margin-top: 1em;
- margin-bottom: 1em;
-
-}
-
-/* force full width of table within div */
-.tip table,
-.warning table,
-.caution table,
-.note table {
- border: none;
- width: 100%;
-}
-
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- padding: 0.8em 0.0em 0.0em 0.0em;
- margin : 0em 0em 0em 0em;
-}
-
-.tip p,
-.warning p,
-.caution p,
-.note p {
- margin-top: 0.5em;
- margin-bottom: 0.5em;
- padding-right: 1em;
- text-align: left;
-}
-
-.acronym {
- text-transform: uppercase;
-}
-
-b.keycap,
-.keycap {
- padding: 0.09em 0.3em;
- margin: 0em;
-}
-
-.itemizedlist li {
- clear: none;
-}
-
-.filename {
- font-size: medium;
- font-family: Courier, monospace;
-}
-
-
-div.navheader, div.heading{
- position: absolute;
- left: 0em;
- top: 0em;
- width: 100%;
- background-color: #cdf;
- width: 100%;
-}
-
-div.navfooter, div.footing{
- position: fixed;
- left: 0em;
- bottom: 0em;
- background-color: #eee;
- width: 100%;
-}
-
-
-div.navheader td,
-div.navfooter td {
- font-size: 66%;
-}
-
-div.navheader table th {
- /*font-family: Georgia, Times, serif;*/
- /*font-size: x-large;*/
- font-size: 80%;
-}
-
-div.navheader table {
- border-left: 0em;
- border-right: 0em;
- border-top: 0em;
- width: 100%;
-}
-
-div.navfooter table {
- border-left: 0em;
- border-right: 0em;
- border-bottom: 0em;
- width: 100%;
-}
-
-div.navheader table td a,
-div.navfooter table td a {
- color: #777;
- text-decoration: none;
-}
-
-/* normal text in the footer */
-div.navfooter table td {
- color: black;
-}
-
-div.navheader table td a:visited,
-div.navfooter table td a:visited {
- color: #444;
-}
-
-
-/* links in header and footer */
-div.navheader table td a:hover,
-div.navfooter table td a:hover {
- text-decoration: underline;
- background-color: transparent;
- color: #33a;
-}
-
-div.navheader hr,
-div.navfooter hr {
- display: none;
-}
-
-
-.qandaset tr.question td p {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.qandaset tr.answer td p {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
-}
-.answer td {
- padding-bottom: 1.5em;
-}
-
-.emphasis {
- font-weight: bold;
-}
-
-
- /************* /
- / decorations /
-/ *************/
-
-.titlepage {
-}
-
-.part .title {
-}
-
-.subtitle {
- border: none;
-}
-
-/*
-h1 {
- border: none;
-}
-
-h2 {
- border-top: solid 0.2em;
- border-bottom: solid 0.06em;
-}
-
-h3 {
- border-top: 0em;
- border-bottom: solid 0.06em;
-}
-
-h4 {
- border: 0em;
- border-bottom: solid 0.06em;
-}
-
-h5 {
- border: 0em;
-}
-*/
-
-.programlisting {
- border: solid 1px;
-}
-
-div.figure,
-div.table,
-div.informalfigure,
-div.informaltable,
-div.informalexample,
-div.example {
- border: 1px solid;
-}
-
-
-
-.tip,
-.warning,
-.caution,
-.note {
- border: 1px solid;
-}
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- border-bottom: 1px solid;
-}
-
-.question td {
- border-top: 1px solid black;
-}
-
-.answer {
-}
-
-
-b.keycap,
-.keycap {
- border: 1px solid;
-}
-
-
-div.navheader, div.heading{
- border-bottom: 1px solid;
-}
-
-
-div.navfooter, div.footing{
- border-top: 1px solid;
-}
-
- /********* /
- / colors /
-/ *********/
-
-body {
- color: #333;
- background: white;
-}
-
-a {
- background: transparent;
-}
-
-a:hover {
- background-color: #dedede;
-}
-
-
-h1,
-h2,
-h3,
-h4,
-h5,
-h6,
-h7,
-h8 {
- background-color: transparent;
-}
-
-hr {
- border-color: #aaa;
-}
-
-
-.tip, .warning, .caution, .note {
- border-color: #fff;
-}
-
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- border-bottom-color: #fff;
-}
-
-
-.warning {
- background-color: #f0f0f2;
-}
-
-.caution {
- background-color: #f0f0f2;
-}
-
-.tip {
- background-color: #f0f0f2;
-}
-
-.note {
- background-color: #f0f0f2;
-}
-
-.glossary dl dt,
-.variablelist dl dt,
-.variablelist dl dt span.term {
- color: #044;
-}
-
-div.figure,
-div.table,
-div.example,
-div.informalfigure,
-div.informaltable,
-div.informalexample {
- border-color: #aaa;
-}
-
-pre.programlisting {
- color: black;
- background-color: #fff;
- border-color: #aaa;
- border-width: 2px;
-}
-
-.guimenu,
-.guilabel,
-.guimenuitem {
- background-color: #eee;
-}
-
-
-b.keycap,
-.keycap {
- background-color: #eee;
- border-color: #999;
-}
-
-
-div.navheader {
- border-color: black;
-}
-
-
-div.navfooter {
- border-color: black;
-}
-
-
- /*********** /
- / graphics /
-/ ***********/
-
-/*
-body {
- background-image: url("images/body_bg.jpg");
- background-attachment: fixed;
-}
-
-.navheader,
-.note,
-.tip {
- background-image: url("images/note_bg.jpg");
- background-attachment: fixed;
-}
-
-.warning,
-.caution {
- background-image: url("images/warning_bg.jpg");
- background-attachment: fixed;
-}
-
-.figure,
-.informalfigure,
-.example,
-.informalexample,
-.table,
-.informaltable {
- background-image: url("images/figure_bg.jpg");
- background-attachment: fixed;
-}
-
-*/
-h1,
-h2,
-h3,
-h4,
-h5,
-h6,
-h7{
-}
-
-/*
-Example of how to stick an image as part of the title.
-
-div.article .titlepage .title
-{
- background-image: url("figures/white-on-black.png");
- background-position: center;
- background-repeat: repeat-x;
-}
-*/
-
-div.preface .titlepage .title,
-div.colophon .title,
-div.chapter .titlepage .title,
-div.article .titlepage .title
-{
-}
-
-div.section div.section .titlepage .title,
-div.sect2 .titlepage .title {
- background: none;
-}
-
-
-h1.title {
- background-color: transparent;
- background-repeat: no-repeat;
- height: 256px;
- text-indent: -9000px;
- overflow:hidden;
-}
-
-h2.subtitle {
- background-color: transparent;
- text-indent: -9000px;
- overflow:hidden;
- width: 0px;
- display: none;
-}
-
- /*************************************** /
- / pippin.gimp.org specific alterations /
-/ ***************************************/
-
-/*
-div.heading, div.navheader {
- color: #777;
- font-size: 80%;
- padding: 0;
- margin: 0;
- text-align: left;
- position: absolute;
- top: 0px;
- left: 0px;
- width: 100%;
- height: 50px;
- background: url('/gfx/heading_bg.png') transparent;
- background-repeat: repeat-x;
- background-attachment: fixed;
- border: none;
-}
-
-div.heading a {
- color: #444;
-}
-
-div.footing, div.navfooter {
- border: none;
- color: #ddd;
- font-size: 80%;
- text-align:right;
-
- width: 100%;
- padding-top: 10px;
- position: absolute;
- bottom: 0px;
- left: 0px;
-
- background: url('/gfx/footing_bg.png') transparent;
-}
-*/
-
-
-
- /****************** /
- / nasty ie tweaks /
-/ ******************/
-
-/*
-div.heading, div.navheader {
- width:expression(document.body.clientWidth + "px");
-}
-
-div.footing, div.navfooter {
- width:expression(document.body.clientWidth + "px");
- margin-left:expression("-5em");
-}
-body {
- padding:expression("4em 5em 0em 5em");
-}
-*/
-
- /**************************************** /
- / mozilla vendor specific css extensions /
-/ ****************************************/
-/*
-div.navfooter, div.footing{
- -moz-opacity: 0.8em;
-}
-
-div.figure,
-div.table,
-div.informalfigure,
-div.informaltable,
-div.informalexample,
-div.example,
-.tip,
-.warning,
-.caution,
-.note {
- -moz-border-radius: 0.5em;
-}
-
-b.keycap,
-.keycap {
- -moz-border-radius: 0.3em;
-}
-*/
-
-table tr td table tr td {
- display: none;
-}
-
-
-hr {
- display: none;
-}
-
-table {
- border: 0em;
-}
-
- .photo {
- float: right;
- margin-left: 1.5em;
- margin-bottom: 1.5em;
- margin-top: 0em;
- max-width: 17em;
- border: 1px solid gray;
- padding: 3px;
- background: white;
-}
- .seperator {
- padding-top: 2em;
- clear: both;
- }
-
- #validators {
- margin-top: 5em;
- text-align: right;
- color: #777;
- }
- @media print {
- body {
- font-size: 8pt;
- }
- .noprint {
- display: none;
- }
- }
-
-
-.tip,
-.note {
- background: #f0f0f2;
- color: #333;
- padding: 20px;
- margin: 20px;
-}
-
-.tip h3,
-.note h3 {
- padding: 0em;
- margin: 0em;
- font-size: 2em;
- font-weight: bold;
- color: #333;
-}
-
-.tip a,
-.note a {
- color: #333;
- text-decoration: underline;
-}
-
-.footnote {
- font-size: small;
- color: #333;
-}
-
-/* Changes the announcement text */
-.tip h3,
-.warning h3,
-.caution h3,
-.note h3 {
- font-size:large;
- color: #00557D;
-}
diff --git a/poky/documentation/profile-manual/profile-manual-usage.rst b/poky/documentation/profile-manual/profile-manual-usage.rst
index 32b04f6ff..cc403a554 100644
--- a/poky/documentation/profile-manual/profile-manual-usage.rst
+++ b/poky/documentation/profile-manual/profile-manual-usage.rst
@@ -1,4 +1,4 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
.. highlight:: shell
***************************************************************
@@ -10,8 +10,6 @@ Basic Usage (with examples) for each of the Yocto Tracing Tools
This chapter presents basic usage examples for each of the tracing
tools.
-.. _profile-manual-perf:
-
perf
====
@@ -43,8 +41,6 @@ want to apply the tool; full documentation can be found either within
the tool itself or in the man pages at
`perf(1) <http://linux.die.net/man/1/perf>`__.
-.. _perf-setup:
-
Perf Setup
----------
@@ -61,8 +57,6 @@ profile data and copy it to the host for analysis, but for the rest of
this document we assume you've ssh'ed to the host and will be running
the perf commands on the target.
-.. _perf-basic-usage:
-
Basic Perf Usage
----------------
@@ -950,8 +944,6 @@ We can look at the raw output using 'perf script' with no arguments: ::
kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
-.. _perf-filtering:
-
Filtering
^^^^^^^^^
@@ -1138,8 +1130,6 @@ callgraphs from starting a few programs during those 30 seconds:
uprobes. kprobes and uprobes are also used by and in fact are the
main focus of SystemTap.
-.. _perf-documentation:
-
Perf Documentation
------------------
@@ -1182,8 +1172,6 @@ There's also a nice perf tutorial on the perf
wiki that goes into more detail than we do here in certain areas: `Perf
Tutorial <https://perf.wiki.kernel.org/index.php/Tutorial>`__
-.. _profile-manual-ftrace:
-
ftrace
======
@@ -1191,8 +1179,6 @@ ftrace
this encompasses a number of related tracers along with the
infrastructure that they all make use of.
-.. _ftrace-setup:
-
ftrace Setup
------------
@@ -1668,8 +1654,6 @@ trace-cmd and kernelshark in the next section.
/sys/kernel/debug/tracing will be removed and replaced with
equivalent tracers based on the 'trace events' subsystem.
-.. _trace-cmd-kernelshark:
-
trace-cmd/kernelshark
---------------------
@@ -1737,8 +1721,6 @@ The tool is pretty self-explanatory, but for more detailed information
on navigating through the data, see the `kernelshark
website <http://rostedt.homelinux.com/kernelshark/>`__.
-.. _ftrace-documentation:
-
ftrace Documentation
--------------------
@@ -1772,8 +1754,6 @@ There's more detailed documentation kernelshark usage here:
An amusing yet useful README (a tracing mini-HOWTO) can be found in
``/sys/kernel/debug/tracing/README``.
-.. _profile-manual-systemtap:
-
systemtap
=========
@@ -1835,8 +1815,6 @@ target system and 3) insert the module into the target kernel, which
arms it, and 4) collect the data generated by the probe and display it
to the user.
-.. _systemtap-setup:
-
systemtap Setup
---------------
@@ -1955,8 +1933,6 @@ no password):
matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
-.. _systemtap-documentation:
-
systemtap Documentation
-----------------------
@@ -1967,8 +1943,6 @@ Links to other SystemTap documents, tutorials, and examples can be found
here: `SystemTap documentation
page <http://sourceware.org/systemtap/documentation.html>`__
-.. _profile-manual-sysprof:
-
Sysprof
=======
@@ -1976,8 +1950,6 @@ Sysprof is a very easy to use system-wide profiler that consists of a
single window with three panes and a few buttons which allow you to
start, stop, and view the profile from one place.
-.. _sysprof-setup:
-
Sysprof Setup
-------------
@@ -1990,8 +1962,6 @@ be running Sysprof on the target (you can use the '-X' option to ssh and
have the Sysprof GUI run on the target but display remotely on the host
if you want).
