/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #pragma once #include "app.hpp" #include "dbus_singleton.hpp" #include "dbus_utility.hpp" #include "generated/enums/resource.hpp" #include "generated/enums/sensor.hpp" #include "query.hpp" #include "registries/privilege_registry.hpp" #include "str_utility.hpp" #include "utils/dbus_utils.hpp" #include "utils/json_utils.hpp" #include "utils/query_param.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace redfish { namespace sensors { namespace node { static constexpr std::string_view power = "Power"; static constexpr std::string_view sensors = "Sensors"; static constexpr std::string_view thermal = "Thermal"; } // namespace node // clang-format off namespace dbus { constexpr auto powerPaths = std::to_array({ "/xyz/openbmc_project/sensors/voltage", "/xyz/openbmc_project/sensors/power" }); constexpr auto getSensorPaths(){ if constexpr(BMCWEB_REDFISH_NEW_POWERSUBSYSTEM_THERMALSUBSYSTEM){ return std::to_array({ "/xyz/openbmc_project/sensors/power", "/xyz/openbmc_project/sensors/current", "/xyz/openbmc_project/sensors/airflow", "/xyz/openbmc_project/sensors/humidity", "/xyz/openbmc_project/sensors/voltage", "/xyz/openbmc_project/sensors/fan_tach", "/xyz/openbmc_project/sensors/temperature", "/xyz/openbmc_project/sensors/fan_pwm", "/xyz/openbmc_project/sensors/altitude", "/xyz/openbmc_project/sensors/energy", "/xyz/openbmc_project/sensors/utilization"}); } else { return std::to_array({"/xyz/openbmc_project/sensors/power", "/xyz/openbmc_project/sensors/current", "/xyz/openbmc_project/sensors/airflow", "/xyz/openbmc_project/sensors/humidity", "/xyz/openbmc_project/sensors/utilization"}); } } constexpr auto sensorPaths = getSensorPaths(); constexpr auto thermalPaths = std::to_array({ "/xyz/openbmc_project/sensors/fan_tach", "/xyz/openbmc_project/sensors/temperature", "/xyz/openbmc_project/sensors/fan_pwm" }); } // namespace dbus // clang-format on using sensorPair = std::pair>; static constexpr std::array paths = { {{node::power, dbus::powerPaths}, {node::sensors, dbus::sensorPaths}, {node::thermal, dbus::thermalPaths}}}; inline sensor::ReadingType toReadingType(std::string_view sensorType) { if (sensorType == "voltage") { return sensor::ReadingType::Voltage; } if (sensorType == "power") { return sensor::ReadingType::Power; } if (sensorType == "current") { return sensor::ReadingType::Current; } if (sensorType == "fan_tach") { return sensor::ReadingType::Rotational; } if (sensorType == "temperature") { return sensor::ReadingType::Temperature; } if (sensorType == "fan_pwm" || sensorType == "utilization") { return sensor::ReadingType::Percent; } if (sensorType == "humidity") { return sensor::ReadingType::Humidity; } if (sensorType == "altitude") { return sensor::ReadingType::Altitude; } if (sensorType == "airflow") { return sensor::ReadingType::AirFlow; } if (sensorType == "energy") { return sensor::ReadingType::EnergyJoules; } return sensor::ReadingType::Invalid; } inline std::string_view toReadingUnits(std::string_view sensorType) { if (sensorType == "voltage") { return "V"; } if (sensorType == "power") { return "W"; } if (sensorType == "current") { return "A"; } if (sensorType == "fan_tach") { return "RPM"; } if (sensorType == "temperature") { return "Cel"; } if (sensorType == "fan_pwm" || sensorType == "utilization" || sensorType == "humidity") { return "%"; } if (sensorType == "altitude") { return "m"; } if (sensorType == "airflow") { return "cft_i/min"; } if (sensorType == "energy") { return "J"; } return ""; } } // namespace sensors /** * SensorsAsyncResp * Gathers data needed for response processing after async calls are done */ class SensorsAsyncResp { public: using DataCompleteCb = std::function& uriToDbus)>; struct SensorData { const std::string name; std::string uri; const std::string dbusPath; }; SensorsAsyncResp(const std::shared_ptr& asyncRespIn, const std::string& chassisIdIn, std::span typesIn, std::string_view subNode) : asyncResp(asyncRespIn), chassisId(chassisIdIn), types(typesIn), chassisSubNode(subNode), efficientExpand(false) {} // Store extra data about sensor mapping and return it in callback SensorsAsyncResp(const std::shared_ptr& asyncRespIn, const std::string& chassisIdIn, std::span typesIn, std::string_view subNode, DataCompleteCb&& creationComplete) : asyncResp(asyncRespIn), chassisId(chassisIdIn), types(typesIn), chassisSubNode(subNode), efficientExpand(false), metadata{std::vector()}, dataComplete{std::move(creationComplete)} {} // sensor collections expand SensorsAsyncResp(const std::shared_ptr& asyncRespIn, const std::string& chassisIdIn, std::span typesIn, const std::string_view& subNode, bool efficientExpandIn) : asyncResp(asyncRespIn), chassisId(chassisIdIn), types(typesIn), chassisSubNode(subNode), efficientExpand(efficientExpandIn) {} ~SensorsAsyncResp() { if (asyncResp->res.result() == boost::beast::http::status::internal_server_error) { // Reset the json object to clear out any data that made it in // before the error happened todo(ed) handle error condition with // proper code asyncResp->res.jsonValue = nlohmann::json::object(); } if (dataComplete && metadata) { std::map map; if (asyncResp->res.result() == boost::beast::http::status::ok) { for (auto& sensor : *metadata) { map.emplace(sensor.uri, sensor.dbusPath); } } dataComplete(asyncResp->res.result(), map); } } SensorsAsyncResp(const SensorsAsyncResp&) = delete; SensorsAsyncResp(SensorsAsyncResp&&) = delete; SensorsAsyncResp& operator=(const SensorsAsyncResp&) = delete; SensorsAsyncResp& operator=(SensorsAsyncResp&&) = delete; void addMetadata(const nlohmann::json& sensorObject, const std::string& dbusPath) { if (metadata) { metadata->emplace_back(SensorData{ sensorObject["Name"], sensorObject["@odata.id"], dbusPath}); } } void updateUri(const std::string& name, const std::string& uri) { if (metadata) { for (auto& sensor : *metadata) { if (sensor.name == name) { sensor.uri = uri; } } } } const std::shared_ptr asyncResp; const std::string chassisId; const std::span types; const std::string chassisSubNode; const bool efficientExpand; private: std::optional> metadata; DataCompleteCb dataComplete; }; /** * Possible states for physical inventory leds */ enum class LedState { OFF, ON, BLINK, UNKNOWN }; /** * D-Bus inventory item associated with one or more sensors. */ class InventoryItem { public: explicit InventoryItem(const std::string& objPath) : objectPath(objPath) { // Set inventory item name to last node of object path sdbusplus::message::object_path path(objectPath); name = path.filename(); if (name.empty()) { BMCWEB_LOG_ERROR("Failed to find '/' in {}", objectPath); } } std::string objectPath; std::string name; bool isPresent = true; bool isFunctional = true; bool isPowerSupply = false; int powerSupplyEfficiencyPercent = -1; std::string manufacturer; std::string model; std::string partNumber; std::string serialNumber; std::set sensors; std::string ledObjectPath; LedState ledState = LedState::UNKNOWN; }; /** * @brief Get objects with connection necessary for sensors * @param SensorsAsyncResp Pointer to object holding response data * @param sensorNames Sensors retrieved from chassis * @param callback Callback for processing gathered connections */ template void getObjectsWithConnection( const std::shared_ptr& sensorsAsyncResp, const std::shared_ptr>& sensorNames, Callback&& callback) { BMCWEB_LOG_DEBUG("getObjectsWithConnection enter"); const std::string path = "/xyz/openbmc_project/sensors"; constexpr std::array interfaces = { "xyz.openbmc_project.Sensor.Value"}; // Make call to ObjectMapper to find all sensors objects dbus::utility::getSubTree( path, 2, interfaces, [callback = std::forward(callback), sensorsAsyncResp, sensorNames](const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreeResponse& subtree) { // Response handler for parsing objects subtree BMCWEB_LOG_DEBUG("getObjectsWithConnection resp_handler enter"); if (ec) { messages::internalError(sensorsAsyncResp->asyncResp->res); BMCWEB_LOG_ERROR( "getObjectsWithConnection resp_handler: Dbus error {}", ec); return; } BMCWEB_LOG_DEBUG("Found {} subtrees", subtree.size()); // Make unique list of connections only for requested sensor types and // found in the chassis std::set connections; std::set> objectsWithConnection; BMCWEB_LOG_DEBUG("sensorNames list count: {}", sensorNames->size()); for (const std::string& tsensor : *sensorNames) { BMCWEB_LOG_DEBUG("Sensor to find: {}", tsensor); } for (const std::pair< std::string, std::vector>>>& object : subtree) { if (sensorNames->find(object.first) != sensorNames->end()) { for (const std::pair>& objData : object.second) { BMCWEB_LOG_DEBUG("Adding connection: {}", objData.first); connections.insert(objData.first); objectsWithConnection.insert( std::make_pair(object.first, objData.first)); } } } BMCWEB_LOG_DEBUG("Found {} connections", connections.size()); callback(std::move(connections), std::move(objectsWithConnection)); BMCWEB_LOG_DEBUG("getObjectsWithConnection resp_handler exit"); }); BMCWEB_LOG_DEBUG("getObjectsWithConnection exit"); } /** * @brief Create connections necessary for sensors * @param SensorsAsyncResp Pointer to object holding response data * @param sensorNames Sensors retrieved from chassis * @param callback Callback for processing gathered connections */ template void getConnections(std::shared_ptr sensorsAsyncResp, const std::shared_ptr> sensorNames, Callback&& callback) { auto objectsWithConnectionCb = [callback = std::forward(callback)]( const std::set& connections, const std::set>& /*objectsWithConnection*/) { callback(connections); }; getObjectsWithConnection(sensorsAsyncResp, sensorNames, std::move(objectsWithConnectionCb)); } /** * @brief Shrinks the list of sensors for processing * @param SensorsAysncResp The class holding the Redfish response * @param allSensors A list of all the sensors associated to the * chassis element (i.e. baseboard, front panel, etc...) * @param activeSensors A list that is a reduction of the incoming * allSensors list. Eliminate Thermal sensors when a Power request is * made, and eliminate Power sensors when a Thermal