-.. _sysprof-basic-usage:
-
Basic Sysprof Usage
-------------------
@@ -2040,8 +2010,6 @@ to the selected function, and so on.
the -g (--call-graph) option that you can experiment with; one of the
options is 'caller' for an inverted caller-based callgraph display.
-.. _sysprof-documentation:
-
Sysprof Documentation
---------------------
@@ -2053,8 +2021,6 @@ Linux <http://sysprof.com/>`__
LTTng (Linux Trace Toolkit, next generation)
============================================
-.. _lttng-setup:
-
LTTng Setup
-----------
@@ -2239,8 +2205,6 @@ trace - it's still there in ~/lttng-traces): ::
root@crownbay:~# lttng destroy
Session auto-20190303-021943 destroyed at /home/root
-.. _lltng-documentation:
-
LTTng Documentation
-------------------
@@ -2254,8 +2218,6 @@ For information on LTTng in general, visit the `LTTng
Project <http://lttng.org/lttng2.0>`__ site. You can find a "Getting
Started" link on this site that takes you to an LTTng Quick Start.
-.. _profile-manual-blktrace:
-
blktrace
========
@@ -2264,8 +2226,6 @@ blktrace provides the tracing half of the equation; its output can be
piped into the blkparse program, which renders the data in a
human-readable form and does some basic analysis:
-.. _blktrace-setup:
-
blktrace Setup
--------------
@@ -2281,8 +2241,6 @@ collect and analyze the data on the host (see the
below). For the rest of this section we assume you've ssh'ed to the host and
will be running blkrace on the target.
-.. _blktrace-basic-usage:
-
Basic blktrace Usage
--------------------
@@ -2411,8 +2369,6 @@ I/O traffic during the run. You can look at the
`blkparse <http://linux.die.net/man/1/blkparse>`__ manpage to learn the
meaning of each field displayed in the trace listing.
-.. _blktrace-live-mode:
-
Live Mode
~~~~~~~~~
@@ -2603,8 +2559,6 @@ And this turns off tracing for the specified device: ::
root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
-.. _blktrace-documentation:
-
blktrace Documentation
----------------------
diff --git a/poky/documentation/profile-manual/profile-manual-usage.xml b/poky/documentation/profile-manual/profile-manual-usage.xml
deleted file mode 100644
index 3a7148cbd..000000000
--- a/poky/documentation/profile-manual/profile-manual-usage.xml
+++ /dev/null
@@ -1,2986 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='profile-manual-usage'>
-
-<title>Basic Usage (with examples) for each of the Yocto Tracing Tools</title>
-
-<para>
- This chapter presents basic usage examples for each of the tracing
- tools.
-</para>
-
-<section id='profile-manual-perf'>
- <title>perf</title>
-
- <para>
- The 'perf' tool is the profiling and tracing tool that comes
- bundled with the Linux kernel.
- </para>
-
- <para>
- Don't let the fact that it's part of the kernel fool you into thinking
- that it's only for tracing and profiling the kernel - you can indeed
- use it to trace and profile just the kernel, but you can also use it
- to profile specific applications separately (with or without kernel
- context), and you can also use it to trace and profile the kernel
- and all applications on the system simultaneously to gain a system-wide
- view of what's going on.
- </para>
-
- <para>
- In many ways, perf aims to be a superset of all the tracing and profiling
- tools available in Linux today, including all the other tools covered
- in this HOWTO. The past couple of years have seen perf subsume a lot
- of the functionality of those other tools and, at the same time, those
- other tools have removed large portions of their previous functionality
- and replaced it with calls to the equivalent functionality now
- implemented by the perf subsystem. Extrapolation suggests that at
- some point those other tools will simply become completely redundant
- and go away; until then, we'll cover those other tools in these pages
- and in many cases show how the same things can be accomplished in
- perf and the other tools when it seems useful to do so.
- </para>
-
- <para>
- The coverage below details some of the most common ways you'll likely
- want to apply the tool; full documentation can be found either within
- the tool itself or in the man pages at
- <ulink url='http://linux.die.net/man/1/perf'>perf(1)</ulink>.
- </para>
-
- <section id='perf-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the basic
- setup outlined in the General Setup section.
- </para>
-
- <para>
- In particular, you'll get the most mileage out of perf if you
- profile an image built with the following in your
- <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
- </literallayout>
- </para>
-
- <para>
- perf runs on the target system for the most part. You can archive
- profile data and copy it to the host for analysis, but for the
- rest of this document we assume you've ssh'ed to the host and
- will be running the perf commands on the target.
- </para>
- </section>
-
- <section id='perf-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- The perf tool is pretty much self-documenting. To remind yourself
- of the available commands, simply type 'perf', which will show you
- basic usage along with the available perf subcommands:
- <literallayout class='monospaced'>
- root@crownbay:~# perf
-
- usage: perf [--version] [--help] COMMAND [ARGS]
-
- The most commonly used perf commands are:
- annotate Read perf.data (created by perf record) and display annotated code
- archive Create archive with object files with build-ids found in perf.data file
- bench General framework for benchmark suites
- buildid-cache Manage build-id cache.
- buildid-list List the buildids in a perf.data file
- diff Read two perf.data files and display the differential profile
- evlist List the event names in a perf.data file
- inject Filter to augment the events stream with additional information
- kmem Tool to trace/measure kernel memory(slab) properties
- kvm Tool to trace/measure kvm guest os
- list List all symbolic event types
- lock Analyze lock events
- probe Define new dynamic tracepoints
- record Run a command and record its profile into perf.data
- report Read perf.data (created by perf record) and display the profile
- sched Tool to trace/measure scheduler properties (latencies)
- script Read perf.data (created by perf record) and display trace output
- stat Run a command and gather performance counter statistics
- test Runs sanity tests.
- timechart Tool to visualize total system behavior during a workload
- top System profiling tool.
-
- See 'perf help COMMAND' for more information on a specific command.
- </literallayout>
- </para>
-
- <section id='using-perf-to-do-basic-profiling'>
- <title>Using perf to do Basic Profiling</title>
-
- <para>
- As a simple test case, we'll profile the 'wget' of a fairly large
- file, which is a minimally interesting case because it has both
- file and network I/O aspects, and at least in the case of standard
- Yocto images, it's implemented as part of busybox, so the methods
- we use to analyze it can be used in a very similar way to the whole
- host of supported busybox applets in Yocto.
- <literallayout class='monospaced'>
- root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
- wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- The quickest and easiest way to get some basic overall data about
- what's going on for a particular workload is to profile it using
- 'perf stat'. 'perf stat' basically profiles using a few default
- counters and displays the summed counts at the end of the run:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
-
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 4597.223902 task-clock # 0.077 CPUs utilized
- 23568 context-switches # 0.005 M/sec
- 68 CPU-migrations # 0.015 K/sec
- 241 page-faults # 0.052 K/sec
- 3045817293 cycles # 0.663 GHz
- &lt;not supported&gt; stalled-cycles-frontend
- &lt;not supported&gt; stalled-cycles-backend
- 858909167 instructions # 0.28 insns per cycle
- 165441165 branches # 35.987 M/sec
- 19550329 branch-misses # 11.82% of all branches
-
- 59.836627620 seconds time elapsed
- </literallayout>
- Many times such a simple-minded test doesn't yield much of
- interest, but sometimes it does (see Real-world Yocto bug
- (slow loop-mounted write speed)).
- </para>
-
- <para>
- Also, note that 'perf stat' isn't restricted to a fixed set of
- counters - basically any event listed in the output of 'perf list'
- can be tallied by 'perf stat'. For example, suppose we wanted to
- see a summary of all the events related to kernel memory
- allocation/freeing along with cache hits and misses:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
-
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 5566 kmem:kmalloc
- 125517 kmem:kmem_cache_alloc
- 0 kmem:kmalloc_node
- 0 kmem:kmem_cache_alloc_node
- 34401 kmem:kfree
- 69920 kmem:kmem_cache_free
- 133 kmem:mm_page_free
- 41 kmem:mm_page_free_batched
- 11502 kmem:mm_page_alloc
- 11375 kmem:mm_page_alloc_zone_locked
- 0 kmem:mm_page_pcpu_drain
- 0 kmem:mm_page_alloc_extfrag
- 66848602 cache-references
- 2917740 cache-misses # 4.365 % of all cache refs
-
- 44.831023415 seconds time elapsed
- </literallayout>
- So 'perf stat' gives us a nice easy way to get a quick overview of
- what might be happening for a set of events, but normally we'd
- need a little more detail in order to understand what's going on
- in a way that we can act on in a useful way.
- </para>
-
- <para>
- To dive down into a next level of detail, we can use 'perf
- record'/'perf report' which will collect profiling data and
- present it to use using an interactive text-based UI (or
- simply as text if we specify --stdio to 'perf report').
- </para>
-
- <para>
- As our first attempt at profiling this workload, we'll simply
- run 'perf record', handing it the workload we want to profile
- (everything after 'perf record' and any perf options we hand
- it - here none - will be executed in a new shell). perf collects
- samples until the process exits and records them in a file named
- 'perf.data' in the current working directory.
- <literallayout class='monospaced'>
- root@crownbay:~# perf record wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
-
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
- [ perf record: Woken up 1 times to write data ]
- [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
- </literallayout>
- To see the results in a 'text-based UI' (tui), simply run
- 'perf report', which will read the perf.data file in the current
- working directory and display the results in an interactive UI:
- <literallayout class='monospaced'>
- root@crownbay:~# perf report
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-flat-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The above screenshot displays a 'flat' profile, one entry for
- each 'bucket' corresponding to the functions that were profiled
- during the profiling run, ordered from the most popular to the
- least (perf has options to sort in various orders and keys as
- well as display entries only above a certain threshold and so
- on - see the perf documentation for details). Note that this
- includes both userspace functions (entries containing a [.]) and
- kernel functions accounted to the process (entries containing
- a [k]). (perf has command-line modifiers that can be used to
- restrict the profiling to kernel or userspace, among others).
- </para>
-
- <para>
- Notice also that the above report shows an entry for 'busybox',
- which is the executable that implements 'wget' in Yocto, but that
- instead of a useful function name in that entry, it displays
- a not-so-friendly hex value instead. The steps below will show
- how to fix that problem.
- </para>
-
- <para>
- Before we do that, however, let's try running a different profile,
- one which shows something a little more interesting. The only
- difference between the new profile and the previous one is that
- we'll add the -g option, which will record not just the address
- of a sampled function, but the entire callchain to the sampled
- function as well:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
- [ perf record: Woken up 3 times to write data ]
- [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]
-
-
- root@crownbay:~# perf report
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Using the callgraph view, we can actually see not only which
- functions took the most time, but we can also see a summary of
- how those functions were called and learn something about how the
- program interacts with the kernel in the process.
- </para>
-
- <para>
- Notice that each entry in the above screenshot now contains a '+'
- on the left-hand side. This means that we can expand the entry and
- drill down into the callchains that feed into that entry.
- Pressing 'enter' on any one of them will expand the callchain
- (you can also press 'E' to expand them all at the same time or 'C'
- to collapse them all).
- </para>
-
- <para>
- In the screenshot above, we've toggled the __copy_to_user_ll()
- entry and several subnodes all the way down. This lets us see
- which callchains contributed to the profiled __copy_to_user_ll()
- function which contributed 1.77% to the total profile.
- </para>
-
- <para>
- As a bit of background explanation for these callchains, think
- about what happens at a high level when you run wget to get a file
- out on the network. Basically what happens is that the data comes
- into the kernel via the network connection (socket) and is passed
- to the userspace program 'wget' (which is actually a part of
- busybox, but that's not important for now), which takes the buffers
- the kernel passes to it and writes it to a disk file to save it.
- </para>
-
- <para>
- The part of this process that we're looking at in the above call
- stacks is the part where the kernel passes the data it's read from
- the socket down to wget i.e. a copy-to-user.
- </para>
-
- <para>
- Notice also that here there's also a case where the hex value
- is displayed in the callstack, here in the expanded
- sys_clock_gettime() function. Later we'll see it resolve to a
- userspace function call in busybox.
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-from-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The above screenshot shows the other half of the journey for the
- data - from the wget program's userspace buffers to disk. To get
- the buffers to disk, the wget program issues a write(2), which
- does a copy-from-user to the kernel, which then takes care via
- some circuitous path (probably also present somewhere in the
- profile data), to get it safely to disk.
- </para>
-
- <para>
- Now that we've seen the basic layout of the profile data and the
- basics of how to extract useful information out of it, let's get
- back to the task at hand and see if we can get some basic idea
- about where the time is spent in the program we're profiling,
- wget. Remember that wget is actually implemented as an applet
- in busybox, so while the process name is 'wget', the executable
- we're actually interested in is busybox. So let's expand the
- first entry containing busybox:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Again, before we expanded we saw that the function was labeled
- with a hex value instead of a symbol as with most of the kernel
- entries. Expanding the busybox entry doesn't make it any better.
- </para>
-
- <para>
- The problem is that perf can't find the symbol information for the
- busybox binary, which is actually stripped out by the Yocto build
- system.
- </para>
-
- <para>
- One way around that is to put the following in your
- <filename>local.conf</filename> file when you build the image:
- <literallayout class='monospaced'>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
- </literallayout>
- However, we already have an image with the binaries stripped,
- so what can we do to get perf to resolve the symbols? Basically
- we need to install the debuginfo for the busybox package.
- </para>
-
- <para>
- To generate the debug info for the packages in the image, we can
- add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf. For example:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
- </literallayout>
- Additionally, in order to generate the type of debuginfo that
- perf understands, we also need to set
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_DEBUG_SPLIT_STYLE'><filename>PACKAGE_DEBUG_SPLIT_STYLE</filename></ulink>
- in the <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
- </literallayout>
- Once we've done that, we can install the debuginfo for busybox.
- The debug packages once built can be found in
- build/tmp/deploy/rpm/* on the host system. Find the
- busybox-dbg-...rpm file and copy it to the target. For example:
- <literallayout class='monospaced'>
- [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
- root@192.168.1.31's password:
- busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
- </literallayout>
- Now install the debug rpm on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
- </literallayout>
- Now that the debuginfo is installed, we see that the busybox
- entries now display their functions symbolically:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- If we expand one of the entries and press 'enter' on a leaf node,
- we're presented with a menu of actions we can take to get more
- information related to that entry:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-dso-zoom-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
- </para>
-
- <para>
- One of these actions allows us to show a view that displays a
- busybox-centric view of the profiled functions (in this case we've
- also expanded all the nodes using the 'E' key):
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-dso-zoom.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Finally, we can see that now that the busybox debuginfo is
- installed, the previously unresolved symbol in the
- sys_clock_gettime() entry mentioned previously is now resolved,
- and shows that the sys_clock_gettime system call that was the
- source of 6.75% of the copy-to-user overhead was initiated by
- the handle_input() busybox function:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- At the lowest level of detail, we can dive down to the assembly
- level and see which instructions caused the most overhead in a
- function. Pressing 'enter' on the 'udhcpc_main' function, we're
- again presented with a menu:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-annotate-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
- </para>
-
- <para>
- Selecting 'Annotate udhcpc_main', we get a detailed listing of
- percentages by instruction for the udhcpc_main function. From the
- display, we can see that over 50% of the time spent in this
- function is taken up by a couple tests and the move of a
- constant (1) to a register:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-annotate-udhcpc.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- As a segue into tracing, let's try another profile using a
- different counter, something other than the default 'cycles'.
- </para>
-
- <para>
- The tracing and profiling infrastructure in Linux has become
- unified in a way that allows us to use the same tool with a
- completely different set of counters, not just the standard
- hardware counters that traditional tools have had to restrict
- themselves to (of course the traditional tools can also make use
- of the expanded possibilities now available to them, and in some
- cases have, as mentioned previously).
- </para>
-
- <para>
- We can get a list of the available events that can be used to
- profile a workload via 'perf list':
- <literallayout class='monospaced'>
- root@crownbay:~# perf list
-
- List of pre-defined events (to be used in -e):
- cpu-cycles OR cycles [Hardware event]
- stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
- stalled-cycles-backend OR idle-cycles-backend [Hardware event]
- instructions [Hardware event]
- cache-references [Hardware event]
- cache-misses [Hardware event]
- branch-instructions OR branches [Hardware event]
- branch-misses [Hardware event]
- bus-cycles [Hardware event]
- ref-cycles [Hardware event]
-
- cpu-clock [Software event]
- task-clock [Software event]
- page-faults OR faults [Software event]
- minor-faults [Software event]
- major-faults [Software event]
- context-switches OR cs [Software event]
- cpu-migrations OR migrations [Software event]
- alignment-faults [Software event]
- emulation-faults [Software event]
-
- L1-dcache-loads [Hardware cache event]
- L1-dcache-load-misses [Hardware cache event]
- L1-dcache-prefetch-misses [Hardware cache event]
- L1-icache-loads [Hardware cache event]
- L1-icache-load-misses [Hardware cache event]
- .
- .
- .
- rNNN [Raw hardware event descriptor]
- cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
- (see 'perf list --help' on how to encode it)
-
- mem:&lt;addr&gt;[:access] [Hardware breakpoint]
-
- sunrpc:rpc_call_status [Tracepoint event]
- sunrpc:rpc_bind_status [Tracepoint event]
- sunrpc:rpc_connect_status [Tracepoint event]
- sunrpc:rpc_task_begin [Tracepoint event]
- skb:kfree_skb [Tracepoint event]
- skb:consume_skb [Tracepoint event]
- skb:skb_copy_datagram_iovec [Tracepoint event]
- net:net_dev_xmit [Tracepoint event]
- net:net_dev_queue [Tracepoint event]
- net:netif_receive_skb [Tracepoint event]
- net:netif_rx [Tracepoint event]
- napi:napi_poll [Tracepoint event]
- sock:sock_rcvqueue_full [Tracepoint event]
- sock:sock_exceed_buf_limit [Tracepoint event]
- udp:udp_fail_queue_rcv_skb [Tracepoint event]
- hda:hda_send_cmd [Tracepoint event]
- hda:hda_get_response [Tracepoint event]
- hda:hda_bus_reset [Tracepoint event]
- scsi:scsi_dispatch_cmd_start [Tracepoint event]
- scsi:scsi_dispatch_cmd_error [Tracepoint event]
- scsi:scsi_eh_wakeup [Tracepoint event]
- drm:drm_vblank_event [Tracepoint event]
- drm:drm_vblank_event_queued [Tracepoint event]
- drm:drm_vblank_event_delivered [Tracepoint event]
- random:mix_pool_bytes [Tracepoint event]
- random:mix_pool_bytes_nolock [Tracepoint event]
- random:credit_entropy_bits [Tracepoint event]
- gpio:gpio_direction [Tracepoint event]
- gpio:gpio_value [Tracepoint event]
- block:block_rq_abort [Tracepoint event]
- block:block_rq_requeue [Tracepoint event]
- block:block_rq_issue [Tracepoint event]
- block:block_bio_bounce [Tracepoint event]
- block:block_bio_complete [Tracepoint event]
- block:block_bio_backmerge [Tracepoint event]
- .
- .
- writeback:writeback_wake_thread [Tracepoint event]
- writeback:writeback_wake_forker_thread [Tracepoint event]
- writeback:writeback_bdi_register [Tracepoint event]
- .
- .
- writeback:writeback_single_inode_requeue [Tracepoint event]
- writeback:writeback_single_inode [Tracepoint event]
- kmem:kmalloc [Tracepoint event]
- kmem:kmem_cache_alloc [Tracepoint event]
- kmem:mm_page_alloc [Tracepoint event]
- kmem:mm_page_alloc_zone_locked [Tracepoint event]
- kmem:mm_page_pcpu_drain [Tracepoint event]
- kmem:mm_page_alloc_extfrag [Tracepoint event]
- vmscan:mm_vmscan_kswapd_sleep [Tracepoint event]
- vmscan:mm_vmscan_kswapd_wake [Tracepoint event]
- vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event]
- vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event]
- .
- .
- module:module_get [Tracepoint event]
- module:module_put [Tracepoint event]
- module:module_request [Tracepoint event]
- sched:sched_kthread_stop [Tracepoint event]
- sched:sched_wakeup [Tracepoint event]
- sched:sched_wakeup_new [Tracepoint event]
- sched:sched_process_fork [Tracepoint event]
- sched:sched_process_exec [Tracepoint event]
- sched:sched_stat_runtime [Tracepoint event]
- rcu:rcu_utilization [Tracepoint event]
- workqueue:workqueue_queue_work [Tracepoint event]
- workqueue:workqueue_execute_end [Tracepoint event]
- signal:signal_generate [Tracepoint event]
- signal:signal_deliver [Tracepoint event]
- timer:timer_init [Tracepoint event]
- timer:timer_start [Tracepoint event]
- timer:hrtimer_cancel [Tracepoint event]
- timer:itimer_state [Tracepoint event]
- timer:itimer_expire [Tracepoint event]
- irq:irq_handler_entry [Tracepoint event]
- irq:irq_handler_exit [Tracepoint event]
- irq:softirq_entry [Tracepoint event]
- irq:softirq_exit [Tracepoint event]
- irq:softirq_raise [Tracepoint event]
- printk:console [Tracepoint event]
- task:task_newtask [Tracepoint event]
- task:task_rename [Tracepoint event]
- syscalls:sys_enter_socketcall [Tracepoint event]
- syscalls:sys_exit_socketcall [Tracepoint event]
- .
- .
- .
- syscalls:sys_enter_unshare [Tracepoint event]
- syscalls:sys_exit_unshare [Tracepoint event]
- raw_syscalls:sys_enter [Tracepoint event]
- raw_syscalls:sys_exit [Tracepoint event]
- </literallayout>
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These are exactly the same set of events defined
- by the trace event subsystem and exposed by
- ftrace/tracecmd/kernelshark as files in
- /sys/kernel/debug/tracing/events, by SystemTap as
- kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
- </informalexample>
-
- <para>
- Only a subset of these would be of interest to us when looking at
- this workload, so let's choose the most likely subsystems
- (identified by the string before the colon in the Tracepoint events)
- and do a 'perf stat' run using only those wildcarded subsystems:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 23323 skb:kfree_skb
- 0 skb:consume_skb
- 49897 skb:skb_copy_datagram_iovec
- 6217 net:net_dev_xmit
- 6217 net:net_dev_queue
- 7962 net:netif_receive_skb
- 2 net:netif_rx
- 8340 napi:napi_poll
- 0 sched:sched_kthread_stop
- 0 sched:sched_kthread_stop_ret
- 3749 sched:sched_wakeup
- 0 sched:sched_wakeup_new
- 0 sched:sched_switch
- 29 sched:sched_migrate_task
- 0 sched:sched_process_free
- 1 sched:sched_process_exit
- 0 sched:sched_wait_task
- 0 sched:sched_process_wait
- 0 sched:sched_process_fork
- 1 sched:sched_process_exec
- 0 sched:sched_stat_wait
- 2106519415641 sched:sched_stat_sleep
- 0 sched:sched_stat_iowait
- 147453613 sched:sched_stat_blocked
- 12903026955 sched:sched_stat_runtime
- 0 sched:sched_pi_setprio
- 3574 workqueue:workqueue_queue_work
- 3574 workqueue:workqueue_activate_work
- 0 workqueue:workqueue_execute_start
- 0 workqueue:workqueue_execute_end
- 16631 irq:irq_handler_entry
- 16631 irq:irq_handler_exit
- 28521 irq:softirq_entry
- 28521 irq:softirq_exit
- 28728 irq:softirq_raise
- 1 syscalls:sys_enter_sendmmsg
- 1 syscalls:sys_exit_sendmmsg
- 0 syscalls:sys_enter_recvmmsg
- 0 syscalls:sys_exit_recvmmsg
- 14 syscalls:sys_enter_socketcall
- 14 syscalls:sys_exit_socketcall
- .
- .
- .
- 16965 syscalls:sys_enter_read
- 16965 syscalls:sys_exit_read
- 12854 syscalls:sys_enter_write
- 12854 syscalls:sys_exit_write
- .
- .
- .
-
- 58.029710972 seconds time elapsed
- </literallayout>
- Let's pick one of these tracepoints and tell perf to do a profile
- using it as the sampling event:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -e sched:sched_wakeup wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/sched-wakeup-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The screenshot above shows the results of running a profile using
- sched:sched_switch tracepoint, which shows the relative costs of
- various paths to sched_wakeup (note that sched_wakeup is the
- name of the tracepoint - it's actually defined just inside
- ttwu_do_wakeup(), which accounts for the function name actually
- displayed in the profile:
- <literallayout class='monospaced'>
- /*
- * Mark the task runnable and perform wakeup-preemption.
- */
- static void
- ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
- {
- trace_sched_wakeup(p, true);
- .
- .
- .
- }
- </literallayout>
- A couple of the more interesting callchains are expanded and
- displayed above, basically some network receive paths that
- presumably end up waking up wget (busybox) when network data is
- ready.
- </para>
-
- <para>
- Note that because tracepoints are normally used for tracing,
- the default sampling period for tracepoints is 1 i.e. for
- tracepoints perf will sample on every event occurrence (this
- can be changed using the -c option). This is in contrast to
- hardware counters such as for example the default 'cycles'
- hardware counter used for normal profiling, where sampling
- periods are much higher (in the thousands) because profiling should
- have as low an overhead as possible and sampling on every cycle
- would be prohibitively expensive.
- </para>
- </section>
-
- <section id='using-perf-to-do-basic-tracing'>
- <title>Using perf to do Basic Tracing</title>
-
- <para>
- Profiling is a great tool for solving many problems or for
- getting a high-level view of what's going on with a workload or
- across the system. It is however by definition an approximation,
- as suggested by the most prominent word associated with it,
- 'sampling'. On the one hand, it allows a representative picture of
- what's going on in the system to be cheaply taken, but on the other
- hand, that cheapness limits its utility when that data suggests a
- need to 'dive down' more deeply to discover what's really going
- on. In such cases, the only way to see what's really going on is
- to be able to look at (or summarize more intelligently) the
- individual steps that go into the higher-level behavior exposed
- by the coarse-grained profiling data.
- </para>
-
- <para>
- As a concrete example, we can trace all the events we think might
- be applicable to our workload:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
- -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
- wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- We can look at the raw trace output using 'perf script' with no
- arguments:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- perf 1262 [000] 11624.857082: sys_exit_read: 0x0
- perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
- wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
- wget 1262 [001] 11624.858177: sys_exit_read: 0x200
- wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
- wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
- wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7
- wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859233: sys_exit_read: 0x0
- wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
- wget 1262 [001] 11624.859584: sys_exit_read: 0x200
- wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859888: sys_exit_read: 0x400
- wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859944: sys_exit_read: 0x400
- </literallayout>
- This gives us a detailed timestamped sequence of events that
- occurred within the workload with respect to those events.