request is made. */ inline void reduceSensorList( crow::Response& res, std::string_view chassisSubNode, std::span sensorTypes, const std::vector* allSensors, const std::shared_ptr>& activeSensors) { if ((allSensors == nullptr) || (activeSensors == nullptr)) { messages::resourceNotFound(res, chassisSubNode, chassisSubNode == sensors::node::thermal ? "Temperatures" : "Voltages"); return; } if (allSensors->empty()) { // Nothing to do, the activeSensors object is also empty return; } for (std::string_view type : sensorTypes) { for (const std::string& sensor : *allSensors) { if (sensor.starts_with(type)) { activeSensors->emplace(sensor); } } } } /* *Populates the top level collection for a given subnode. Populates *SensorCollection, Power, or Thermal schemas. * * */ inline void populateChassisNode(nlohmann::json& jsonValue, std::string_view chassisSubNode) { if (chassisSubNode == sensors::node::power) { jsonValue["@odata.type"] = "#Power.v1_5_2.Power"; } else if (chassisSubNode == sensors::node::thermal) { jsonValue["@odata.type"] = "#Thermal.v1_4_0.Thermal"; jsonValue["Fans"] = nlohmann::json::array(); jsonValue["Temperatures"] = nlohmann::json::array(); } else if (chassisSubNode == sensors::node::sensors) { jsonValue["@odata.type"] = "#SensorCollection.SensorCollection"; jsonValue["Description"] = "Collection of Sensors for this Chassis"; jsonValue["Members"] = nlohmann::json::array(); jsonValue["Members@odata.count"] = 0; } if (chassisSubNode != sensors::node::sensors) { jsonValue["Id"] = chassisSubNode; } jsonValue["Name"] = chassisSubNode; } /** * @brief Retrieves requested chassis sensors and redundancy data from DBus . * @param SensorsAsyncResp Pointer to object holding response data * @param callback Callback for next step in gathered sensor processing */ template void getChassis(const std::shared_ptr& asyncResp, std::string_view chassisId, std::string_view chassisSubNode, std::span sensorTypes, Callback&& callback) { BMCWEB_LOG_DEBUG("getChassis enter"); constexpr std::array interfaces = { "xyz.openbmc_project.Inventory.Item.Board", "xyz.openbmc_project.Inventory.Item.Chassis"}; // Get the Chassis Collection dbus::utility::getSubTreePaths( "/xyz/openbmc_project/inventory", 0, interfaces, [callback = std::forward(callback), asyncResp, chassisIdStr{std::string(chassisId)}, chassisSubNode{std::string(chassisSubNode)}, sensorTypes]( const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreePathsResponse& chassisPaths) { BMCWEB_LOG_DEBUG("getChassis respHandler enter"); if (ec) { BMCWEB_LOG_ERROR("getChassis respHandler DBUS error: {}", ec); messages::internalError(asyncResp->res); return; } const std::string* chassisPath = nullptr; for (const std::string& chassis : chassisPaths) { sdbusplus::message::object_path path(chassis); std::string chassisName = path.filename(); if (chassisName.empty()) { BMCWEB_LOG_ERROR("Failed to find '/' in {}", chassis); continue; } if (chassisName == chassisIdStr) { chassisPath = &chassis; break; } } if (chassisPath == nullptr) { messages::resourceNotFound(asyncResp->res, "Chassis", chassisIdStr); return; } populateChassisNode(asyncResp->res.jsonValue, chassisSubNode); asyncResp->res.jsonValue["@odata.id"] = boost::urls::format( "/redfish/v1/Chassis/{}/{}", chassisIdStr, chassisSubNode); // Get the list of all sensors for this Chassis element std::string sensorPath = *chassisPath + "/all_sensors"; dbus::utility::getAssociationEndPoints( sensorPath, [asyncResp, chassisSubNode, sensorTypes, callback = std::forward(callback)]( const boost::system::error_code& ec2, const dbus::utility::MapperEndPoints& nodeSensorList) { if (ec2) { if (ec2.value() != EBADR) { messages::internalError(asyncResp->res); return; } } const std::shared_ptr> culledSensorList = std::make_shared>(); reduceSensorList(asyncResp->res, chassisSubNode, sensorTypes, &nodeSensorList, culledSensorList); BMCWEB_LOG_DEBUG("Finishing with {}", culledSensorList->size()); callback(culledSensorList); }); }); BMCWEB_LOG_DEBUG("getChassis exit"); } /** * @brief Returns the Redfish State value for the specified inventory item. * @param inventoryItem D-Bus inventory item associated with a sensor. * @param sensorAvailable Boolean representing if D-Bus sensor is marked as * available. * @return State value for inventory item. */ inline resource::State getState(const InventoryItem* inventoryItem, const bool sensorAvailable) { if ((inventoryItem != nullptr) && !(inventoryItem->isPresent)) { return resource::State::Absent; } if (!sensorAvailable) { return resource::State::UnavailableOffline; } return resource::State::Enabled; } /** * @brief Returns the Redfish Health value for the specified sensor. * @param sensorJson Sensor JSON object. * @param valuesDict Map of all sensor DBus values. * @param inventoryItem D-Bus inventory item associated with the sensor. Will * be nullptr if no associated inventory item was found. * @return Health value for sensor. */ inline std::string getHealth(nlohmann::json& sensorJson, const dbus::utility::DBusPropertiesMap& valuesDict, const InventoryItem* inventoryItem) { // Get current health value (if any) in the sensor JSON object. Some JSON // objects contain multiple sensors (such as PowerSupplies). We want to set // the overall health to be the most severe of any of the sensors. std::string currentHealth; auto statusIt = sensorJson.find("Status"); if (statusIt != sensorJson.end()) { auto healthIt = statusIt->find("Health"); if (healthIt != statusIt->end()) { std::string* health = healthIt->get_ptr(); if (health != nullptr) { currentHealth = *health; } } } // If current health in JSON object is already Critical, return that. This // should override the sensor health, which might be less severe. if (currentHealth == "Critical") { return "Critical"; } const bool* criticalAlarmHigh = nullptr; const bool* criticalAlarmLow = nullptr; const bool* warningAlarmHigh = nullptr; const bool* warningAlarmLow = nullptr; const bool success = sdbusplus::unpackPropertiesNoThrow( dbus_utils::UnpackErrorPrinter(), valuesDict, "CriticalAlarmHigh", criticalAlarmHigh, "CriticalAlarmLow", criticalAlarmLow, "WarningAlarmHigh", warningAlarmHigh, "WarningAlarmLow", warningAlarmLow); if (success) { // Check if sensor has critical threshold alarm if ((criticalAlarmHigh != nullptr && *criticalAlarmHigh) || (criticalAlarmLow != nullptr && *criticalAlarmLow)) { return "Critical"; } } // Check if associated inventory item is not functional if ((inventoryItem != nullptr) && !(inventoryItem->isFunctional)) { return "Critical"; } // If current health in JSON object is already Warning, return that. This // should override the sensor status, which might be less severe. if (currentHealth == "Warning") { return "Warning"; } if (success) { // Check if sensor has warning threshold alarm if ((warningAlarmHigh != nullptr && *warningAlarmHigh) || (warningAlarmLow != nullptr && *warningAlarmLow)) { return "Warning"; } } return "OK"; } inline void setLedState(nlohmann::json& sensorJson, const InventoryItem* inventoryItem) { if (inventoryItem != nullptr && !inventoryItem->ledObjectPath.empty()) { switch (inventoryItem->ledState) { case LedState::OFF: sensorJson["IndicatorLED"] = "Off"; break; case LedState::ON: sensorJson["IndicatorLED"] = "Lit"; break; case LedState::BLINK: sensorJson["IndicatorLED"] = "Blinking"; break; default: break; } } } /** * @brief Builds a json sensor representation of a sensor. * @param sensorName The name of the sensor to be built * @param sensorType The type (temperature, fan_tach, etc) of the sensor to * build * @param chassisSubNode The subnode (thermal, sensor, etc) of the sensor * @param propertiesDict A dictionary of the properties to build the sensor * from. * @param sensorJson The json object to fill * @param inventoryItem D-Bus inventory item associated with the sensor. Will * be nullptr if no associated inventory item was found. */ inline void objectPropertiesToJson( std::string_view sensorName, std::string_view sensorType, std::string_view chassisSubNode, const dbus::utility::DBusPropertiesMap& propertiesDict, nlohmann::json& sensorJson, InventoryItem* inventoryItem) { if (chassisSubNode == sensors::node::sensors) { std::string subNodeEscaped(sensorType); auto remove = std::ranges::remove(subNodeEscaped, '_'); subNodeEscaped.erase(std::ranges::begin(remove), subNodeEscaped.end()); // For sensors in SensorCollection we set Id instead of MemberId, // including power sensors. subNodeEscaped += '_'; subNodeEscaped += sensorName; sensorJson["Id"] = std::move(subNodeEscaped); std::string sensorNameEs(sensorName); std::replace(sensorNameEs.begin(), sensorNameEs.end(), '_', ' '); sensorJson["Name"] = std::move(sensorNameEs); } else if (sensorType != "power") { // Set MemberId and Name for non-power sensors. For PowerSupplies and // PowerControl, those properties have more general values because // multiple sensors can be stored in the same JSON object. std::string sensorNameEs(sensorName); std::replace(sensorNameEs.begin(), sensorNameEs.end(), '_', ' '); sensorJson["Name"] = std::move(sensorNameEs); } const bool* checkAvailable = nullptr; bool available = true; const bool success = sdbusplus::unpackPropertiesNoThrow( dbus_utils::UnpackErrorPrinter(), propertiesDict, "Available", checkAvailable); if (!success) { messages::internalError(); } if (checkAvailable != nullptr) { available = *checkAvailable; } sensorJson["Status"]["State"] = getState(inventoryItem, available); sensorJson["Status"]["Health"] = getHealth(sensorJson, propertiesDict, inventoryItem); // Parameter to set to override the type we get from dbus, and force it to // int, regardless of what is available. This is used for schemas like fan, // that require integers, not floats. bool forceToInt = false; nlohmann::json::json_pointer unit("/Reading"); if (chassisSubNode == sensors::node::sensors) { sensorJson["@odata.type"] = "#Sensor.v1_2_0.Sensor"; sensor::ReadingType readingType = sensors::toReadingType(sensorType); if (readingType == sensor::ReadingType::Invalid) { BMCWEB_LOG_ERROR("Redfish cannot map reading type for {}", sensorType); } else { sensorJson["ReadingType"] = readingType; } std::string_view readingUnits = sensors::toReadingUnits(sensorType); if (readingUnits.empty()) { BMCWEB_LOG_ERROR("Redfish cannot map reading unit for {}", sensorType); } else { sensorJson["ReadingUnits"] = readingUnits; } } else if (sensorType == "temperature") { unit = "/ReadingCelsius"_json_pointer; sensorJson["@odata.type"] = "#Thermal.v1_3_0.Temperature"; // TODO(ed) Documentation says that path should be type fan_tach, // implementation seems to implement fan } else if (sensorType == "fan" || sensorType == "fan_tach") { unit = "/Reading"_json_pointer; sensorJson["ReadingUnits"] = "RPM"; sensorJson["@odata.type"] = "#Thermal.v1_3_0.Fan"; setLedState(sensorJson, inventoryItem); forceToInt = true; } else if (sensorType == "fan_pwm") { unit = "/Reading"_json_pointer; sensorJson["ReadingUnits"] = "Percent"; sensorJson["@odata.type"] = "#Thermal.v1_3_0.Fan"; setLedState(sensorJson, inventoryItem); forceToInt = true; } else if (sensorType == "voltage") { unit = "/ReadingVolts"_json_pointer; sensorJson["@odata.type"] = "#Power.v1_0_0.Voltage"; } else if (sensorType == "power") { std::string lower; std::ranges::transform(sensorName, std::back_inserter(lower), bmcweb::asciiToLower); if (lower == "total_power") { sensorJson["@odata.type"] = "#Power.v1_0_0.PowerControl"; // Put multiple "sensors" into a single PowerControl, so have // generic names for MemberId and Name. Follows Redfish mockup. sensorJson["MemberId"] = "0"; sensorJson["Name"] = "Chassis Power Control"; unit = "/PowerConsumedWatts"_json_pointer; } else if (lower.find("input") != std::string::npos) { unit = "/PowerInputWatts"_json_pointer; } else { unit = "/PowerOutputWatts"_json_pointer; } } else { BMCWEB_LOG_ERROR("Redfish cannot map object type for {}", sensorName); return; } // Map of dbus interface name, dbus property name and redfish property_name std::vector< std::tuple> properties; properties.reserve(7); properties.emplace_back("xyz.openbmc_project.Sensor.Value", "Value", unit); if (chassisSubNode == sensors::node::sensors) { properties.emplace_back( "xyz.openbmc_project.Sensor.Threshold.Warning", "WarningHigh", "/Thresholds/UpperCaution/Reading"_json_pointer); properties.emplace_back( "xyz.openbmc_project.Sensor.Threshold.Warning", "WarningLow", "/Thresholds/LowerCaution/Reading"_json_pointer); properties.emplace_back( "xyz.openbmc_project.Sensor.Threshold.Critical", "CriticalHigh", "/Thresholds/UpperCritical/Reading"_json_pointer); properties.emplace_back( "xyz.openbmc_project.Sensor.Threshold.Critical", "CriticalLow", "/Thresholds/LowerCritical/Reading"_json_pointer); } else if (sensorType != "power") { properties.emplace_back("xyz.openbmc_project.Sensor.Threshold.Warning", "WarningHigh", "/UpperThresholdNonCritical"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Threshold.Warning", "WarningLow", "/LowerThresholdNonCritical"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Threshold.Critical", "CriticalHigh", "/UpperThresholdCritical"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Threshold.Critical", "CriticalLow", "/LowerThresholdCritical"_json_pointer); } // TODO Need to get UpperThresholdFatal and LowerThresholdFatal if (chassisSubNode == sensors::node::sensors) { properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MinValue", "/ReadingRangeMin"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MaxValue", "/ReadingRangeMax"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Accuracy", "Accuracy", "/Accuracy"_json_pointer); } else if (sensorType == "temperature") { properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MinValue", "/MinReadingRangeTemp"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MaxValue", "/MaxReadingRangeTemp"_json_pointer); } else if (sensorType != "power") { properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MinValue", "/MinReadingRange"_json_pointer); properties.emplace_back("xyz.openbmc_project.Sensor.Value", "MaxValue", "/MaxReadingRange"_json_pointer); } for (const std::tuple& p : properties) { for (const auto& [valueName, valueVariant] : propertiesDict) { if (valueName != std::get<1>(p)) { continue; } // The property we want to set may be nested json, so use // a json_pointer for easy indexing into the json structure. const nlohmann::json::json_pointer& key = std::get<2>(p); const double* doubleValue = std::get_if(&valueVariant); if (doubleValue == nullptr) { BMCWEB_LOG_ERROR("Got value interface that wasn't double"); continue; } if (!std::isfinite(*doubleValue)) { if (valueName == "Value") { // Readings are allowed to be NAN for unavailable; coerce // them to null in the json response. sensorJson[key] = nullptr; continue; } BMCWEB_LOG_WARNING("Sensor value for {} was unexpectedly {}", valueName, *doubleValue); continue; } if (forceToInt) { sensorJson[key] = static_cast(*doubleValue); } else { sensorJson[key] = *doubleValue; } } } } /** * @brief Builds a json sensor representation of a sensor. * @param sensorName The name of the sensor to be built * @param sensorType The type (temperature, fan_tach, etc) of the sensor to * build * @param chassisSubNode The subnode (thermal, sensor, etc) of the sensor * @param interfacesDict A dictionary of the interfaces and properties of said * interfaces to be built from * @param sensorJson The json object to fill * @param inventoryItem D-Bus inventory item associated with the sensor. Will * be nullptr if no associated inventory item was found. */ inline void objectInterfacesToJson( const std::string& sensorName, const std::string& sensorType, const std::string& chassisSubNode, const dbus::utility::DBusInterfacesMap& interfacesDict, nlohmann::json& sensorJson, InventoryItem* inventoryItem) { for (const auto& [interface, valuesDict] : interfacesDict) { objectPropertiesToJson(sensorName, sensorType, chassisSubNode, valuesDict, sensorJson, inventoryItem); } BMCWEB_LOG_DEBUG("Added sensor {}", sensorName); } inline void populateFanRedundancy( const std::shared_ptr& sensorsAsyncResp) { constexpr std::array interfaces = { "xyz.openbmc_project.Control.FanRedundancy"}; dbus::utility::getSubTree( "/xyz/openbmc_project/control", 2, interfaces, [sensorsAsyncResp]( const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreeResponse& resp) { if (ec) { return; // don't have to have this interface } for (const std::pair& pathPair : resp) { const std::string& path = pathPair.first; const dbus::utility::MapperServiceMap& objDict = pathPair.second; if (objDict.empty()) { continue; // this should be impossible } const std::string& owner = objDict.begin()->first; dbus::utility::getAssociationEndPoints( path + "/chassis", [path, owner, sensorsAsyncResp]( const boost::system::error_code& ec2, const dbus::utility::MapperEndPoints& endpoints) { if (ec2) { return; // if they don't have an association we // can't tell what chassis is } auto found = std::ranges::find_if( endpoints, [sensorsAsyncResp](const std::string& entry) { return entry.find(sensorsAsyncResp->chassisId) != std::string::npos; }); if (found == endpoints.end()) { return; } sdbusplus::asio::getAllProperties( *crow::connections::systemBus, owner, path, "xyz.openbmc_project.Control.FanRedundancy", [path, sensorsAsyncResp]( const boost::system::error_code& ec3, const dbus::utility::DBusPropertiesMap& ret) { if (ec3) { return; // don't have to have this // interface } const uint8_t* allowedFailures = nullptr; const std::vector* collection = nullptr; const std::string* status = nullptr; const bool success = sdbusplus::unpackPropertiesNoThrow( dbus_utils::UnpackErrorPrinter(), ret, "AllowedFailures", allowedFailures, "Collection", collection, "Status", status); if (!success) { messages::internalError( sensorsAsyncResp->asyncResp->res); return; } if (allowedFailures == nullptr || collection == nullptr || status == nullptr) { BMCWEB_LOG_ERROR("Invalid redundancy interface"); messages::internalError( sensorsAsyncResp->asyncResp->res); return; } sdbusplus::message::object_path objectPath(path); std::string name = objectPath.filename(); if (name.empty()) { // this should be impossible messages::internalError( sensorsAsyncResp->asyncResp->res); return; } std::ranges::replace(name, '_', ' '); std::string health; if (status->ends_with("Full")) { health = "OK"; } else if (status->ends_with("Degraded")) { health = "Warning"; } else { health = "Critical"; } nlohmann::json::array_t redfishCollection; const auto& fanRedfish = sensorsAsyncResp->asyncResp->res.jsonValue["Fans"]; for (const std::string& item : *collection) { sdbusplus::message::object_path itemPath(item); std::string itemName = itemPath.filename(); if (itemName.empty()) { continue; } /* todo(ed): merge patch that fixes the names std::replace(itemName.begin(), itemName.end(), '_', ' ');*/ auto schemaItem = std::ranges::find_if( fanRedfish, [itemName](const nlohmann::json& fan) { return fan["Name"] == itemName; }); if (schemaItem != fanRedfish.end()) { nlohmann::json::object_t collectionId; collectionId["@odata.id"] = (*schemaItem)["@odata.id"]; redfishCollection.emplace_back( std::move(collectionId)); } else { BMCWEB_LOG_ERROR("failed to find fan in schema"); messages::internalError( sensorsAsyncResp->asyncResp->res); return; } } size_t minNumNeeded = collection->empty() ? 