- </para>
-
- <para>
- In many ways, profiling can be viewed as a subset of tracing -
- theoretically, if you have a set of trace events that's sufficient
- to capture all the important aspects of a workload, you can derive
- any of the results or views that a profiling run can.
- </para>
-
- <para>
- Another aspect of traditional profiling is that while powerful in
- many ways, it's limited by the granularity of the underlying data.
- Profiling tools offer various ways of sorting and presenting the
- sample data, which make it much more useful and amenable to user
- experimentation, but in the end it can't be used in an open-ended
- way to extract data that just isn't present as a consequence of
- the fact that conceptually, most of it has been thrown away.
- </para>
-
- <para>
- Full-blown detailed tracing data does however offer the opportunity
- to manipulate and present the information collected during a
- tracing run in an infinite variety of ways.
- </para>
-
- <para>
- Another way to look at it is that there are only so many ways that
- the 'primitive' counters can be used on their own to generate
- interesting output; to get anything more complicated than simple
- counts requires some amount of additional logic, which is typically
- very specific to the problem at hand. For example, if we wanted to
- make use of a 'counter' that maps to the value of the time
- difference between when a process was scheduled to run on a
- processor and the time it actually ran, we wouldn't expect such
- a counter to exist on its own, but we could derive one called say
- 'wakeup_latency' and use it to extract a useful view of that metric
- from trace data. Likewise, we really can't figure out from standard
- profiling tools how much data every process on the system reads and
- writes, along with how many of those reads and writes fail
- completely. If we have sufficient trace data, however, we could
- with the right tools easily extract and present that information,
- but we'd need something other than pre-canned profiling tools to
- do that.
- </para>
-
- <para>
- Luckily, there is a general-purpose way to handle such needs,
- called 'programming languages'. Making programming languages
- easily available to apply to such problems given the specific
- format of data is called a 'programming language binding' for
- that data and language. Perf supports two programming language
- bindings, one for Python and one for Perl.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Language bindings for manipulating and
- aggregating trace data are of course not a new
- idea. One of the first projects to do this was IBM's DProbes
- dpcc compiler, an ANSI C compiler which targeted a low-level
- assembly language running on an in-kernel interpreter on the
- target system. This is exactly analogous to what Sun's DTrace
- did, except that DTrace invented its own language for the purpose.
- Systemtap, heavily inspired by DTrace, also created its own
- one-off language, but rather than running the product on an
- in-kernel interpreter, created an elaborate compiler-based
- machinery to translate its language into kernel modules written
- in C.
- </informalexample>
-
- <para>
- Now that we have the trace data in perf.data, we can use
- 'perf script -g' to generate a skeleton script with handlers
- for the read/write entry/exit events we recorded:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script -g python
- generated Python script: perf-script.py
- </literallayout>
- The skeleton script simply creates a python function for each
- event type in the perf.data file. The body of each function simply
- prints the event name along with its parameters. For example:
- <literallayout class='monospaced'>
- def net__netif_rx(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- skbaddr, len, name):
- print_header(event_name, common_cpu, common_secs, common_nsecs,
- common_pid, common_comm)
-
- print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
- </literallayout>
- We can run that script directly to print all of the events
- contained in the perf.data file:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script -s perf-script.py
-
- in trace_begin
- syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0
- sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0
- irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER
- irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER
- irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER
- syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512
- syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512
- skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0
- skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0
- irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER
- irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER
- irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER
- syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471
- syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0
- syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512
- syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512
- syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024
- syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024
- </literallayout>
- That in itself isn't very useful; after all, we can accomplish
- pretty much the same thing by simply running 'perf script'
- without arguments in the same directory as the perf.data file.
- </para>
-
- <para>
- We can however replace the print statements in the generated
- function bodies with whatever we want, and thereby make it
- infinitely more useful.
- </para>
-
- <para>
- As a simple example, let's just replace the print statements in
- the function bodies with a simple function that does nothing but
- increment a per-event count. When the program is run against a
- perf.data file, each time a particular event is encountered,
- a tally is incremented for that event. For example:
- <literallayout class='monospaced'>
- def net__netif_rx(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- skbaddr, len, name):
- inc_counts(event_name)
- </literallayout>
- Each event handler function in the generated code is modified
- to do this. For convenience, we define a common function called
- inc_counts() that each handler calls; inc_counts() simply tallies
- a count for each event using the 'counts' hash, which is a
- specialized hash function that does Perl-like autovivification, a
- capability that's extremely useful for kinds of multi-level
- aggregation commonly used in processing traces (see perf's
- documentation on the Python language binding for details):
- <literallayout class='monospaced'>
- counts = autodict()
-
- def inc_counts(event_name):
- try:
- counts[event_name] += 1
- except TypeError:
- counts[event_name] = 1
- </literallayout>
- Finally, at the end of the trace processing run, we want to
- print the result of all the per-event tallies. For that, we
- use the special 'trace_end()' function:
- <literallayout class='monospaced'>
- def trace_end():
- for event_name, count in counts.iteritems():
- print "%-40s %10s\n" % (event_name, count)
- </literallayout>
- The end result is a summary of all the events recorded in the
- trace:
- <literallayout class='monospaced'>
- skb__skb_copy_datagram_iovec 13148
- irq__softirq_entry 4796
- irq__irq_handler_exit 3805
- irq__softirq_exit 4795
- syscalls__sys_enter_write 8990
- net__net_dev_xmit 652
- skb__kfree_skb 4047
- sched__sched_wakeup 1155
- irq__irq_handler_entry 3804
- irq__softirq_raise 4799
- net__net_dev_queue 652
- syscalls__sys_enter_read 17599
- net__netif_receive_skb 1743
- syscalls__sys_exit_read 17598
- net__netif_rx 2
- napi__napi_poll 1877
- syscalls__sys_exit_write 8990
- </literallayout>
- Note that this is pretty much exactly the same information we get
- from 'perf stat', which goes a little way to support the idea
- mentioned previously that given the right kind of trace data,
- higher-level profiling-type summaries can be derived from it.
- </para>
-
- <para>
- Documentation on using the
- <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
- </para>
- </section>
-
- <section id='system-wide-tracing-and-profiling'>
- <title>System-Wide Tracing and Profiling</title>
-
- <para>
- The examples so far have focused on tracing a particular program or
- workload - in other words, every profiling run has specified the
- program to profile in the command-line e.g. 'perf record wget ...'.
- </para>
-
- <para>
- It's also possible, and more interesting in many cases, to run a
- system-wide profile or trace while running the workload in a
- separate shell.
- </para>
-
- <para>
- To do system-wide profiling or tracing, you typically use
- the -a flag to 'perf record'.
- </para>
-
- <para>
- To demonstrate this, open up one window and start the profile
- using the -a flag (press Ctrl-C to stop tracing):
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a
- ^C[ perf record: Woken up 6 times to write data ]
- [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
- </literallayout>
- In another window, run the wget test:
- <literallayout class='monospaced'>
- root@crownbay:~# wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- Here we see entries not only for our wget load, but for other
- processes running on the system as well:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-systemwide.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- In the snapshot above, we can see callchains that originate in
- libc, and a callchain from Xorg that demonstrates that we're
- using a proprietary X driver in userspace (notice the presence
- of 'PVR' and some other unresolvable symbols in the expanded
- Xorg callchain).
- </para>
-
- <para>
- Note also that we have both kernel and userspace entries in the
- above snapshot. We can also tell perf to focus on userspace but
- providing a modifier, in this case 'u', to the 'cycles' hardware
- counter when we record a profile:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a -e cycles:u
- ^C[ perf record: Woken up 2 times to write data ]
- [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-report-cycles-u.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Notice in the screenshot above, we see only userspace entries ([.])
- </para>
-
- <para>
- Finally, we can press 'enter' on a leaf node and select the 'Zoom
- into DSO' menu item to show only entries associated with a
- specific DSO. In the screenshot below, we've zoomed into the
- 'libc' DSO which shows all the entries associated with the
- libc-xxx.so DSO.
- </para>
-
- <para>
- <imagedata fileref="figures/perf-systemwide-libc.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- We can also use the system-wide -a switch to do system-wide
- tracing. Here we'll trace a couple of scheduler events:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
- ^C[ perf record: Woken up 38 times to write data ]
- [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
- </literallayout>
- We can look at the raw output using 'perf script' with no
- arguments:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
- swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
- swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
- perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- </literallayout>
- </para>
-
- <section id='perf-filtering'>
- <title>Filtering</title>
-
- <para>
- Notice that there are a lot of events that don't really have
- anything to do with what we're interested in, namely events
- that schedule 'perf' itself in and out or that wake perf up.
- We can get rid of those by using the '--filter' option -
- for each event we specify using -e, we can add a --filter
- after that to filter out trace events that contain fields
- with specific values:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf &amp;&amp; prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
- ^C[ perf record: Woken up 38 times to write data ]
- [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]
-
-
- root@crownbay:~# perf script
-
- swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
- swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
- swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- </literallayout>
- In this case, we've filtered out all events that have 'perf'
- in their 'comm' or 'comm_prev' or 'comm_next' fields. Notice
- that there are still events recorded for perf, but notice
- that those events don't have values of 'perf' for the filtered
- fields. To completely filter out anything from perf will
- require a bit more work, but for the purpose of demonstrating
- how to use filters, it's close enough.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These are exactly the same set of event
- filters defined by the trace event subsystem. See the
- ftrace/tracecmd/kernelshark section for more discussion about
- these event filters.
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These event filters are implemented by a
- special-purpose pseudo-interpreter in the kernel and are an
- integral and indispensable part of the perf design as it
- relates to tracing. kernel-based event filters provide a
- mechanism to precisely throttle the event stream that appears
- in user space, where it makes sense to provide bindings to real
- programming languages for postprocessing the event stream.
- This architecture allows for the intelligent and flexible
- partitioning of processing between the kernel and user space.
- Contrast this with other tools such as SystemTap, which does
- all of its processing in the kernel and as such requires a
- special project-defined language in order to accommodate that
- design, or LTTng, where everything is sent to userspace and
- as such requires a super-efficient kernel-to-userspace
- transport mechanism in order to function properly. While
- perf certainly can benefit from for instance advances in
- the design of the transport, it doesn't fundamentally depend
- on them. Basically, if you find that your perf tracing
- application is causing buffer I/O overruns, it probably
- means that you aren't taking enough advantage of the
- kernel filtering engine.
- </informalexample>
- </section>
- </section>
-
- <section id='using-dynamic-tracepoints'>
- <title>Using Dynamic Tracepoints</title>
-
- <para>
- perf isn't restricted to the fixed set of static tracepoints
- listed by 'perf list'. Users can also add their own 'dynamic'
- tracepoints anywhere in the kernel. For instance, suppose we
- want to define our own tracepoint on do_fork(). We can do that
- using the 'perf probe' perf subcommand:
- <literallayout class='monospaced'>
- root@crownbay:~# perf probe do_fork
- Added new event:
- probe:do_fork (on do_fork)
-
- You can now use it in all perf tools, such as:
-
- perf record -e probe:do_fork -aR sleep 1
- </literallayout>
- Adding a new tracepoint via 'perf probe' results in an event
- with all the expected files and format in
- /sys/kernel/debug/tracing/events, just the same as for static
- tracepoints (as discussed in more detail in the trace events
- subsystem section:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
- drwxr-xr-x 2 root root 0 Oct 28 11:42 .
- drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
- -rw-r--r-- 1 root root 0 Oct 28 11:42 enable
- -rw-r--r-- 1 root root 0 Oct 28 11:42 filter
- -r--r--r-- 1 root root 0 Oct 28 11:42 format
- -r--r--r-- 1 root root 0 Oct 28 11:42 id
-
- root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
- name: do_fork
- ID: 944
- format:
- field:unsigned short common_type; offset:0; size:2; signed:0;
- field:unsigned char common_flags; offset:2; size:1; signed:0;
- field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
- field:int common_pid; offset:4; size:4; signed:1;
- field:int common_padding; offset:8; size:4; signed:1;
-
- field:unsigned long __probe_ip; offset:12; size:4; signed:0;
-
- print fmt: "(%lx)", REC->__probe_ip
- </literallayout>
- We can list all dynamic tracepoints currently in existence:
- <literallayout class='monospaced'>
- root@crownbay:~# perf probe -l
- probe:do_fork (on do_fork)
- probe:schedule (on schedule)
- </literallayout>
- Let's record system-wide ('sleep 30' is a trick for recording
- system-wide but basically do nothing and then wake up after
- 30 seconds):
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
- [ perf record: Woken up 1 times to write data ]
- [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
- </literallayout>
- Using 'perf script' we can see each do_fork event that fired:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- # ========
- # captured on: Sun Oct 28 11:55:18 2012
- # hostname : crownbay
- # os release : 3.4.11-yocto-standard
- # perf version : 3.4.11
- # arch : i686
- # nrcpus online : 2
- # nrcpus avail : 2
- # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
- # cpuid : GenuineIntel,6,38,1
- # total memory : 1017184 kB
- # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
- # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
- = 0, id = { 5, 6 }
- # HEADER_CPU_TOPOLOGY info available, use -I to display
- # ========
- #
- matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460)
- matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460)
- pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460)
- pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460)
- matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460)
- gthumb 1300 [001] 34217.697451: do_fork: (c1028460)
- gthumb 1300 [001] 34219.085734: do_fork: (c1028460)
- gthumb 1300 [000] 34219.121351: do_fork: (c1028460)
- gthumb 1300 [001] 34219.264551: do_fork: (c1028460)
- pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460)
- matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460)
- matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460)
- matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460)
- matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460)
- matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460)
- gaku 1312 [000] 34237.202388: do_fork: (c1028460)
- </literallayout>
- And using 'perf report' on the same file, we can see the
- callgraphs from starting a few programs during those 30 seconds:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-probe-do_fork-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> The trace events subsystem accommodate static
- and dynamic tracepoints in exactly the same way - there's no
- difference as far as the infrastructure is concerned. See the
- ftrace section for more details on the trace event subsystem.
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Dynamic tracepoints are implemented under the
- covers by kprobes and uprobes. kprobes and uprobes are also used
- by and in fact are the main focus of SystemTap.
- </informalexample>
- </section>
- </section>
-
- <section id='perf-documentation'>
- <title>Documentation</title>
-
- <para>
- Online versions of the man pages for the commands discussed in this
- section can be found here:
- <itemizedlist>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-stat'>'perf stat' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-record'>'perf record' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-report'>'perf report' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-probe'>'perf probe' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-script'>'perf script' manpage</ulink>.
- </para></listitem>
- <listitem><para>Documentation on using the
- <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
- </para></listitem>
- <listitem><para>The top-level
- <ulink url='http://linux.die.net/man/1/perf'>perf(1) manpage</ulink>.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- Normally, you should be able to invoke the man pages via perf
- itself e.g. 'perf help' or 'perf help record'.
- </para>
-
- <para>
- However, by default Yocto doesn't install man pages, but perf
- invokes the man pages for most help functionality. This is a bug
- and is being addressed by a Yocto bug:
- <ulink url='https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388'>Bug 3388 - perf: enable man pages for basic 'help' functionality</ulink>.
- </para>
-
- <para>
- The man pages in text form, along with some other files, such as
- a set of examples, can be found in the 'perf' directory of the
- kernel tree:
- <literallayout class='monospaced'>
- tools/perf/Documentation
- </literallayout>
- There's also a nice perf tutorial on the perf wiki that goes
- into more detail than we do here in certain areas:
- <ulink url='https://perf.wiki.kernel.org/index.php/Tutorial'>Perf Tutorial</ulink>
- </para>
- </section>
-</section>
-
-<section id='profile-manual-ftrace'>
- <title>ftrace</title>
-
- <para>
- 'ftrace' literally refers to the 'ftrace function tracer' but in
- reality this encompasses a number of related tracers along with
- the infrastructure that they all make use of.
- </para>
-
- <section id='ftrace-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the basic
- setup outlined in the General Setup section.
- </para>
-
- <para>
- ftrace, trace-cmd, and kernelshark run on the target system,
- and are ready to go out-of-the-box - no additional setup is
- necessary. For the rest of this section we assume you've ssh'ed
- to the host and will be running ftrace on the target. kernelshark
- is a GUI application and if you use the '-X' option to ssh you
- can have the kernelshark GUI run on the target but display
- remotely on the host if you want.
- </para>
- </section>
-
- <section id='basic-ftrace-usage'>
- <title>Basic ftrace usage</title>
-
- <para>
- 'ftrace' essentially refers to everything included in
- the /tracing directory of the mounted debugfs filesystem
- (Yocto follows the standard convention and mounts it
- at /sys/kernel/debug). Here's a listing of all the files
- found in /sys/kernel/debug/tracing on a Yocto system:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# ls
- README kprobe_events trace
- available_events kprobe_profile trace_clock
- available_filter_functions options trace_marker
- available_tracers per_cpu trace_options
- buffer_size_kb printk_formats trace_pipe
- buffer_total_size_kb saved_cmdlines tracing_cpumask
- current_tracer set_event tracing_enabled
- dyn_ftrace_total_info set_ftrace_filter tracing_on
- enabled_functions set_ftrace_notrace tracing_thresh
- events set_ftrace_pid
- free_buffer set_graph_function
- </literallayout>
- The files listed above are used for various purposes -
- some relate directly to the tracers themselves, others are
- used to set tracing options, and yet others actually contain
- the tracing output when a tracer is in effect. Some of the
- functions can be guessed from their names, others need
- explanation; in any case, we'll cover some of the files we
- see here below but for an explanation of the others, please
- see the ftrace documentation.
- </para>
-
- <para>
- We'll start by looking at some of the available built-in
- tracers.
- </para>
-
- <para>
- cat'ing the 'available_tracers' file lists the set of
- available tracers:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
- blk function_graph function nop
- </literallayout>
- The 'current_tracer' file contains the tracer currently in
- effect:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
- nop
- </literallayout>
- The above listing of current_tracer shows that
- the 'nop' tracer is in effect, which is just another
- way of saying that there's actually no tracer
- currently in effect.
- </para>
-
- <para>
- echo'ing one of the available_tracers into current_tracer
- makes the specified tracer the current tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
- function
- </literallayout>
- The above sets the current tracer to be the
- 'function tracer'. This tracer traces every function
- call in the kernel and makes it available as the
- contents of the 'trace' file. Reading the 'trace' file
- lists the currently buffered function calls that have been
- traced by the function tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
-
- # tracer: function
- #
- # entries-in-buffer/entries-written: 310629/766471 #P:8
- #
- # _-----=&gt; irqs-off
- # / _----=&gt; need-resched
- # | / _---=&gt; hardirq/softirq
- # || / _--=&gt; preempt-depth
- # ||| / delay
- # TASK-PID CPU# |||| TIMESTAMP FUNCTION
- # | | | |||| | |
- &lt;idle&gt;-0 [004] d..1 470.867169: ktime_get_real &lt;-intel_idle
- &lt;idle&gt;-0 [004] d..1 470.867170: getnstimeofday &lt;-ktime_get_real
- &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timeval &lt;-intel_idle
- &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timespec &lt;-ns_to_timeval
- &lt;idle&gt;-0 [004] d..1 470.867172: smp_apic_timer_interrupt &lt;-apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: native_apic_mem_write &lt;-smp_apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: irq_enter &lt;-smp_apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: rcu_irq_enter &lt;-irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 &lt;-rcu_irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: local_bh_disable &lt;-irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: add_preempt_count &lt;-local_bh_disable
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_idle &lt;-irq_enter
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867174: ktime_get &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_nohz_stop_idle &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: update_ts_time_stats &lt;-tick_nohz_stop_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: nr_iowait_cpu &lt;-update_ts_time_stats
- &lt;idle&gt;-0 [004] d.s1 470.867175: tick_do_update_jiffies64 &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: _raw_spin_lock &lt;-tick_do_update_jiffies64
- &lt;idle&gt;-0 [004] d.s1 470.867176: add_preempt_count &lt;-_raw_spin_lock
- &lt;idle&gt;-0 [004] d.s2 470.867176: do_timer &lt;-tick_do_update_jiffies64
- &lt;idle&gt;-0 [004] d.s2 470.867176: _raw_spin_lock &lt;-do_timer
- &lt;idle&gt;-0 [004] d.s2 470.867176: add_preempt_count &lt;-_raw_spin_lock
- &lt;idle&gt;-0 [004] d.s3 470.867177: ntp_tick_length &lt;-do_timer
- &lt;idle&gt;-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave &lt;-ntp_tick_length
- .
- .
- .
- </literallayout>
- Each line in the trace above shows what was happening in
- the kernel on a given cpu, to the level of detail of
- function calls. Each entry shows the function called,
- followed by its caller (after the arrow).
- </para>
-
- <para>
- The function tracer gives you an extremely detailed idea
- of what the kernel was doing at the point in time the trace
- was taken, and is a great way to learn about how the kernel
- code works in a dynamic sense.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> The ftrace function tracer is also
- available from within perf, as the ftrace:function tracepoint.
- </informalexample>
-
- <para>
- It is a little more difficult to follow the call chains than
- it needs to be - luckily there's a variant of the function
- tracer that displays the callchains explicitly, called the
- 'function_graph' tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo function_graph &gt; current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
-
- tracer: function_graph
-
- CPU DURATION FUNCTION CALLS
- | | | | | | |
- 7) 0.046 us | pick_next_task_fair();
- 7) 0.043 us | pick_next_task_stop();
- 7) 0.042 us | pick_next_task_rt();
- 7) 0.032 us | pick_next_task_fair();
- 7) 0.030 us | pick_next_task_idle();
- 7) | _raw_spin_unlock_irq() {
- 7) 0.033 us | sub_preempt_count();
- 7) 0.258 us | }
- 7) 0.032 us | sub_preempt_count();
- 7) + 13.341 us | } /* __schedule */
- 7) 0.095 us | } /* sub_preempt_count */
- 7) | schedule() {
- 7) | __schedule() {
- 7) 0.060 us | add_preempt_count();
- 7) 0.044 us | rcu_note_context_switch();
- 7) | _raw_spin_lock_irq() {
- 7) 0.033 us | add_preempt_count();
- 7) 0.247 us | }
- 7) | idle_balance() {
- 7) | _raw_spin_unlock() {
- 7) 0.031 us | sub_preempt_count();
- 7) 0.246 us | }
- 7) | update_shares() {
- 7) 0.030 us | __rcu_read_lock();
- 7) 0.029 us | __rcu_read_unlock();
- 7) 0.484 us | }
- 7) 0.030 us | __rcu_read_lock();
- 7) | load_balance() {
- 7) | find_busiest_group() {
- 7) 0.031 us | idle_cpu();
- 7) 0.029 us | idle_cpu();
- 7) 0.035 us | idle_cpu();
- 7) 0.906 us | }
- 7) 1.141 us | }
- 7) 0.022 us | msecs_to_jiffies();
- 7) | load_balance() {
- 7) | find_busiest_group() {
- 7) 0.031 us | idle_cpu();
- .
- .
- .
- 4) 0.062 us | msecs_to_jiffies();
- 4) 0.062 us | __rcu_read_unlock();
- 4) | _raw_spin_lock() {
- 4) 0.073 us | add_preempt_count();
- 4) 0.562 us | }
- 4) + 17.452 us | }
- 4) 0.108 us | put_prev_task_fair();
- 4) 0.102 us | pick_next_task_fair();
- 4) 0.084 us | pick_next_task_stop();
- 4) 0.075 us | pick_next_task_rt();
- 4) 0.062 us | pick_next_task_fair();
- 4) 0.066 us | pick_next_task_idle();
- ------------------------------------------
- 4) kworker-74 =&gt; &lt;idle&gt;-0
- ------------------------------------------
-
- 4) | finish_task_switch() {
- 4) | _raw_spin_unlock_irq() {
- 4) 0.100 us | sub_preempt_count();
- 4) 0.582 us | }
- 4) 1.105 us | }
- 4) 0.088 us | sub_preempt_count();
- 4) ! 100.066 us | }
- .
- .
- .
- 3) | sys_ioctl() {
- 3) 0.083 us | fget_light();
- 3) | security_file_ioctl() {
- 3) 0.066 us | cap_file_ioctl();
- 3) 0.562 us | }
- 3) | do_vfs_ioctl() {
- 3) | drm_ioctl() {
- 3) 0.075 us | drm_ut_debug_printk();
- 3) | i915_gem_pwrite_ioctl() {
- 3) | i915_mutex_lock_interruptible() {
- 3) 0.070 us | mutex_lock_interruptible();
- 3) 0.570 us | }
- 3) | drm_gem_object_lookup() {
- 3) | _raw_spin_lock() {
- 3) 0.080 us | add_preempt_count();
- 3) 0.620 us | }
- 3) | _raw_spin_unlock() {
- 3) 0.085 us | sub_preempt_count();
- 3) 0.562 us | }
- 3) 2.149 us | }
- 3) 0.133 us | i915_gem_object_pin();
- 3) | i915_gem_object_set_to_gtt_domain() {
- 3) 0.065 us | i915_gem_object_flush_gpu_write_domain();
- 3) 0.065 us | i915_gem_object_wait_rendering();
- 3) 0.062 us | i915_gem_object_flush_cpu_write_domain();
- 3) 1.612 us | }
- 3) | i915_gem_object_put_fence() {
- 3) 0.097 us | i915_gem_object_flush_fence.constprop.36();
- 3) 0.645 us | }
- 3) 0.070 us | add_preempt_count();
- 3) 0.070 us | sub_preempt_count();
- 3) 0.073 us | i915_gem_object_unpin();
- 3) 0.068 us | mutex_unlock();
- 3) 9.924 us | }
- 3) + 11.236 us | }
- 3) + 11.770 us | }
- 3) + 13.784 us | }
- 3) | sys_ioctl() {
- </literallayout>
- As you can see, the function_graph display is much easier to
- follow. Also note that in addition to the function calls and
- associated braces, other events such as scheduler events
- are displayed in context. In fact, you can freely include
- any tracepoint available in the trace events subsystem described
- in the next section by simply enabling those events, and they'll
- appear in context in the function graph display. Quite a
- powerful tool for understanding kernel dynamics.
- </para>
-
- <para>
- Also notice that there are various annotations on the left
- hand side of the display. For example if the total time it
- took for a given function to execute is above a certain
- threshold, an exclamation point or plus sign appears on the
- left hand side. Please see the ftrace documentation for
- details on all these fields.