0 : collection->size() - *allowedFailures; nlohmann::json& jResp = sensorsAsyncResp->asyncResp->res .jsonValue["Redundancy"]; nlohmann::json::object_t redundancy; boost::urls::url url = boost::urls::format("/redfish/v1/Chassis/{}/{}", sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode); url.set_fragment(("/Redundancy"_json_pointer / jResp.size()) .to_string()); redundancy["@odata.id"] = std::move(url); redundancy["@odata.type"] = "#Redundancy.v1_3_2.Redundancy"; redundancy["MinNumNeeded"] = minNumNeeded; redundancy["Mode"] = "N+m"; redundancy["Name"] = name; redundancy["RedundancySet"] = redfishCollection; redundancy["Status"]["Health"] = health; redundancy["Status"]["State"] = "Enabled"; jResp.emplace_back(std::move(redundancy)); }); }); } }); } inline void sortJSONResponse(const std::shared_ptr& sensorsAsyncResp) { nlohmann::json& response = sensorsAsyncResp->asyncResp->res.jsonValue; std::array sensorHeaders{"Temperatures", "Fans"}; if (sensorsAsyncResp->chassisSubNode == sensors::node::power) { sensorHeaders = {"Voltages", "PowerSupplies"}; } for (const std::string& sensorGroup : sensorHeaders) { nlohmann::json::iterator entry = response.find(sensorGroup); if (entry != response.end()) { std::sort(entry->begin(), entry->end(), [](const nlohmann::json& c1, const nlohmann::json& c2) { return c1["Name"] < c2["Name"]; }); // add the index counts to the end of each entry size_t count = 0; for (nlohmann::json& sensorJson : *entry) { nlohmann::json::iterator odata = sensorJson.find("@odata.id"); if (odata == sensorJson.end()) { continue; } std::string* value = odata->get_ptr(); if (value != nullptr) { *value += "/" + std::to_string(count); sensorJson["MemberId"] = std::to_string(count); count++; sensorsAsyncResp->updateUri(sensorJson["Name"], *value); } } } } } /** * @brief Finds the inventory item with the specified object path. * @param inventoryItems D-Bus inventory items associated with sensors. * @param invItemObjPath D-Bus object path of inventory item. * @return Inventory item within vector, or nullptr if no match found. */ inline InventoryItem* findInventoryItem( const std::shared_ptr>& inventoryItems, const std::string& invItemObjPath) { for (InventoryItem& inventoryItem : *inventoryItems) { if (inventoryItem.objectPath == invItemObjPath) { return &inventoryItem; } } return nullptr; } /** * @brief Finds the inventory item associated with the specified sensor. * @param inventoryItems D-Bus inventory items associated with sensors. * @param sensorObjPath D-Bus object path of sensor. * @return Inventory item within vector, or nullptr if no match found. */ inline InventoryItem* findInventoryItemForSensor( const std::shared_ptr>& inventoryItems, const std::string& sensorObjPath) { for (InventoryItem& inventoryItem : *inventoryItems) { if (inventoryItem.sensors.contains(sensorObjPath)) { return &inventoryItem; } } return nullptr; } /** * @brief Finds the inventory item associated with the specified led path. * @param inventoryItems D-Bus inventory items associated with sensors. * @param ledObjPath D-Bus object path of led. * @return Inventory item within vector, or nullptr if no match found. */ inline InventoryItem* findInventoryItemForLed(std::vector& inventoryItems, const std::string& ledObjPath) { for (InventoryItem& inventoryItem : inventoryItems) { if (inventoryItem.ledObjectPath == ledObjPath) { return &inventoryItem; } } return nullptr; } /** * @brief Adds inventory item and associated sensor to specified vector. * * Adds a new InventoryItem to the vector if necessary. Searches for an * existing InventoryItem with the specified object path. If not found, one is * added to the vector. * * Next, the specified sensor is added to the set of sensors associated with the * InventoryItem. * * @param inventoryItems D-Bus inventory items associated with sensors. * @param invItemObjPath D-Bus object path of inventory item. * @param sensorObjPath D-Bus object path of sensor */ inline void addInventoryItem( const std::shared_ptr>& inventoryItems, const std::string& invItemObjPath, const std::string& sensorObjPath) { // Look for inventory item in vector InventoryItem* inventoryItem = findInventoryItem(inventoryItems, invItemObjPath); // If inventory item doesn't exist in vector, add it if (inventoryItem == nullptr) { inventoryItems->emplace_back(invItemObjPath); inventoryItem = &(inventoryItems->back()); } // Add sensor to set of sensors associated with inventory item inventoryItem->sensors.emplace(sensorObjPath); } /** * @brief Stores D-Bus data in the specified inventory item. * * Finds D-Bus data in the specified map of interfaces. Stores the data in the * specified InventoryItem. * * This data is later used to provide sensor property values in the JSON * response. * * @param inventoryItem Inventory item where data will be stored. * @param interfacesDict Map containing D-Bus interfaces and their properties * for the specified inventory item. */ inline void storeInventoryItemData( InventoryItem& inventoryItem, const dbus::utility::DBusInterfacesMap& interfacesDict) { // Get properties from Inventory.Item interface for (const auto& [interface, values] : interfacesDict) { if (interface == "xyz.openbmc_project.Inventory.Item") { for (const auto& [name, dbusValue] : values) { if (name == "Present") { const bool* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.isPresent = *value; } } } } // Check if Inventory.Item.PowerSupply interface is present if (interface == "xyz.openbmc_project.Inventory.Item.PowerSupply") { inventoryItem.isPowerSupply = true; } // Get properties from Inventory.Decorator.Asset interface if (interface == "xyz.openbmc_project.Inventory.Decorator.Asset") { for (const auto& [name, dbusValue] : values) { if (name == "Manufacturer") { const std::string* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.manufacturer = *value; } } if (name == "Model") { const std::string* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.model = *value; } } if (name == "SerialNumber") { const std::string* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.serialNumber = *value; } } if (name == "PartNumber") { const std::string* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.partNumber = *value; } } } } if (interface == "xyz.openbmc_project.State.Decorator.OperationalStatus") { for (const auto& [name, dbusValue] : values) { if (name == "Functional") { const bool* value = std::get_if(&dbusValue); if (value != nullptr) { inventoryItem.isFunctional = *value; } } } } } } /** * @brief Gets D-Bus data for inventory items associated with sensors. * * Uses the specified connections (services) to obtain D-Bus data for inventory * items associated with sensors. Stores the resulting data in the * inventoryItems vector. * * This data is later used to provide sensor property values in the JSON * response. * * Finds the inventory item data asynchronously. Invokes callback when data has * been obtained. * * The callback must have the following signature: * @code * callback(void) * @endcode * * This function is called recursively, obtaining data asynchronously from one * connection in each call. This ensures the callback is not invoked until the * last asynchronous function has completed. * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param invConnections Connections that provide data for the inventory items. * implements ObjectManager. * @param callback Callback to invoke when inventory data has been obtained. * @param invConnectionsIndex Current index in invConnections. Only specified * in recursive calls to this function. */ template static void getInventoryItemsData( std::shared_ptr sensorsAsyncResp, std::shared_ptr> inventoryItems, std::shared_ptr> invConnections, Callback&& callback, size_t invConnectionsIndex = 0) { BMCWEB_LOG_DEBUG("getInventoryItemsData enter"); // If no more connections left, call callback if (invConnectionsIndex >= invConnections->size()) { callback(); BMCWEB_LOG_DEBUG("getInventoryItemsData exit"); return; } // Get inventory item data from current connection auto it = invConnections->begin(); std::advance(it, invConnectionsIndex); if (it != invConnections->end()) { const std::string& invConnection = *it; // Get all object paths and their interfaces for current connection sdbusplus::message::object_path path("/xyz/openbmc_project/inventory"); dbus::utility::getManagedObjects( invConnection, path, [sensorsAsyncResp, inventoryItems, invConnections, callback = std::forward(callback), invConnectionsIndex]( const boost::system::error_code& ec, const dbus::utility::ManagedObjectType& resp) { BMCWEB_LOG_DEBUG("getInventoryItemsData respHandler enter"); if (ec) { BMCWEB_LOG_ERROR( "getInventoryItemsData respHandler DBus error {}", ec); messages::internalError(sensorsAsyncResp->asyncResp->res); return; } // Loop through returned object paths for (const auto& objDictEntry : resp) { const std::string& objPath = static_cast(objDictEntry.first); // If this object path is one of the specified inventory items InventoryItem* inventoryItem = findInventoryItem(inventoryItems, objPath); if (inventoryItem != nullptr) { // Store inventory data in InventoryItem storeInventoryItemData(*inventoryItem, objDictEntry.second); } } // Recurse to get inventory item data from next connection getInventoryItemsData(sensorsAsyncResp, inventoryItems, invConnections, std::move(callback), invConnectionsIndex + 1); BMCWEB_LOG_DEBUG("getInventoryItemsData respHandler exit"); }); } BMCWEB_LOG_DEBUG("getInventoryItemsData exit"); } /** * @brief Gets connections that provide D-Bus data for inventory items. * * Gets the D-Bus connections (services) that provide data for the inventory * items that are associated with sensors. * * Finds the connections asynchronously. Invokes callback when information has * been obtained. * * The callback must have the following signature: * @code * callback(std::shared_ptr> invConnections) * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param callback Callback to invoke when connections have been obtained. */ template static void getInventoryItemsConnections( const std::shared_ptr& sensorsAsyncResp, const std::shared_ptr>& inventoryItems, Callback&& callback) { BMCWEB_LOG_DEBUG("getInventoryItemsConnections enter"); const std::string path = "/xyz/openbmc_project/inventory"; constexpr std::array interfaces = { "xyz.openbmc_project.Inventory.Item", "xyz.openbmc_project.Inventory.Item.PowerSupply", "xyz.openbmc_project.Inventory.Decorator.Asset", "xyz.openbmc_project.State.Decorator.OperationalStatus"}; // Make call to ObjectMapper to find all inventory items dbus::utility::getSubTree( path, 0, interfaces, [callback = std::forward(callback), sensorsAsyncResp, inventoryItems]( const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreeResponse& subtree) { // Response handler for parsing output from GetSubTree BMCWEB_LOG_DEBUG("getInventoryItemsConnections respHandler enter"); if (ec) { messages::internalError(sensorsAsyncResp->asyncResp->res); BMCWEB_LOG_ERROR( "getInventoryItemsConnections respHandler DBus error {}", ec); return; } // Make unique list of connections for desired inventory items std::shared_ptr> invConnections = std::make_shared>(); // Loop through objects from GetSubTree for (const std::pair< std::string, std::vector>>>& object : subtree) { // Check if object path is one of the specified inventory items const std::string& objPath = object.first; if (findInventoryItem(inventoryItems, objPath) != nullptr) { // Store all connections to inventory item for (const std::pair>& objData : object.second) { const std::string& invConnection = objData.first; invConnections->insert(invConnection); } } } callback(invConnections); BMCWEB_LOG_DEBUG("getInventoryItemsConnections respHandler exit"); }); BMCWEB_LOG_DEBUG("getInventoryItemsConnections exit"); } /** * @brief Gets associations from sensors to inventory items. * * Looks for ObjectMapper associations from the specified sensors to related * inventory items. Then finds the associations from those inventory items to * their LEDs, if any. * * Finds the inventory items asynchronously. Invokes callback when information * has been obtained. * * The callback must have the following signature: * @code * callback(std::shared_ptr> inventoryItems) * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param sensorNames All sensors within the current chassis. * implements ObjectManager. * @param callback Callback to invoke when inventory items have been obtained. */ template static void getInventoryItemAssociations( const std::shared_ptr& sensorsAsyncResp, const std::shared_ptr>& sensorNames, Callback&& callback) { BMCWEB_LOG_DEBUG("getInventoryItemAssociations enter"); // Call GetManagedObjects on the ObjectMapper to get all associations sdbusplus::message::object_path path("/"); dbus::utility::getManagedObjects( "xyz.openbmc_project.ObjectMapper", path, [callback = std::forward(callback), sensorsAsyncResp, sensorNames](const boost::system::error_code& ec, const dbus::utility::ManagedObjectType& resp) { BMCWEB_LOG_DEBUG("getInventoryItemAssociations respHandler enter"); if (ec) { BMCWEB_LOG_ERROR( "getInventoryItemAssociations respHandler DBus error {}", ec); messages::internalError(sensorsAsyncResp->asyncResp->res); return; } // Create vector to hold list of inventory items std::shared_ptr> inventoryItems = std::make_shared>(); // Loop through returned object paths std::string sensorAssocPath; sensorAssocPath.reserve(128); // avoid memory allocations for (const auto& objDictEntry : resp) { const std::string& objPath = static_cast(objDictEntry.first); // If path is inventory association for one of the specified sensors for (const std::string& sensorName : *sensorNames) { sensorAssocPath = sensorName; sensorAssocPath += "/inventory"; if (objPath == sensorAssocPath) { // Get Association interface for object path for (const auto& [interface, values] : objDictEntry.second) { if (interface == "xyz.openbmc_project.Association") { for (const auto& [valueName, value] : values) { if (valueName == "endpoints") { const std::vector* endpoints = std::get_if>( &value); if ((endpoints != nullptr) && !endpoints->empty()) { // Add inventory item to vector const std::string& invItemPath = endpoints->front(); addInventoryItem(inventoryItems, invItemPath, sensorName); } } } } } break; } } } // Now loop through the returned object paths again, this time to // find the leds associated with the inventory items we just found std::string inventoryAssocPath; inventoryAssocPath.reserve(128); // avoid memory allocations for (const auto& objDictEntry : resp) { const std::string& objPath = static_cast(objDictEntry.first); for (InventoryItem& inventoryItem : *inventoryItems) { inventoryAssocPath = inventoryItem.objectPath; inventoryAssocPath += "/leds"; if (objPath == inventoryAssocPath) { for (const auto& [interface, values] : objDictEntry.second) { if (interface == "xyz.openbmc_project.Association") { for (const auto& [valueName, value] : values) { if (valueName == "endpoints") { const std::vector* endpoints = std::get_if>( &value); if ((endpoints != nullptr) && !endpoints->empty()) { // Add inventory item to vector // Store LED path in inventory item const std::string& ledPath = endpoints->front(); inventoryItem.ledObjectPath = ledPath; } } } } } break; } } } callback(inventoryItems); BMCWEB_LOG_DEBUG("getInventoryItemAssociations respHandler exit"); }); BMCWEB_LOG_DEBUG("getInventoryItemAssociations exit"); } /** * @brief Gets D-Bus data for inventory item leds associated with sensors. * * Uses the specified connections (services) to obtain D-Bus data for inventory * item leds associated with sensors. Stores the resulting data in the * inventoryItems vector. * * This data is later used to provide sensor property values in the JSON * response. * * Finds the inventory item led data asynchronously. Invokes callback when data * has been obtained. * * The callback must have the following signature: * @code * callback() * @endcode * * This function is called recursively, obtaining data asynchronously from one * connection in each call. This ensures the callback is not invoked until the * last asynchronous function has completed. * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param ledConnections Connections that provide data for the inventory leds. * @param callback Callback to invoke when inventory data has been obtained. * @param ledConnectionsIndex Current index in ledConnections. Only specified * in recursive calls to this function. */ template void getInventoryLedData( std::shared_ptr sensorsAsyncResp, std::shared_ptr> inventoryItems, std::shared_ptr> ledConnections, Callback&& callback, size_t ledConnectionsIndex = 0) { BMCWEB_LOG_DEBUG("getInventoryLedData enter"); // If no more connections left, call callback if (ledConnectionsIndex >= ledConnections->size()) { callback(); BMCWEB_LOG_DEBUG("getInventoryLedData exit"); return; } // Get inventory item data from current connection auto it = ledConnections->begin(); std::advance(it, ledConnectionsIndex); if (it != ledConnections->end()) { const std::string& ledPath = (*it).first; const std::string& ledConnection = (*it).second; // Response handler for Get State property auto respHandler = [sensorsAsyncResp, inventoryItems, ledConnections, ledPath, callback = std::forward(callback), ledConnectionsIndex]( const boost::system::error_code& ec, const std::string& state) { BMCWEB_LOG_DEBUG("getInventoryLedData respHandler enter"); if (ec) { BMCWEB_LOG_ERROR( "getInventoryLedData respHandler DBus error {}", ec); messages::internalError(sensorsAsyncResp->asyncResp->res); return; } BMCWEB_LOG_DEBUG("Led state: {}", state); // Find inventory item with this LED object path InventoryItem* inventoryItem = findInventoryItemForLed(*inventoryItems, ledPath); if (inventoryItem != nullptr) { // Store LED state in InventoryItem if (state.ends_with("On")) { inventoryItem->ledState = LedState::ON; } else if (state.ends_with("Blink")) { inventoryItem->ledState = LedState::BLINK; } else if (state.ends_with("Off")) { inventoryItem->ledState = LedState::OFF; } else { inventoryItem->ledState = LedState::UNKNOWN; } } // Recurse to get LED data from next connection getInventoryLedData(sensorsAsyncResp, inventoryItems, ledConnections, std::move(callback), ledConnectionsIndex + 1); BMCWEB_LOG_DEBUG("getInventoryLedData respHandler exit"); }; // Get the State property for the current LED sdbusplus::asio::getProperty( *crow::connections::systemBus, ledConnection, ledPath, "xyz.openbmc_project.Led.Physical", "State", std::move(respHandler)); } BMCWEB_LOG_DEBUG("getInventoryLedData exit"); } /** * @brief Gets LED data for LEDs associated with given inventory items. * * Gets the D-Bus connections (services) that provide LED data for the LEDs * associated with the specified inventory items. Then gets the LED data from * each connection and stores it in the inventory item. * * This data is later used to provide sensor property values in the JSON * response. * * Finds the LED data asynchronously. Invokes callback when information has * been obtained. * * The callback must have the following signature: * @code * callback() * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param callback Callback to invoke when inventory items have been obtained. */ template void getInventoryLeds( std::shared_ptr sensorsAsyncResp, std::shared_ptr> inventoryItems, Callback&& callback) { BMCWEB_LOG_DEBUG("getInventoryLeds enter"); const std::string path = "/xyz/openbmc_project"; constexpr std::array interfaces = { "xyz.openbmc_project.Led.Physical"}; // Make call to ObjectMapper to find all inventory items dbus::utility::getSubTree( path, 0, interfaces, [callback = std::forward(callback), sensorsAsyncResp, inventoryItems]( const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreeResponse& subtree) { // Response handler for parsing output from GetSubTree BMCWEB_LOG_DEBUG("getInventoryLeds respHandler enter"); if (ec) { messages::internalError(sensorsAsyncResp->asyncResp->res); BMCWEB_LOG_ERROR("getInventoryLeds respHandler DBus error {}", ec); return; } // Build map of LED object paths to connections std::shared_ptr> ledConnections = std::make_shared>(); // Loop through objects from GetSubTree for (const std::pair< std::string, std::vector>>>& object : subtree) { // Check if object path is LED for one of the specified inventory // items const std::string& ledPath = object.first; if (findInventoryItemForLed(*inventoryItems, ledPath) != nullptr) { // Add mapping from ledPath to connection const std::string& connection = object.second.begin()->first; (*ledConnections)[ledPath] = connection; BMCWEB_LOG_DEBUG("Added mapping {} -> {}", ledPath, connection); } } getInventoryLedData(sensorsAsyncResp, inventoryItems, ledConnections, std::move(callback)); BMCWEB_LOG_DEBUG("getInventoryLeds respHandler exit"); }); BMCWEB_LOG_DEBUG("getInventoryLeds exit"); } /** * @brief Gets D-Bus data for Power Supply Attributes such as EfficiencyPercent * * Uses the specified connections (services) (currently assumes just