- </para>
- </section>
-
- <section id='the-trace-events-subsystem'>
- <title>The 'trace events' Subsystem</title>
-
- <para>
- One especially important directory contained within
- the /sys/kernel/debug/tracing directory is the 'events'
- subdirectory, which contains representations of every
- tracepoint in the system. Listing out the contents of
- the 'events' subdirectory, we see mainly another set of
- subdirectories:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cd events
- root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
- drwxr-xr-x 38 root root 0 Nov 14 23:19 .
- drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
- drwxr-xr-x 19 root root 0 Nov 14 23:19 block
- drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
- drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
- drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
- drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
- drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
- -r--r--r-- 1 root root 0 Nov 14 23:19 header_event
- -r--r--r-- 1 root root 0 Nov 14 23:19 header_page
- drwxr-xr-x 25 root root 0 Nov 14 23:19 i915
- drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
- drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
- drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
- drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
- drwxr-xr-x 7 root root 0 Nov 14 23:19 module
- drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
- drwxr-xr-x 6 root root 0 Nov 14 23:19 net
- drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
- drwxr-xr-x 12 root root 0 Nov 14 23:19 power
- drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
- drwxr-xr-x 8 root root 0 Nov 14 23:19 random
- drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
- drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
- drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
- drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
- drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
- drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
- drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
- drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
- drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
- drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
- drwxr-xr-x 4 root root 0 Nov 14 23:19 task
- drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
- drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
- drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
- drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
- drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
- drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback
- </literallayout>
- Each one of these subdirectories corresponds to a
- 'subsystem' and contains yet again more subdirectories,
- each one of those finally corresponding to a tracepoint.
- For example, here are the contents of the 'kmem' subsystem:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
- drwxr-xr-x 14 root root 0 Nov 14 23:19 .
- drwxr-xr-x 38 root root 0 Nov 14 23:19 ..
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain
- </literallayout>
- Let's see what's inside the subdirectory for a specific
- tracepoint, in this case the one for kmalloc:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
- drwxr-xr-x 2 root root 0 Nov 14 23:19 .
- drwxr-xr-x 14 root root 0 Nov 14 23:19 ..
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
- -r--r--r-- 1 root root 0 Nov 14 23:19 format
- -r--r--r-- 1 root root 0 Nov 14 23:19 id
- </literallayout>
- The 'format' file for the tracepoint describes the event
- in memory, which is used by the various tracing tools
- that now make use of these tracepoint to parse the event
- and make sense of it, along with a 'print fmt' field that
- allows tools like ftrace to display the event as text.
- Here's what the format of the kmalloc event looks like:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
- name: kmalloc
- ID: 313
- format:
- field:unsigned short common_type; offset:0; size:2; signed:0;
- field:unsigned char common_flags; offset:2; size:1; signed:0;
- field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
- field:int common_pid; offset:4; size:4; signed:1;
- field:int common_padding; offset:8; size:4; signed:1;
-
- field:unsigned long call_site; offset:16; size:8; signed:0;
- field:const void * ptr; offset:24; size:8; signed:0;
- field:size_t bytes_req; offset:32; size:8; signed:0;
- field:size_t bytes_alloc; offset:40; size:8; signed:0;
- field:gfp_t gfp_flags; offset:48; size:4; signed:0;
-
- print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
- (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
- gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
- gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
- {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
- "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
- gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
- gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
- long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
- {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
- "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
- long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
- {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
- </literallayout>
- The 'enable' file in the tracepoint directory is what allows
- the user (or tools such as trace-cmd) to actually turn the
- tracepoint on and off. When enabled, the corresponding
- tracepoint will start appearing in the ftrace 'trace'
- file described previously. For example, this turns on the
- kmalloc tracepoint:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
- </literallayout>
- At the moment, we're not interested in the function tracer or
- some other tracer that might be in effect, so we first turn
- it off, but if we do that, we still need to turn tracing on in
- order to see the events in the output buffer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
- </literallayout>
- Now, if we look at the the 'trace' file, we see nothing
- but the kmalloc events we just turned on:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
- # tracer: nop
- #
- # entries-in-buffer/entries-written: 1897/1897 #P:8
- #
- # _-----=&gt; irqs-off
- # / _----=&gt; need-resched
- # | / _---=&gt; hardirq/softirq
- # || / _--=&gt; preempt-depth
- # ||| / delay
- # TASK-PID CPU# |||| TIMESTAMP FUNCTION
- # | | | |||| | |
- dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- &lt;idle&gt;-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- &lt;idle&gt;-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
- </literallayout>
- To again disable the kmalloc event, we need to send 0 to the
- enable file:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
- </literallayout>
- You can enable any number of events or complete subsystems
- (by using the 'enable' file in the subsystem directory) and
- get an arbitrarily fine-grained idea of what's going on in the
- system by enabling as many of the appropriate tracepoints
- as applicable.
- </para>
-
- <para>
- A number of the tools described in this HOWTO do just that,
- including trace-cmd and kernelshark in the next section.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These tracepoints and their representation
- are used not only by ftrace, but by many of the other tools
- covered in this document and they form a central point of
- integration for the various tracers available in Linux.
- They form a central part of the instrumentation for the
- following tools: perf, lttng, ftrace, blktrace and SystemTap
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Eventually all the special-purpose tracers
- currently available in /sys/kernel/debug/tracing will be
- removed and replaced with equivalent tracers based on the
- 'trace events' subsystem.
- </informalexample>
- </section>
-
- <section id='trace-cmd-kernelshark'>
- <title>trace-cmd/kernelshark</title>
-
- <para>
- trace-cmd is essentially an extensive command-line 'wrapper'
- interface that hides the details of all the individual files
- in /sys/kernel/debug/tracing, allowing users to specify
- specific particular events within the
- /sys/kernel/debug/tracing/events/ subdirectory and to collect
- traces and avoid having to deal with those details directly.
- </para>
-
- <para>
- As yet another layer on top of that, kernelshark provides a GUI
- that allows users to start and stop traces and specify sets
- of events using an intuitive interface, and view the
- output as both trace events and as a per-CPU graphical
- display. It directly uses 'trace-cmd' as the plumbing
- that accomplishes all that underneath the covers (and
- actually displays the trace-cmd command it uses, as we'll see).
- </para>
-
- <para>
- To start a trace using kernelshark, first start kernelshark:
- <literallayout class='monospaced'>
- root@sugarbay:~# kernelshark
- </literallayout>
- Then bring up the 'Capture' dialog by choosing from the
- kernelshark menu:
- <literallayout class='monospaced'>
- Capture | Record
- </literallayout>
- That will display the following dialog, which allows you to
- choose one or more events (or even one or more complete
- subsystems) to trace:
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-choose-events.png" width="6in" depth="6in" align="center" scalefit="1" />
- </para>
-
- <para>
- Note that these are exactly the same sets of events described
- in the previous trace events subsystem section, and in fact
- is where trace-cmd gets them for kernelshark.
- </para>
-
- <para>
- In the above screenshot, we've decided to explore the
- graphics subsystem a bit and so have chosen to trace all
- the tracepoints contained within the 'i915' and 'drm'
- subsystems.
- </para>
-
- <para>
- After doing that, we can start and stop the trace using
- the 'Run' and 'Stop' button on the lower right corner of
- the dialog (the same button will turn into the 'Stop'
- button after the trace has started):
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-output-display.png" width="6in" depth="6in" align="center" scalefit="1" />
- </para>
-
- <para>
- Notice that the right-hand pane shows the exact trace-cmd
- command-line that's used to run the trace, along with the
- results of the trace-cmd run.
- </para>
-
- <para>
- Once the 'Stop' button is pressed, the graphical view magically
- fills up with a colorful per-cpu display of the trace data,
- along with the detailed event listing below that:
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-i915-display.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Here's another example, this time a display resulting
- from tracing 'all events':
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-all.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The tool is pretty self-explanatory, but for more detailed
- information on navigating through the data, see the
- <ulink url='http://rostedt.homelinux.com/kernelshark/'>kernelshark website</ulink>.
- </para>
- </section>
-
- <section id='ftrace-documentation'>
- <title>Documentation</title>
-
- <para>
- The documentation for ftrace can be found in the kernel
- Documentation directory:
- <literallayout class='monospaced'>
- Documentation/trace/ftrace.txt
- </literallayout>
- The documentation for the trace event subsystem can also
- be found in the kernel Documentation directory:
- <literallayout class='monospaced'>
- Documentation/trace/events.txt
- </literallayout>
- There is a nice series of articles on using
- ftrace and trace-cmd at LWN:
- <itemizedlist>
- <listitem><para><ulink url='http://lwn.net/Articles/365835/'>Debugging the kernel using Ftrace - part 1</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://lwn.net/Articles/366796/'>Debugging the kernel using Ftrace - part 2</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://lwn.net/Articles/370423/'>Secrets of the Ftrace function tracer</ulink>
- </para></listitem>
- <listitem><para><ulink url='https://lwn.net/Articles/410200/'>trace-cmd: A front-end for Ftrace</ulink>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- There's more detailed documentation kernelshark usage here:
- <ulink url='http://rostedt.homelinux.com/kernelshark/'>KernelShark</ulink>
- </para>
-
- <para>
- An amusing yet useful README (a tracing mini-HOWTO) can be
- found in /sys/kernel/debug/tracing/README.
- </para>
- </section>
-</section>
-
-<section id='profile-manual-systemtap'>
- <title>systemtap</title>
-
- <para>
- SystemTap is a system-wide script-based tracing and profiling tool.
- </para>
-
- <para>
- SystemTap scripts are C-like programs that are executed in the
- kernel to gather/print/aggregate data extracted from the context
- they end up being invoked under.
- </para>
-
- <para>
- For example, this probe from the
- <ulink url='http://sourceware.org/systemtap/tutorial/'>SystemTap tutorial</ulink>
- simply prints a line every time any process on the system open()s
- a file. For each line, it prints the executable name of the
- program that opened the file, along with its PID, and the name
- of the file it opened (or tried to open), which it extracts
- from the open syscall's argstr.
- <literallayout class='monospaced'>
- probe syscall.open
- {
- printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
- }
-
- probe timer.ms(4000) # after 4 seconds
- {
- exit ()
- }
- </literallayout>
- Normally, to execute this probe, you'd simply install
- systemtap on the system you want to probe, and directly run
- the probe on that system e.g. assuming the name of the file
- containing the above text is trace_open.stp:
- <literallayout class='monospaced'>
- # stap trace_open.stp
- </literallayout>
- What systemtap does under the covers to run this probe is 1)
- parse and convert the probe to an equivalent 'C' form, 2)
- compile the 'C' form into a kernel module, 3) insert the
- module into the kernel, which arms it, and 4) collect the data
- generated by the probe and display it to the user.
- </para>
-
- <para>
- In order to accomplish steps 1 and 2, the 'stap' program needs
- access to the kernel build system that produced the kernel
- that the probed system is running. In the case of a typical
- embedded system (the 'target'), the kernel build system
- unfortunately isn't typically part of the image running on
- the target. It is normally available on the 'host' system
- that produced the target image however; in such cases,
- steps 1 and 2 are executed on the host system, and steps
- 3 and 4 are executed on the target system, using only the
- systemtap 'runtime'.
- </para>
-
- <para>
- The systemtap support in Yocto assumes that only steps
- 3 and 4 are run on the target; it is possible to do
- everything on the target, but this section assumes only
- the typical embedded use-case.
- </para>
-
- <para>
- So basically what you need to do in order to run a systemtap
- script on the target is to 1) on the host system, compile the
- probe into a kernel module that makes sense to the target, 2)
- copy the module onto the target system and 3) insert the
- module into the target kernel, which arms it, and 4) collect
- the data generated by the probe and display it to the user.
- </para>
-
- <section id='systemtap-setup'>
- <title>Setup</title>
-
- <para>
- Those are a lot of steps and a lot of details, but
- fortunately Yocto includes a script called 'crosstap'
- that will take care of those details, allowing you to
- simply execute a systemtap script on the remote target,
- with arguments if necessary.
- </para>
-
- <para>
- In order to do this from a remote host, however, you
- need to have access to the build for the image you
- booted. The 'crosstap' script provides details on how
- to do this if you run the script on the host without having
- done a build:
- <note>
- SystemTap, which uses 'crosstap', assumes you can establish an
- ssh connection to the remote target.
- Please refer to the crosstap wiki page for details on verifying
- ssh connections at
- <ulink url='https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap'></ulink>.
- Also, the ability to ssh into the target system is not enabled
- by default in *-minimal images.
- </note>
- <literallayout class='monospaced'>
- $ crosstap root@192.168.1.88 trace_open.stp
-
- Error: No target kernel build found.
- Did you forget to create a local build of your image?
-
- 'crosstap' requires a local sdk build of the target system
- (or a build that includes 'tools-profile') in order to build
- kernel modules that can probe the target system.
-
- Practically speaking, that means you need to do the following:
- - If you're running a pre-built image, download the release
- and/or BSP tarballs used to build the image.
- - If you're working from git sources, just clone the metadata
- and BSP layers needed to build the image you'll be booting.
- - Make sure you're properly set up to build a new image (see
- the BSP README and/or the widely available basic documentation
- that discusses how to build images).
- - Build an -sdk version of the image e.g.:
- $ bitbake core-image-sato-sdk
- OR
- - Build a non-sdk image but include the profiling tools:
- [ edit local.conf and add 'tools-profile' to the end of
- the EXTRA_IMAGE_FEATURES variable ]
- $ bitbake core-image-sato
-
- Once you've build the image on the host system, you're ready to
- boot it (or the equivalent pre-built image) and use 'crosstap'
- to probe it (you need to source the environment as usual first):
-
- $ source oe-init-build-env
- $ cd ~/my/systemtap/scripts
- $ crosstap root@192.168.1.xxx myscript.stp
- </literallayout>
- So essentially what you need to do is build an SDK image or
- image with 'tools-profile' as detailed in the
- "<link linkend='profile-manual-general-setup'>General Setup</link>"
- section of this manual, and boot the resulting target image.