one) to * obtain D-Bus data for Power Supply Attributes. Stores the resulting data in * the inventoryItems vector. Only stores data in Power Supply inventoryItems. * * This data is later used to provide sensor property values in the JSON * response. * * Finds the Power Supply Attributes data asynchronously. Invokes callback * when data has been obtained. * * The callback must have the following signature: * @code * callback(std::shared_ptr> inventoryItems) * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param psAttributesConnections Connections that provide data for the Power * Supply Attributes * @param callback Callback to invoke when data has been obtained. */ template void getPowerSupplyAttributesData( const std::shared_ptr& sensorsAsyncResp, std::shared_ptr> inventoryItems, const std::map& psAttributesConnections, Callback&& callback) { BMCWEB_LOG_DEBUG("getPowerSupplyAttributesData enter"); if (psAttributesConnections.empty()) { BMCWEB_LOG_DEBUG("Can't find PowerSupplyAttributes, no connections!"); callback(inventoryItems); return; } // Assuming just one connection (service) for now auto it = psAttributesConnections.begin(); const std::string& psAttributesPath = (*it).first; const std::string& psAttributesConnection = (*it).second; // Response handler for Get DeratingFactor property auto respHandler = [sensorsAsyncResp, inventoryItems, callback = std::forward(callback)]( const boost::system::error_code& ec, const uint32_t value) { BMCWEB_LOG_DEBUG("getPowerSupplyAttributesData respHandler enter"); if (ec) { BMCWEB_LOG_ERROR( "getPowerSupplyAttributesData respHandler DBus error {}", ec); messages::internalError(sensorsAsyncResp->asyncResp->res); return; } BMCWEB_LOG_DEBUG("PS EfficiencyPercent value: {}", value); // Store value in Power Supply Inventory Items for (InventoryItem& inventoryItem : *inventoryItems) { if (inventoryItem.isPowerSupply) { inventoryItem.powerSupplyEfficiencyPercent = static_cast(value); } } BMCWEB_LOG_DEBUG("getPowerSupplyAttributesData respHandler exit"); callback(inventoryItems); }; // Get the DeratingFactor property for the PowerSupplyAttributes // Currently only property on the interface/only one we care about sdbusplus::asio::getProperty( *crow::connections::systemBus, psAttributesConnection, psAttributesPath, "xyz.openbmc_project.Control.PowerSupplyAttributes", "DeratingFactor", std::move(respHandler)); BMCWEB_LOG_DEBUG("getPowerSupplyAttributesData exit"); } /** * @brief Gets the Power Supply Attributes such as EfficiencyPercent * * Gets the D-Bus connection (service) that provides Power Supply Attributes * data. Then gets the Power Supply Attributes data from the connection * (currently just assumes 1 connection) and stores the data in the inventory * item. * * This data is later used to provide sensor property values in the JSON * response. DeratingFactor on D-Bus is mapped to EfficiencyPercent on Redfish. * * Finds the Power Supply Attributes data asynchronously. Invokes callback * when information has been obtained. * * The callback must have the following signature: * @code * callback(std::shared_ptr> inventoryItems) * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param inventoryItems D-Bus inventory items associated with sensors. * @param callback Callback to invoke when data has been obtained. */ template void getPowerSupplyAttributes( std::shared_ptr sensorsAsyncResp, std::shared_ptr> inventoryItems, Callback&& callback) { BMCWEB_LOG_DEBUG("getPowerSupplyAttributes enter"); // Only need the power supply attributes when the Power Schema if (sensorsAsyncResp->chassisSubNode != sensors::node::power) { BMCWEB_LOG_DEBUG("getPowerSupplyAttributes exit since not Power"); callback(inventoryItems); return; } constexpr std::array interfaces = { "xyz.openbmc_project.Control.PowerSupplyAttributes"}; // Make call to ObjectMapper to find the PowerSupplyAttributes service dbus::utility::getSubTree( "/xyz/openbmc_project", 0, interfaces, [callback = std::forward(callback), sensorsAsyncResp, inventoryItems]( const boost::system::error_code& ec, const dbus::utility::MapperGetSubTreeResponse& subtree) { // Response handler for parsing output from GetSubTree BMCWEB_LOG_DEBUG("getPowerSupplyAttributes respHandler enter"); if (ec) { messages::internalError(sensorsAsyncResp->asyncResp->res); BMCWEB_LOG_ERROR( "getPowerSupplyAttributes respHandler DBus error {}", ec); return; } if (subtree.empty()) { BMCWEB_LOG_DEBUG("Can't find Power Supply Attributes!"); callback(inventoryItems); return; } // Currently we only support 1 power supply attribute, use this for // all the power supplies. Build map of object path to connection. // Assume just 1 connection and 1 path for now. std::map psAttributesConnections; if (subtree[0].first.empty() || subtree[0].second.empty()) { BMCWEB_LOG_DEBUG("Power Supply Attributes mapper error!"); callback(inventoryItems); return; } const std::string& psAttributesPath = subtree[0].first; const std::string& connection = subtree[0].second.begin()->first; if (connection.empty()) { BMCWEB_LOG_DEBUG("Power Supply Attributes mapper error!"); callback(inventoryItems); return; } psAttributesConnections[psAttributesPath] = connection; BMCWEB_LOG_DEBUG("Added mapping {} -> {}", psAttributesPath, connection); getPowerSupplyAttributesData(sensorsAsyncResp, inventoryItems, psAttributesConnections, std::move(callback)); BMCWEB_LOG_DEBUG("getPowerSupplyAttributes respHandler exit"); }); BMCWEB_LOG_DEBUG("getPowerSupplyAttributes exit"); } /** * @brief Gets inventory items associated with sensors. * * Finds the inventory items that are associated with the specified sensors. * Then gets D-Bus data for the inventory items, such as presence and VPD. * * This data is later used to provide sensor property values in the JSON * response. * * Finds the inventory items asynchronously. Invokes callback when the * inventory items have been obtained. * * The callback must have the following signature: * @code * callback(std::shared_ptr> inventoryItems) * @endcode * * @param sensorsAsyncResp Pointer to object holding response data. * @param sensorNames All sensors within the current chassis. * implements ObjectManager. * @param callback Callback to invoke when inventory items have been obtained. */ template static void getInventoryItems(std::shared_ptr sensorsAsyncResp, const std::shared_ptr> sensorNames, Callback&& callback) { BMCWEB_LOG_DEBUG("getInventoryItems enter"); auto getInventoryItemAssociationsCb = [sensorsAsyncResp, callback = std::forward(callback)]( std::shared_ptr> inventoryItems) { BMCWEB_LOG_DEBUG("getInventoryItemAssociationsCb enter"); auto getInventoryItemsConnectionsCb = [sensorsAsyncResp, inventoryItems, callback = std::forward(callback)]( std::shared_ptr> invConnections) { BMCWEB_LOG_DEBUG("getInventoryItemsConnectionsCb enter"); auto getInventoryItemsDataCb = [sensorsAsyncResp, inventoryItems, callback{std::move(callback)}]() { BMCWEB_LOG_DEBUG("getInventoryItemsDataCb enter"); auto getInventoryLedsCb = [sensorsAsyncResp, inventoryItems, callback{std::move(callback)}]() { BMCWEB_LOG_DEBUG("getInventoryLedsCb enter"); // Find Power Supply Attributes and get the data getPowerSupplyAttributes(sensorsAsyncResp, inventoryItems, std::move(callback)); BMCWEB_LOG_DEBUG("getInventoryLedsCb exit"); }; // Find led connections and get the data getInventoryLeds(sensorsAsyncResp, inventoryItems, std::move(getInventoryLedsCb)); BMCWEB_LOG_DEBUG("getInventoryItemsDataCb exit"); }; // Get inventory item data from connections getInventoryItemsData(sensorsAsyncResp, inventoryItems, invConnections, std::move(getInventoryItemsDataCb)); BMCWEB_LOG_DEBUG("getInventoryItemsConnectionsCb exit"); }; // Get connections that provide inventory item data getInventoryItemsConnections(sensorsAsyncResp, inventoryItems, std::move(getInventoryItemsConnectionsCb)); BMCWEB_LOG_DEBUG("getInventoryItemAssociationsCb exit"); }; // Get associations from sensors to inventory items getInventoryItemAssociations(sensorsAsyncResp, sensorNames, std::move(getInventoryItemAssociationsCb)); BMCWEB_LOG_DEBUG("getInventoryItems exit"); } /** * @brief Returns JSON PowerSupply object for the specified inventory item. * * Searches for a JSON PowerSupply object that matches the specified inventory * item. If one is not found, a new PowerSupply object is added to the JSON * array. * * Multiple sensors are often associated with one power supply inventory item. * As a result, multiple sensor values are stored in one JSON PowerSupply * object. * * @param powerSupplyArray JSON array containing Redfish PowerSupply objects. * @param inventoryItem Inventory item for the power supply. * @param chassisId Chassis that contains the power supply. * @return JSON PowerSupply object for the specified inventory item. */ inline nlohmann::json& getPowerSupply(nlohmann::json& powerSupplyArray, const InventoryItem& inventoryItem, const std::string& chassisId) { std::string nameS; nameS.resize(inventoryItem.name.size()); std::ranges::replace_copy(inventoryItem.name, nameS.begin(), '_', ' '); // Check if matching PowerSupply object already exists in JSON array for (nlohmann::json& powerSupply : powerSupplyArray) { nlohmann::json::iterator nameIt = powerSupply.find("Name"); if (nameIt == powerSupply.end()) { continue; } const std::string* name = nameIt->get_ptr(); if (name == nullptr) { continue; } if (nameS == *name) { return powerSupply; } } // Add new PowerSupply object to JSON array powerSupplyArray.push_back({}); nlohmann::json& powerSupply = powerSupplyArray.back(); boost::urls::url url = boost::urls::format("/redfish/v1/Chassis/{}/Power", chassisId); url.set_fragment(("/PowerSupplies"_json_pointer).to_string()); powerSupply["@odata.id"] = std::move(url); std::string escaped; escaped.resize(inventoryItem.name.size()); std::ranges::replace_copy(inventoryItem.name, escaped.begin(), '_', ' '); powerSupply["Name"] = std::move(escaped); powerSupply["Manufacturer"] = inventoryItem.manufacturer; powerSupply["Model"] = inventoryItem.model; powerSupply["PartNumber"] = inventoryItem.partNumber; powerSupply["SerialNumber"] = inventoryItem.serialNumber; setLedState(powerSupply, &inventoryItem); if (inventoryItem.powerSupplyEfficiencyPercent >= 0) { powerSupply["EfficiencyPercent"] = inventoryItem.powerSupplyEfficiencyPercent; } powerSupply["Status"]["State"] = getState(&inventoryItem, true); const char* health = inventoryItem.isFunctional ? "OK" : "Critical"; powerSupply["Status"]["Health"] = health; return powerSupply; } /** * @brief Gets the values of the specified sensors. * * Stores the results as JSON in the SensorsAsyncResp. * * Gets the sensor values asynchronously. Stores the results later when the * information has been obtained. * * The sensorNames set contains all requested sensors for the current chassis. * * To minimize the number of DBus calls, the DBus method * org.freedesktop.DBus.ObjectManager.GetManagedObjects() is used to get the * values of all sensors provided by a connection (service). * * The connections set contains all the connections that provide sensor values. * * The InventoryItem vector contains D-Bus inventory items associated with the * sensors. Inventory item data is needed for some Redfish sensor properties. * * @param SensorsAsyncResp Pointer to object holding response data. * @param sensorNames All requested sensors within the current chassis. * @param connections Connections that provide sensor values. * implements ObjectManager. * @param inventoryItems Inventory items associated with the sensors. */ inline void getSensorData( const std::shared_ptr& sensorsAsyncResp, const std::shared_ptr>& sensorNames, const std::set& connections, const std::shared_ptr>& inventoryItems) { BMCWEB_LOG_DEBUG("getSensorData enter"); // Get managed objects from all services exposing sensors for (const std::string& connection : connections) { sdbusplus::message::object_path sensorPath( "/xyz/openbmc_project/sensors"); dbus::utility::getManagedObjects( connection, sensorPath, [sensorsAsyncResp, sensorNames, inventoryItems](const boost::system::error_code& ec, const dbus::utility::ManagedObjectType& resp) { BMCWEB_LOG_DEBUG("getManagedObjectsCb enter"); if (ec) { BMCWEB_LOG_ERROR("getManagedObjectsCb DBUS error: {}", ec); messages::internalError(sensorsAsyncResp->asyncResp->res); return; } // Go through all objects and update response with sensor data for (const auto& objDictEntry : resp) { const std::string& objPath = static_cast(objDictEntry.first); BMCWEB_LOG_DEBUG("getManagedObjectsCb parsing object {}", objPath); std::vector split; // Reserve space for // /xyz/openbmc_project/sensors// split.reserve(6); // NOLINTNEXTLINE bmcweb::split(split, objPath, '/'); if (split.size() < 6) { BMCWEB_LOG_ERROR("Got path that isn't long enough {}", objPath); continue; } // These indexes aren't intuitive, as split puts an empty // string at the beginning const std::string& sensorType = split[4]; const std::string& sensorName = split[5]; BMCWEB_LOG_DEBUG("sensorName {} sensorType {}", sensorName, sensorType); if (sensorNames->find(objPath) == sensorNames->end()) { BMCWEB_LOG_DEBUG("{} not in sensor list ", sensorName); continue; } // Find inventory item (if any) associated with sensor InventoryItem* inventoryItem = findInventoryItemForSensor(inventoryItems, objPath); const std::string& sensorSchema = sensorsAsyncResp->chassisSubNode; nlohmann::json* sensorJson = nullptr; if (sensorSchema == sensors::node::sensors && !sensorsAsyncResp->efficientExpand) { std::string sensorTypeEscaped(sensorType); auto remove = std::ranges::remove(sensorTypeEscaped, '_'); sensorTypeEscaped.erase(std::ranges::begin(remove), sensorTypeEscaped.end()); std::string sensorId(sensorTypeEscaped); sensorId += "_"; sensorId += sensorName; sensorsAsyncResp->asyncResp->res.jsonValue["@odata.id"] = boost::urls::format("/redfish/v1/Chassis/{}/{}/{}", sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode, sensorId); sensorJson = &(sensorsAsyncResp->asyncResp->res.jsonValue); } else { std::string fieldName; if (sensorsAsyncResp->efficientExpand) { fieldName = "Members"; } else if (sensorType == "temperature") { fieldName = "Temperatures"; } else if (sensorType == "fan" || sensorType == "fan_tach" || sensorType == "fan_pwm") { fieldName = "Fans"; } else if (sensorType == "voltage") { fieldName = "Voltages"; } else if (sensorType == "power") { if (sensorName == "total_power") { fieldName = "PowerControl"; } else if ((inventoryItem != nullptr) && (inventoryItem->isPowerSupply)) { fieldName = "PowerSupplies"; } else { // Other power sensors are in SensorCollection continue; } } else { BMCWEB_LOG_ERROR("Unsure how to handle sensorType {}", sensorType); continue; } nlohmann::json& tempArray = sensorsAsyncResp->asyncResp->res.jsonValue[fieldName]; if (fieldName == "PowerControl") { if (tempArray.empty()) { // Put multiple "sensors" into a single // PowerControl. Follows MemberId naming and // naming in power.hpp. nlohmann::json::object_t power; boost::urls::url url = boost::urls::format( "/redfish/v1/Chassis/{}/{}", sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode); url.set_fragment((""_json_pointer / fieldName / "0") .to_string()); power["@odata.id"] = std::move(url); tempArray.emplace_back(std::move(power)); } sensorJson = &(tempArray.back()); } else if (fieldName == "PowerSupplies") { if (inventoryItem != nullptr) { sensorJson = &(getPowerSupply(tempArray, *inventoryItem, sensorsAsyncResp->chassisId)); } } else if (fieldName == "Members") { std::string sensorTypeEscaped(sensorType); auto remove = std::ranges::remove(sensorTypeEscaped, '_'); sensorTypeEscaped.erase(std::ranges::begin(remove), sensorTypeEscaped.end()); std::string sensorId(sensorTypeEscaped); sensorId += "_"; sensorId += sensorName; nlohmann::json::object_t member; member["@odata.id"] = boost::urls::format( "/redfish/v1/Chassis/{}/{}/{}", sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode, sensorId); tempArray.emplace_back(std::move(member)); sensorJson = &(tempArray.back()); } else { nlohmann::json::object_t member; boost::urls::url url = boost::urls::format( "/redfish/v1/Chassis/{}/{}", sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode); url.set_fragment( (""_json_pointer / fieldName).to_string()); member["@odata.id"] = std::move(url); tempArray.emplace_back(std::move(member)); sensorJson = &(tempArray.back()); } } if (sensorJson != nullptr) { objectInterfacesToJson(sensorName, sensorType, sensorsAsyncResp->chassisSubNode, objDictEntry.second, *sensorJson, inventoryItem); std::string path = "/xyz/openbmc_project/sensors/"; path += sensorType; path += "/"; path += sensorName; sensorsAsyncResp->addMetadata(*sensorJson, path); } } if (sensorsAsyncResp.use_count() == 1) { sortJSONResponse(sensorsAsyncResp); if (sensorsAsyncResp->chassisSubNode == sensors::node::sensors && sensorsAsyncResp->efficientExpand) { sensorsAsyncResp->asyncResp->res .jsonValue["Members@odata.count"] = sensorsAsyncResp->asyncResp->res.jsonValue["Members"] .size(); } else if (sensorsAsyncResp->chassisSubNode == sensors::node::thermal) { populateFanRedundancy(sensorsAsyncResp); } } BMCWEB_LOG_DEBUG("getManagedObjectsCb exit"); }); } BMCWEB_LOG_DEBUG("getSensorData exit"); } inline void processSensorList(const std::shared_ptr& sensorsAsyncResp, const std::shared_ptr>& sensorNames) { auto getConnectionCb = [sensorsAsyncResp, sensorNames]( const std::set& connections) { BMCWEB_LOG_DEBUG("getConnectionCb enter"); auto getInventoryItemsCb = [sensorsAsyncResp, sensorNames, connections](const std::shared_ptr>& inventoryItems) { BMCWEB_LOG_DEBUG("getInventoryItemsCb enter"); // Get sensor data and store results in JSON getSensorData(sensorsAsyncResp, sensorNames, connections, inventoryItems); BMCWEB_LOG_DEBUG("getInventoryItemsCb exit"); }; // Get inventory items associated with sensors getInventoryItems(sensorsAsyncResp, sensorNames, std::move(getInventoryItemsCb)); BMCWEB_LOG_DEBUG("getConnectionCb exit"); }; // Get set of connections that provide sensor values getConnections(sensorsAsyncResp, sensorNames, std::move(getConnectionCb)); } /** * @brief Entry point for retrieving sensors data related to requested * chassis. * @param SensorsAsyncResp Pointer to object holding response data */ inline void getChassisData(const std::shared_ptr& sensorsAsyncResp) { BMCWEB_LOG_DEBUG("getChassisData enter"); auto getChassisCb = [sensorsAsyncResp]( const std::shared_ptr>& sensorNames) { BMCWEB_LOG_DEBUG("getChassisCb enter"); processSensorList(sensorsAsyncResp, sensorNames); BMCWEB_LOG_DEBUG("getChassisCb exit"); }; // SensorCollection doesn't contain the Redundancy property if (sensorsAsyncResp->chassisSubNode != sensors::node::sensors) { sensorsAsyncResp->asyncResp->res.jsonValue["Redundancy"] = nlohmann::json::array(); } // Get set of sensors in chassis getChassis(sensorsAsyncResp->asyncResp, sensorsAsyncResp->chassisId, sensorsAsyncResp->chassisSubNode, sensorsAsyncResp->types, std::move(getChassisCb)); BMCWEB_LOG_DEBUG("getChassisData exit"); } /** * @brief Find the requested sensorName in the list of all sensors supplied by * the chassis node * * @param sensorName The sensor name supplied in the PATCH request * @param sensorsList The list of sensors managed by the chassis node * @param sensorsModified The list of sensors that were found as a result of * repeated calls to this function */ inline bool findSensorNameUsingSensorPath(std::string_view sensorName, const std::set& sensorsList, std::set& sensorsModified) { for (const auto& chassisSensor : sensorsList) { sdbusplus::message::object_path path(chassisSensor); std::string thisSensorName = path.filename(); if (thisSensorName.empty()) { continue; } if (thisSensorName == sensorName) { sensorsModified.emplace(chassisSensor); return true; } } return false; } inline std::pair splitSensorNameAndType(std::string_view sensorId) { size_t index = sensorId.find('_'); if (index == std::string::npos) { return std::make_pair("", ""); } std::string sensorType{sensorId.substr(0, index)}; std::string sensorName{sensorId.substr(index + 1)}; // fan_pwm and fan_tach need special handling if (sensorType == "fantach" || sensorType == "fanpwm") { sensorType.insert(3, 1, '_'); } return std::make_pair(sensorType, sensorName); } /** * @brief Entry point for overriding sensor values of given sensor * * @param sensorAsyncResp response object * @param allCollections Collections extract from sensors' request patch info * @param chassisSubNode Chassis Node for which the query has to happen */ inline void setSensorsOverride( const std::shared_ptr& sensorAsyncResp, std::unordered_map>& allCollections) { BMCWEB_LOG_INFO("setSensorsOverride for subNode{}", sensorAsyncResp->chassisSubNode); std::string_view propertyValueName; std::unordered_map> overrideMap; std::string memberId; double value = 0.0; for (auto& collectionItems : allCollections) { if (collectionItems.first == "Temperatures") { propertyValueName = "ReadingCelsius"; } else if (collectionItems.first == "Fans") { propertyValueName = "Reading"; } else { propertyValueName = "ReadingVolts"; } for (auto& item : collectionItems.second) { if (!json_util::readJsonObject( item, sensorAsyncResp->asyncResp->res, "MemberId", memberId, propertyValueName, value)) { return; } overrideMap.emplace(memberId, std::make_pair(value, collectionItems.first)); } } auto getChassisSensorListCb = [sensorAsyncResp, overrideMap, propertyValueNameStr = std::string(propertyValueName)]( const std::shared_ptr>& sensorsList) { // Match sensor names in the PATCH request to those managed by the // chassis node const std::shared_ptr> sensorNames = std::make_shared>(); for (const auto& item : overrideMap) { const auto& sensor = item.first; std::pair sensorNameType = splitSensorNameAndType(sensor); if (!findSensorNameUsingSensorPath(sensorNameType.second, *sensorsList, *sensorNames)) { BMCWEB_LOG_INFO("Unable to find memberId {}", item.first); messages::resourceNotFound(sensorAsyncResp->asyncResp->res, item.second.second, item.first); return; } } // Get the connection to which the memberId belongs auto getObjectsWithConnectionCb = [sensorAsyncResp, overrideMap, propertyValueNameStr]( const std::set& /*connections*/, const std::set>& objectsWithConnection) { if (objectsWithConnection.size() != overrideMap.size()) { BMCWEB_LOG_INFO( "Unable to find all objects with proper connection {} requested {}", objectsWithConnection.size(), overrideMap.size()); messages::resourceNotFound(sensorAsyncResp->asyncResp->res, sensorAsyncResp->chassisSubNode == sensors::node::thermal ? "Temperatures" : "Voltages", "Count"); return; } for (const auto& item : objectsWithConnection) { sdbusplus::message::object_path path(item.first); std::string sensorName = path.filename(); if (sensorName.empty()) { messages::internalError(sensorAsyncResp->asyncResp->res); return; } std::string id = path.parent_path().filename(); auto remove = std::ranges::remove(id, '_'); id.erase(std::ranges::begin(remove), id.end()); id += "_"; id += sensorName; const auto& iterator = overrideMap.find(id); if (iterator == overrideMap.end()) { BMCWEB_LOG_INFO("Unable to find sensor object{}", item.first); messages::internalError(sensorAsyncResp->asyncResp->res); return; } setDbusProperty(sensorAsyncResp->asyncResp, item.second, item.first, "xyz.openbmc_project.Sensor.Value", "Value", propertyValueNameStr, iterator->second.first); } }; // Get object with connection for the given sensor name getObjectsWithConnection(sensorAsyncResp, sensorNames, std::move(getObjectsWithConnectionCb)); }; // get full sensor list for the given chassisId and cross verify the sensor. getChassis(sensorAsyncResp->asyncResp, sensorAsyncResp->chassisId, sensorAsyncResp->chassisSubNode, sensorAsyncResp->types, std::move(getChassisSensorListCb)); } /** * @brief Retrieves mapping of Redfish URIs to sensor value property to D-Bus * path of the sensor. * * Function builds valid Redfish response for sensor query of given chassis and * node. It then builds metadata about Redfish<->D-Bus correlations and provides * it to caller in a callback. * * @param chassis Chassis for which retrieval should be performed * @param node Node (group) of sensors. See sensors::node for supported values * @param mapComplete Callback to be called with retrieval result */ template inline void retrieveUriToDbusMap(const std::string& chassis, const std::string& node, Callback&& mapComplete) { decltype(sensors::paths)::const_iterator pathIt = std::find_if(sensors::paths.cbegin(), sensors::paths.cend(), [&node](auto&& val) { return val.first == node; }); if (pathIt == sensors::paths.cend()) { BMCWEB_LOG_ERROR("Wrong node provided : {}", node); std::map noop; mapComplete(boost::beast::http::status::bad_request, noop); return; } auto asyncResp = std::make_shared(); auto callback = [asyncResp, mapCompleteCb = std::forward(mapComplete)]( const boost::beast::http::status status, const std::map& uriToDbus) { mapCompleteCb(status, uriToDbus); }; auto resp = std::make_shared( asyncResp, chassis, pathIt->second, node, std::move(callback)); getChassisData(resp); } namespace sensors { inline void getChassisCallback( const std::shared_ptr& asyncResp, std::string_view chassisId, std::string_view chassisSubNode, const std::shared_ptr>& sensorNames) { BMCWEB_LOG_DEBUG("getChassisCallback enter "); nlohmann::json& entriesArray = asyncResp->res.jsonValue["Members"]; for (const std::string& sensor : *sensorNames) { BMCWEB_LOG_DEBUG("Adding sensor: {}", sensor); sdbusplus::message::object_path path(sensor); std::string sensorName = path.filename(); if (sensorName.empty()) { BMCWEB_LOG_ERROR("Invalid sensor path: {}", sensor); messages::internalError(asyncResp->res); return; } std::string type = path.parent_path().filename(); // fan_tach has an underscore in it, so remove it to "normalize" the // type in the URI auto remove = std::ranges::remove(type, '_'); type.erase(std::ranges::begin(remove), type.end()); nlohmann::json::object_t member; std::string id = type; id += "_"; id += sensorName; member["@odata.id"] = boost::urls::format( "/redfish/v1/Chassis/{}/{}/{}", chassisId, chassisSubNode, id); entriesArray.emplace_back(std::move(member)); } asyncResp->res.jsonValue["Members@odata.count"] = entriesArray.size(); BMCWEB_LOG_DEBUG("getChassisCallback exit"); } inline void handleSensorCollectionGet( App& app, const crow::Request& req, const std::shared_ptr& asyncResp, const std::string& chassisId) { query_param::QueryCapabilities capabilities = { .canDelegateExpandLevel = 1, }; query_param::Query delegatedQuery; if (!redfish::setUpRedfishRouteWithDelegation(app, req, asyncResp, delegatedQuery, capabilities)) { return; } if (delegatedQuery.expandType != query_param::ExpandType::None) { // we perform efficient expand. auto sensorsAsyncResp = std::make_shared( asyncResp, chassisId, sensors::dbus::sensorPaths, sensors::node::sensors, /*efficientExpand=*/true); getChassisData(sensorsAsyncResp); BMCWEB_LOG_DEBUG( "SensorCollection doGet exit via efficient expand handler"); return; } // We get all sensors as hyperlinkes in the chassis (this // implies we reply on the default query parameters handler) getChassis(asyncResp, chassisId, sensors::node::sensors, dbus::sensorPaths, std::bind_front(sensors::getChassisCallback, asyncResp, chassisId, sensors::node::sensors)); } inline void getSensorFromDbus(const std::shared_ptr& asyncResp, const std::string& sensorPath, const ::dbus::utility::MapperGetObject& mapperResponse) { if (mapperResponse.size() != 1) { messages::internalError(asyncResp->res); return; } const auto& valueIface = *mapperResponse.begin(); const std::string& connectionName = valueIface.first; BMCWEB_LOG_DEBUG("Looking up {}", connectionName); BMCWEB_LOG_DEBUG("Path {}", sensorPath); sdbusplus::asio::getAllProperties( *crow::connections::systemBus, connectionName, sensorPath, "", [asyncResp, sensorPath](const boost::system::error_code& ec, const ::dbus::utility::DBusPropertiesMap& valuesDict) { if (ec) { messages::internalError(asyncResp->res); return; } sdbusplus::message::object_path path(sensorPath); std::string name = path.filename(); path = path.parent_path(); std::string type = path.filename(); objectPropertiesToJson(name, type, sensors::node::sensors, valuesDict, asyncResp->res.jsonValue, nullptr); }); } inline void handleSensorGet(App& app, const crow::Request& req, const std::shared_ptr& asyncResp, const std::string& chassisId, const std::string& sensorId) { if (!redfish::setUpRedfishRoute(app, req, asyncResp)) { return; } std::pair nameType = splitSensorNameAndType(sensorId); if (nameType.first.empty() || nameType.second.empty()) { messages::resourceNotFound(asyncResp->res, sensorId, "Sensor"); return; } asyncResp->res.jsonValue["@odata.id"] = boost::urls::format( "/redfish/v1/Chassis/{}/Sensors/{}", chassisId, sensorId); BMCWEB_LOG_DEBUG("Sensor doGet enter"); constexpr std::array interfaces = { "xyz.openbmc_project.Sensor.Value"}; std::string sensorPath = "/xyz/openbmc_project/sensors/" + nameType.first + '/' + nameType.second; // Get a list of all of the sensors that implement Sensor.Value // and get the path and service name associated with the sensor ::dbus::utility::getDbusObject( sensorPath, interfaces, [asyncResp, sensorId, sensorPath](const boost::system::error_code& ec, const ::dbus::utility::MapperGetObject& subtree) { BMCWEB_LOG_DEBUG("respHandler1 enter"); if (ec == boost::system::errc::io_error) { BMCWEB_LOG_WARNING("Sensor not found from getSensorPaths"); messages::resourceNotFound(asyncResp->res, sensorId, "Sensor"); return; } if (ec) { messages::internalError(asyncResp->res); BMCWEB_LOG_ERROR( "Sensor getSensorPaths resp_handler: Dbus error {}", ec); return; } getSensorFromDbus(asyncResp, sensorPath, subtree); BMCWEB_LOG_DEBUG("respHandler1 exit"); }); } } // namespace sensors inline void requestRoutesSensorCollection(App& app) { BMCWEB_ROUTE(app, "/redfish/v1/Chassis//Sensors/") .privileges(redfish::privileges::getSensorCollection) .methods(boost::beast::http::verb::get)( std::bind_front(sensors::handleSensorCollectionGet, std::ref(app))); } inline void requestRoutesSensor(App& app) { BMCWEB_ROUTE(app, "/redfish/v1/Chassis//Sensors//") .privileges(redfish::privileges::getSensor) .methods(boost::beast::http::verb::get)( std::bind_front(sensors::handleSensorGet, std::ref(app))); } } // namespace redfish