- </para>
-
- <note>
- If you have a build directory containing multiple machines,
- you need to have the MACHINE you're connecting to selected
- in local.conf, and the kernel in that machine's build
- directory must match the kernel on the booted system exactly,
- or you'll get the above 'crosstap' message when you try to
- invoke a script.
- </note>
- </section>
-
- <section id='running-a-script-on-a-target'>
- <title>Running a Script on a Target</title>
-
- <para>
- Once you've done that, you should be able to run a systemtap
- script on the target:
- <literallayout class='monospaced'>
- $ cd /path/to/yocto
- $ source oe-init-build-env
-
- ### Shell environment set up for builds. ###
-
- You can now run 'bitbake &lt;target&gt;'
-
- Common targets are:
- core-image-minimal
- core-image-sato
- meta-toolchain
- meta-ide-support
-
- You can also run generated qemu images with a command like 'runqemu qemux86-64'
-
- </literallayout>
- Once you've done that, you can cd to whatever directory
- contains your scripts and use 'crosstap' to run the script:
- <literallayout class='monospaced'>
- $ cd /path/to/my/systemap/script
- $ crosstap root@192.168.7.2 trace_open.stp
- </literallayout>
- If you get an error connecting to the target e.g.:
- <literallayout class='monospaced'>
- $ crosstap root@192.168.7.2 trace_open.stp
- error establishing ssh connection on remote 'root@192.168.7.2'
- </literallayout>
- Try ssh'ing to the target and see what happens:
- <literallayout class='monospaced'>
- $ ssh root@192.168.7.2
- </literallayout>
- A lot of the time, connection problems are due specifying a
- wrong IP address or having a 'host key verification error'.
- </para>
-
- <para>
- If everything worked as planned, you should see something
- like this (enter the password when prompted, or press enter
- if it's set up to use no password):
- <literallayout class='monospaced'>
- $ crosstap root@192.168.7.2 trace_open.stp
- root@192.168.7.2's password:
- matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
- matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
- </literallayout>
- </para>
- </section>
-
- <section id='systemtap-documentation'>
- <title>Documentation</title>
-
- <para>
- The SystemTap language reference can be found here:
- <ulink url='http://sourceware.org/systemtap/langref/'>SystemTap Language Reference</ulink>
- </para>
-
- <para>
- Links to other SystemTap documents, tutorials, and examples can be
- found here:
- <ulink url='http://sourceware.org/systemtap/documentation.html'>SystemTap documentation page</ulink>
- </para>
- </section>
-</section>
-
-<section id='profile-manual-sysprof'>
- <title>Sysprof</title>
-
- <para>
- Sysprof is a very easy to use system-wide profiler that consists
- of a single window with three panes and a few buttons which allow
- you to start, stop, and view the profile from one place.
- </para>
-
- <section id='sysprof-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the General Setup section.
- </para>
-
- <para>
- Sysprof is a GUI-based application that runs on the target
- system. For the rest of this document we assume you've
- ssh'ed to the host and will be running Sysprof on the
- target (you can use the '-X' option to ssh and have the
- Sysprof GUI run on the target but display remotely on the
- host if you want).
- </para>
- </section>
-
- <section id='sysprof-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- To start profiling the system, you simply press the 'Start'
- button. To stop profiling and to start viewing the profile data
- in one easy step, press the 'Profile' button.
- </para>
-
- <para>
- Once you've pressed the profile button, the three panes will
- fill up with profiling data:
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-copy-to-user.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- The left pane shows a list of functions and processes.
- Selecting one of those expands that function in the right
- pane, showing all its callees. Note that this caller-oriented
- display is essentially the inverse of perf's default
- callee-oriented callchain display.
- </para>
-
- <para>
- In the screenshot above, we're focusing on __copy_to_user_ll()
- and looking up the callchain we can see that one of the callers
- of __copy_to_user_ll is sys_read() and the complete callpath
- between them. Notice that this is essentially a portion of the
- same information we saw in the perf display shown in the perf
- section of this page.
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-copy-from-user.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- Similarly, the above is a snapshot of the Sysprof display of a
- copy-from-user callchain.
- </para>
-
- <para>
- Finally, looking at the third Sysprof pane in the lower left,
- we can see a list of all the callers of a particular function
- selected in the top left pane. In this case, the lower pane is
- showing all the callers of __mark_inode_dirty:
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-callers.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- Double-clicking on one of those functions will in turn change the
- focus to the selected function, and so on.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> If you like sysprof's 'caller-oriented'
- display, you may be able to approximate it in other tools as
- well. For example, 'perf report' has the -g (--call-graph)
- option that you can experiment with; one of the options is
- 'caller' for an inverted caller-based callgraph display.
- </informalexample>
- </section>
-
- <section id='sysprof-documentation'>
- <title>Documentation</title>
-
- <para>
- There doesn't seem to be any documentation for Sysprof, but
- maybe that's because it's pretty self-explanatory.
- The Sysprof website, however, is here:
- <ulink url='http://sysprof.com/'>Sysprof, System-wide Performance Profiler for Linux</ulink>
- </para>
- </section>
-</section>
-
-<section id='lttng-linux-trace-toolkit-next-generation'>
- <title>LTTng (Linux Trace Toolkit, next generation)</title>
-
- <section id='lttng-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the General Setup section.
- LTTng is run on the target system by ssh'ing to it.
- </para>
- </section>
-
- <section id='collecting-and-viewing-traces'>
- <title>Collecting and Viewing Traces</title>
-
- <para>
- Once you've applied the above commits and built and booted your
- image (you need to build the core-image-sato-sdk image or use one of the
- other methods described in the General Setup section), you're
- ready to start tracing.
- </para>
-
- <section id='collecting-and-viewing-a-trace-on-the-target-inside-a-shell'>
- <title>Collecting and viewing a trace on the target (inside a shell)</title>
-
- <para>
- First, from the host, ssh to the target:
- <literallayout class='monospaced'>
- $ ssh -l root 192.168.1.47
- The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
- RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
- Are you sure you want to continue connecting (yes/no)? yes
- Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
- root@192.168.1.47's password:
- </literallayout>
- Once on the target, use these steps to create a trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng create
- Spawning a session daemon
- Session auto-20121015-232120 created.
- Traces will be written in /home/root/lttng-traces/auto-20121015-232120
- </literallayout>
- Enable the events you want to trace (in this case all
- kernel events):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng enable-event --kernel --all
- All kernel events are enabled in channel channel0
- </literallayout>
- Start the trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng start
- Tracing started for session auto-20121015-232120
- </literallayout>
- And then stop the trace after awhile or after running
- a particular workload that you want to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng stop
- Tracing stopped for session auto-20121015-232120
- </literallayout>
- You can now view the trace in text form on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng view
- [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
- [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
- [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
- [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
- [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
- [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
- [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
- [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
- [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
- [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
- [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
- [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
- [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
- [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
- [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
- [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
- [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
- [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
- [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
- [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
- [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
- [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
- [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
- [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
- [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
- [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
- [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
- [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
- [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
- [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
- [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
- [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
- [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
- [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
- [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
- [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
- [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
- .
- .
- .
- </literallayout>
- You can now safely destroy the trace session (note that
- this doesn't delete the trace - it's still there
- in ~/lttng-traces):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng destroy
- Session auto-20121015-232120 destroyed at /home/root
- </literallayout>
- Note that the trace is saved in a directory of the same
- name as returned by 'lttng create', under the ~/lttng-traces
- directory (note that you can change this by supplying your
- own name to 'lttng create'):
- <literallayout class='monospaced'>
- root@crownbay:~# ls -al ~/lttng-traces
- drwxrwx--- 3 root root 1024 Oct 15 23:21 .
- drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
- drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120
- </literallayout>
- </para>
- </section>
-
- <section id='collecting-and-viewing-a-userspace-trace-on-the-target-inside-a-shell'>
- <title>Collecting and viewing a userspace trace on the target (inside a shell)</title>
-
- <para>
- For LTTng userspace tracing, you need to have a properly
- instrumented userspace program. For this example, we'll use
- the 'hello' test program generated by the lttng-ust build.
- </para>
-
- <para>
- The 'hello' test program isn't installed on the rootfs by
- the lttng-ust build, so we need to copy it over manually.
- First cd into the build directory that contains the hello
- executable:
- <literallayout class='monospaced'>
- $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
- </literallayout>
- Copy that over to the target machine:
- <literallayout class='monospaced'>
- $ scp hello root@192.168.1.20:
- </literallayout>
- You now have the instrumented lttng 'hello world' test
- program on the target, ready to test.
- </para>
-
- <para>
- First, from the host, ssh to the target:
- <literallayout class='monospaced'>
- $ ssh -l root 192.168.1.47
- The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
- RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
- Are you sure you want to continue connecting (yes/no)? yes
- Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
- root@192.168.1.47's password:
- </literallayout>
- Once on the target, use these steps to create a trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng create
- Session auto-20190303-021943 created.
- Traces will be written in /home/root/lttng-traces/auto-20190303-021943
- </literallayout>
- Enable the events you want to trace (in this case all
- userspace events):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng enable-event --userspace --all
- All UST events are enabled in channel channel0
- </literallayout>
- Start the trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng start
- Tracing started for session auto-20190303-021943
- </literallayout>
- Run the instrumented hello world program:
- <literallayout class='monospaced'>
- root@crownbay:~# ./hello
- Hello, World!
- Tracing... done.
- </literallayout>
- And then stop the trace after awhile or after running a
- particular workload that you want to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng stop
- Tracing stopped for session auto-20190303-021943
- </literallayout>
- You can now view the trace in text form on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng view
- [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- .
- .
- .
- </literallayout>
- You can now safely destroy the trace session (note that
- this doesn't delete the trace - it's still
- there in ~/lttng-traces):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng destroy
- Session auto-20190303-021943 destroyed at /home/root
- </literallayout>
- </para>
- </section>
-
- </section>
-
- <section id='lltng-documentation'>
- <title>Documentation</title>
-
- <para>
- You can find the primary LTTng Documentation on the
- <ulink url='https://lttng.org/docs/'>LTTng Documentation</ulink>
- site.
- The documentation on this site is appropriate for intermediate to
- advanced software developers who are working in a Linux environment
- and are interested in efficient software tracing.
- </para>
-
- <para>
- For information on LTTng in general, visit the
- <ulink url='http://lttng.org/lttng2.0'>LTTng Project</ulink>
- site.
- You can find a "Getting Started" link on this site that takes
- you to an LTTng Quick Start.
- </para>
- </section>
-</section>
-
-<section id='profile-manual-blktrace'>
- <title>blktrace</title>
-
- <para>
- blktrace is a tool for tracing and reporting low-level disk I/O.
- blktrace provides the tracing half of the equation; its output can
- be piped into the blkparse program, which renders the data in a
- human-readable form and does some basic analysis:
- </para>
-
- <section id='blktrace-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the
- "<link linkend='profile-manual-general-setup'>General Setup</link>"
- section.
- </para>
-
- <para>
- blktrace is an application that runs on the target system.
- You can run the entire blktrace and blkparse pipeline on the
- target, or you can run blktrace in 'listen' mode on the target
- and have blktrace and blkparse collect and analyze the data on
- the host (see the
- "<link linkend='using-blktrace-remotely'>Using blktrace Remotely</link>"
- section below).
- For the rest of this section we assume you've ssh'ed to the
- host and will be running blkrace on the target.
- </para>
- </section>
-
- <section id='blktrace-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- To record a trace, simply run the 'blktrace' command, giving it
- the name of the block device you want to trace activity on:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace /dev/sdc
- </literallayout>
- In another shell, execute a workload you want to trace.
- <literallayout class='monospaced'>
- root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- Press Ctrl-C in the blktrace shell to stop the trace. It will
- display how many events were logged, along with the per-cpu file
- sizes (blktrace records traces in per-cpu kernel buffers and
- simply dumps them to userspace for blkparse to merge and sort
- later).
- <literallayout class='monospaced'>
- ^C=== sdc ===
- CPU 0: 7082 events, 332 KiB data
- CPU 1: 1578 events, 74 KiB data
- Total: 8660 events (dropped 0), 406 KiB data
- </literallayout>
- If you examine the files saved to disk, you see multiple files,
- one per CPU and with the device name as the first part of the
- filename:
- <literallayout class='monospaced'>
- root@crownbay:~# ls -al
- drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
- drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
- -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
- -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1
- </literallayout>
- To view the trace events, simply invoke 'blkparse' in the
- directory containing the trace files, giving it the device name
- that forms the first part of the filenames:
- <literallayout class='monospaced'>
- root@crownbay:~# blkparse sdc
-
- 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]
- 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 0 0.000057270 0 m N cfq1225 insert_request
- 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr
- 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1
- 8,32 1 0 0.000088559 0 m N cfq workload slice:150
- 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1
- 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1
- 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null)
- 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert
- 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request
- 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1
- 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
- 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
- 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]
- 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
- 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
- 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
- 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]
- 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]
- 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]
- 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]
- 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]
- 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]
- 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]
- 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]
- 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]
- 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]
- 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]
- 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]
- 8,32 1 0 0.000483022 0 m N cfq1225 insert_request
- 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1
- 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1
- 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert
- 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request
- 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2
- .
- .
- .
- 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1
- 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]
- 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1
- 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0
- 8,32 0 0 58.516636933 0 m N cfq schedule dispatch
- 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0
- 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
- 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr
- 8,32 1 0 58.516990819 0 m N cfq3551 put_queue
-
- CPU0 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
- Read Merges: 0, 0KiB Write Merges: 13, 160KiB
- Read depth: 0 Write depth: 2
- IO unplugs: 23 Timer unplugs: 0
- CPU1 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
- Read Merges: 0, 0KiB Write Merges: 40, 276KiB
- Read depth: 0 Write depth: 2
- IO unplugs: 30 Timer unplugs: 1
-
- Total (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
- Read Merges: 0, 0KiB Write Merges: 53, 436KiB
- IO unplugs: 53 Timer unplugs: 1
-
- Throughput (R/W): 0KiB/s / 719KiB/s
- Events (sdc): 6,592 entries
- Skips: 0 forward (0 - 0.0%)
- Input file sdc.blktrace.0 added
- Input file sdc.blktrace.1 added
- </literallayout>
- The report shows each event that was found in the blktrace data,
- along with a summary of the overall block I/O traffic during
- the run. You can look at the
- <ulink url='http://linux.die.net/man/1/blkparse'>blkparse</ulink>
- manpage to learn the
- meaning of each field displayed in the trace listing.
- </para>
-
- <section id='blktrace-live-mode'>
- <title>Live Mode</title>
-
- <para>
- blktrace and blkparse are designed from the ground up to
- be able to operate together in a 'pipe mode' where the
- stdout of blktrace can be fed directly into the stdin of
- blkparse:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
- </literallayout>
- This enables long-lived tracing sessions to run without
- writing anything to disk, and allows the user to look for
- certain conditions in the trace data in 'real-time' by
- viewing the trace output as it scrolls by on the screen or
- by passing it along to yet another program in the pipeline
- such as grep which can be used to identify and capture
- conditions of interest.
- </para>
-
- <para>
- There's actually another blktrace command that implements
- the above pipeline as a single command, so the user doesn't
- have to bother typing in the above command sequence:
- <literallayout class='monospaced'>
- root@crownbay:~# btrace /dev/sdc
- </literallayout>
- </para>
- </section>
-
- <section id='using-blktrace-remotely'>
- <title>Using blktrace Remotely</title>
-
- <para>
- Because blktrace traces block I/O and at the same time
- normally writes its trace data to a block device, and
- in general because it's not really a great idea to make
- the device being traced the same as the device the tracer
- writes to, blktrace provides a way to trace without
- perturbing the traced device at all by providing native
- support for sending all trace data over the network.
- </para>
-
- <para>
- To have blktrace operate in this mode, start blktrace on
- the target system being traced with the -l option, along with
- the device to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace -l /dev/sdc
- server: waiting for connections...
- </literallayout>
- On the host system, use the -h option to connect to the
- target system, also passing it the device to trace:
- <literallayout class='monospaced'>
- $ blktrace -d /dev/sdc -h 192.168.1.43
- blktrace: connecting to 192.168.1.43
- blktrace: connected!
- </literallayout>
- On the target system, you should see this:
- <literallayout class='monospaced'>
- server: connection from 192.168.1.43
- </literallayout>
- In another shell, execute a workload you want to trace.
- <literallayout class='monospaced'>
- root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- When it's done, do a Ctrl-C on the host system to
- stop the trace:
- <literallayout class='monospaced'>
- ^C=== sdc ===
- CPU 0: 7691 events, 361 KiB data
- CPU 1: 4109 events, 193 KiB data
- Total: 11800 events (dropped 0), 554 KiB data
- </literallayout>
- On the target system, you should also see a trace
- summary for the trace just ended:
- <literallayout class='monospaced'>
- server: end of run for 192.168.1.43:sdc
- === sdc ===
- CPU 0: 7691 events, 361 KiB data
- CPU 1: 4109 events, 193 KiB data
- Total: 11800 events (dropped 0), 554 KiB data
- </literallayout>
- The blktrace instance on the host will save the target
- output inside a hostname-timestamp directory:
- <literallayout class='monospaced'>
- $ ls -al
- drwxr-xr-x 10 root root 1024 Oct 28 02:40 .
- drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
- drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
- </literallayout>
- cd into that directory to see the output files:
- <literallayout class='monospaced'>
- $ ls -l
- -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
- -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1
- </literallayout>
- And run blkparse on the host system using the device name:
- <literallayout class='monospaced'>
- $ blkparse sdc
-
- 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]
- 8,32 1 0 0.000036038 0 m N cfq1263 alloced
- 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls]
- 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls]
- 8,32 1 0 0.000056152 0 m N cfq1263 insert_request
- 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr
- 8,32 1 0 0.000075498 0 m N cfq workload slice:300
- .
- .
- .
- 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0
- 8,32 0 0 177.266388140 0 m N cfq schedule dispatch
- 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0
- 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
- 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr
- 8,32 1 0 177.266696560 0 m N cfq1267 put_queue
-
- CPU0 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
- Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
- Read Merges: 0, 0KiB Write Merges: 9, 344KiB
- Read depth: 2 Write depth: 2
- IO unplugs: 20 Timer unplugs: 1
- CPU1 (sdc):
- Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
- Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB
- Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB
- Read depth: 2 Write depth: 2
- IO unplugs: 52 Timer unplugs: 0
-
- Total (sdc):
- Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB
- Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB
- Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB
- IO unplugs: 72 Timer unplugs: 1
-
- Throughput (R/W): 15KiB/s / 238KiB/s
- Events (sdc): 9,301 entries
- Skips: 0 forward (0 - 0.0%)
- </literallayout>
- You should see the trace events and summary just as
- you would have if you'd run the same command on the target.
- </para>
- </section>
-
- <section id='tracing-block-io-via-ftrace'>
- <title>Tracing Block I/O via 'ftrace'</title>
-
- <para>
- It's also possible to trace block I/O using only
- <link linkend='the-trace-events-subsystem'>trace events subsystem</link>,
- which can be useful for casual tracing
- if you don't want to bother dealing with the userspace tools.
- </para>
-
- <para>
- To enable tracing for a given device, use
- /sys/block/xxx/trace/enable, where xxx is the device name.
- This for example enables tracing for /dev/sdc:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
- </literallayout>
- Once you've selected the device(s) you want to trace,
- selecting the 'blk' tracer will turn the blk tracer on:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
- blk function_graph function nop
-
- root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
- </literallayout>
- Execute the workload you're interested in:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
- </literallayout>
- And look at the output (note here that we're using
- 'trace_pipe' instead of trace to capture this trace -
- this allows us to wait around on the pipe for data to
- appear):
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
- cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced
- cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276424: 8,32 P N [cat]
- cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request
- cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr
- cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1
- cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150
- cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2
- cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null)
- cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert
- cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
- cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
- cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]
- </literallayout>
- And this turns off tracing for the specified device:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
- </literallayout>
- </para>
- </section>
- </section>
-
- <section id='blktrace-documentation'>
- <title>Documentation</title>
-
- <para>
- Online versions of the man pages for the commands discussed
- in this section can be found here:
- <itemizedlist>
- <listitem><para><ulink url='http://linux.die.net/man/8/blktrace'>http://linux.die.net/man/8/blktrace</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://linux.die.net/man/1/blkparse'>http://linux.die.net/man/1/blkparse</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://linux.die.net/man/8/btrace'>http://linux.die.net/man/8/btrace</ulink>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- The above manpages, along with manpages for the other
- blktrace utilities (btt, blkiomon, etc) can be found in the
- /doc directory of the blktrace tools git repo:
- <literallayout class='monospaced'>
- $ git clone git://git.kernel.dk/blktrace.git
- </literallayout>
- </para>
- </section>
-</section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/poky/documentation/profile-manual/profile-manual.rst b/poky/documentation/profile-manual/profile-manual.rst
index 2c8fcf3e6..5ec5b9e75 100644
--- a/poky/documentation/profile-manual/profile-manual.rst
+++ b/poky/documentation/profile-manual/profile-manual.rst
@@ -1,4 +1,4 @@
-.. SPDX-License-Identifier: CC-BY-2.0-UK
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
==========================================
Yocto Project Profiling and Tracing Manual
diff --git a/poky/documentation/profile-manual/profile-manual.xml b/poky/documentation/profile-manual/profile-manual.xml
deleted file mode 100755
index 48bfba5b8..000000000
--- a/poky/documentation/profile-manual/profile-manual.xml
+++ /dev/null
@@ -1,180 +0,0 @@
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<book id='profile-manual' lang='en'
- xmlns:xi="http://www.w3.org/2003/XInclude"
- xmlns="http://docbook.org/ns/docbook"
- >
- <bookinfo>
-
- <mediaobject>
- <imageobject>
- <imagedata fileref='figures/profile-title.png'
- format='SVG'
- align='left' scalefit='1' width='100%'/>
- </imageobject>
- </mediaobject>
-
- <title>
- Yocto Project Profiling and Tracing Manual
- </title>
-
- <authorgroup>
- <author>
- <affiliation>
- <orgname>&ORGNAME;</orgname>
- </affiliation>
- <email>&ORGEMAIL;</email>
- </author>
- </authorgroup>
-
- <revhistory>
- <revision>
- <revnumber>1.4</revnumber>
- <date>April 2013</date>
- <revremark>The initial document released with the Yocto Project 1.4 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.5</revnumber>
- <date>October 2013</date>
- <revremark>Released with the Yocto Project 1.5 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.6</revnumber>
- <date>April 2014</date>
- <revremark>Released with the Yocto Project 1.6 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.7</revnumber>
- <date>October 2014</date>
- <revremark>Released with the Yocto Project 1.7 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.8</revnumber>
- <date>April 2015</date>
- <revremark>Released with the Yocto Project 1.8 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.0</revnumber>
- <date>October 2015</date>
- <revremark>Released with the Yocto Project 2.0 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.1</revnumber>
- <date>April 2016</date>
- <revremark>Released with the Yocto Project 2.1 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.2</revnumber>
- <date>October 2016</date>
- <revremark>Released with the Yocto Project 2.2 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.3</revnumber>
- <date>May 2017</date>
- <revremark>Released with the Yocto Project 2.3 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.4</revnumber>
- <date>October 2017</date>
- <revremark>Released with the Yocto Project 2.4 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.5</revnumber>
- <date>May 2018</date>
- <revremark>Released with the Yocto Project 2.5 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.6</revnumber>
- <date>November 2018</date>
- <revremark>Released with the Yocto Project 2.6 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.7</revnumber>
- <date>May 2019</date>
- <revremark>Released with the Yocto Project 2.7 Release.</revremark>
- </revision>
- <revision>
- <revnumber>3.0</revnumber>
- <date>October 2019</date>
- <revremark>Released with the Yocto Project 3.0 Release.</revremark>
- </revision>
- <revision>
- <revnumber>3.1</revnumber>
- <date>&REL_MONTH_YEAR;</date>
- <revremark>Released with the Yocto Project 3.1 Release.</revremark>
- </revision>
- </revhistory>
-
- <copyright>
- <year>&COPYRIGHT_YEAR;</year>
- <holder>Linux Foundation</holder>
- </copyright>
-
- <legalnotice>
- <para>
- Permission is granted to copy, distribute and/or modify this document under
- the terms of the <ulink type="http" url="http://creativecommons.org/licenses/by-sa/2.0/uk/">
- Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</ulink> as published by
- Creative Commons.
- </para>
- <note><title>Manual Notes</title>
- <itemizedlist>
- <listitem><para>
- This version of the
- <emphasis>Yocto Project Profiling and Tracing Manual</emphasis>
- is for the &YOCTO_DOC_VERSION; release of the
- Yocto Project.
- To be sure you have the latest version of the manual
- for this release, go to the
- <ulink url='&YOCTO_DOCS_URL;'>Yocto Project documentation page</ulink>
- and select the manual from that site.
- Manuals from the site are more up-to-date than manuals
- derived from the Yocto Project released TAR files.
- </para></listitem>
- <listitem><para>
- If you located this manual through a web search, the
- version of the manual might not be the one you want
- (e.g. the search might have returned a manual much
- older than the Yocto Project version with which you
- are working).
- You can see all Yocto Project major releases by
- visiting the
- <ulink url='&YOCTO_WIKI_URL;/wiki/Releases'>Releases</ulink>
- page.
- If you need a version of this manual for a different
- Yocto Project release, visit the
- <ulink url='&YOCTO_DOCS_URL;'>Yocto Project documentation page</ulink>
- and select the manual set by using the
- "ACTIVE RELEASES DOCUMENTATION" or "DOCUMENTS ARCHIVE"
- pull-down menus.
- </para></listitem>
- <listitem>
- <para>
- To report any inaccuracies or problems with this
- (or any other Yocto Project) manual, send an email to
- the Yocto Project documentation mailing list at
- <filename>docs@lists.yoctoproject.org</filename> or
- log into the freenode <filename>#yocto</filename> channel.
- </para>
- </listitem>
- </itemizedlist>
- </note>
- </legalnotice>
-
- </bookinfo>
-
- <xi:include href="profile-manual-intro.xml"/>
-
- <xi:include href="profile-manual-arch.xml"/>
-
- <xi:include href="profile-manual-usage.xml"/>
-
- <xi:include href="profile-manual-examples.xml"/>
-
-</book>
-<!--
-vim: expandtab tw=80 ts=4
--->