summaryrefslogtreecommitdiff
path: root/poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch
diff options
context:
space:
mode:
Diffstat (limited to 'poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch')
-rw-r--r--poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch208
1 files changed, 0 insertions, 208 deletions
diff --git a/poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch b/poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch
deleted file mode 100644
index 22f080dbd4..0000000000
--- a/poky/meta/recipes-devtools/go/go/CVE-2023-24532.patch
+++ /dev/null
@@ -1,208 +0,0 @@
-From 602eeaab387f24a4b28c5eccbb50fa934f3bc3c4 Mon Sep 17 00:00:00 2001
-From: Filippo Valsorda <filippo@golang.org>
-Date: Mon, 13 Feb 2023 15:16:27 +0100
-Subject: [PATCH] [release-branch.go1.20] crypto/internal/nistec: reduce P-256
- scalar
-
-Unlike the rest of nistec, the P-256 assembly doesn't use complete
-addition formulas, meaning that p256PointAdd[Affine]Asm won't return the
-correct value if the two inputs are equal.
-
-This was (undocumentedly) ignored in the scalar multiplication loops
-because as long as the input point is not the identity and the scalar is
-lower than the order of the group, the addition inputs can't be the same.
-
-As part of the math/big rewrite, we went however from always reducing
-the scalar to only checking its length, under the incorrect assumption
-that the scalar multiplication loop didn't require reduction.
-
-Added a reduction, and while at it added it in P256OrdInverse, too, to
-enforce a universal reduction invariant on p256OrdElement values.
-
-Note that if the input point is the infinity, the code currently still
-relies on undefined behavior, but that's easily tested to behave
-acceptably, and will be addressed in a future CL.
-
-Updates #58647
-Fixes #58720
-Fixes CVE-2023-24532
-
-(Filed with the "safe APIs like complete addition formulas are good" dept.)
-
-Change-Id: I7b2c75238440e6852be2710fad66ff1fdc4e2b24
-Reviewed-on: https://go-review.googlesource.com/c/go/+/471255
-TryBot-Result: Gopher Robot <gobot@golang.org>
-Reviewed-by: Roland Shoemaker <roland@golang.org>
-Run-TryBot: Filippo Valsorda <filippo@golang.org>
-Auto-Submit: Filippo Valsorda <filippo@golang.org>
-Reviewed-by: Damien Neil <dneil@google.com>
-(cherry picked from commit 203e59ad41bd288e1d92b6f617c2f55e70d3c8e3)
-Reviewed-on: https://go-review.googlesource.com/c/go/+/471695
-Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
-Auto-Submit: Dmitri Shuralyov <dmitshur@google.com>
-Reviewed-by: Filippo Valsorda <filippo@golang.org>
-Run-TryBot: Roland Shoemaker <roland@golang.org>
-
-CVE: CVE-2023-24532
-Upstream-Status: Backport [602eeaab387f24a4b28c5eccbb50fa934f3bc3c4]
-Signed-off-by: Ross Burton <ross.burton@arm.com>
-
----
- src/crypto/internal/nistec/nistec_test.go | 81 +++++++++++++++++++++++
- src/crypto/internal/nistec/p256_asm.go | 17 +++++
- src/crypto/internal/nistec/p256_ordinv.go | 1 +
- 3 files changed, 99 insertions(+)
-
-diff --git a/src/crypto/internal/nistec/nistec_test.go b/src/crypto/internal/nistec/nistec_test.go
-index 309f68be16a9f..9103608c18a0f 100644
---- a/src/crypto/internal/nistec/nistec_test.go
-+++ b/src/crypto/internal/nistec/nistec_test.go
-@@ -8,6 +8,7 @@ import (
- "bytes"
- "crypto/elliptic"
- "crypto/internal/nistec"
-+ "fmt"
- "internal/testenv"
- "math/big"
- "math/rand"
-@@ -165,6 +166,86 @@ func testEquivalents[P nistPoint[P]](t *testing.T, newPoint func() P, c elliptic
- }
- }
-
-+func TestScalarMult(t *testing.T) {
-+ t.Run("P224", func(t *testing.T) {
-+ testScalarMult(t, nistec.NewP224Point, elliptic.P224())
-+ })
-+ t.Run("P256", func(t *testing.T) {
-+ testScalarMult(t, nistec.NewP256Point, elliptic.P256())
-+ })
-+ t.Run("P384", func(t *testing.T) {
-+ testScalarMult(t, nistec.NewP384Point, elliptic.P384())
-+ })
-+ t.Run("P521", func(t *testing.T) {
-+ testScalarMult(t, nistec.NewP521Point, elliptic.P521())
-+ })
-+}
-+
-+func testScalarMult[P nistPoint[P]](t *testing.T, newPoint func() P, c elliptic.Curve) {
-+ G := newPoint().SetGenerator()
-+ checkScalar := func(t *testing.T, scalar []byte) {
-+ p1, err := newPoint().ScalarBaseMult(scalar)
-+ fatalIfErr(t, err)
-+ p2, err := newPoint().ScalarMult(G, scalar)
-+ fatalIfErr(t, err)
-+ if !bytes.Equal(p1.Bytes(), p2.Bytes()) {
-+ t.Error("[k]G != ScalarBaseMult(k)")
-+ }
-+
-+ d := new(big.Int).SetBytes(scalar)
-+ d.Sub(c.Params().N, d)
-+ d.Mod(d, c.Params().N)
-+ g1, err := newPoint().ScalarBaseMult(d.FillBytes(make([]byte, len(scalar))))
-+ fatalIfErr(t, err)
-+ g1.Add(g1, p1)
-+ if !bytes.Equal(g1.Bytes(), newPoint().Bytes()) {
-+ t.Error("[N - k]G + [k]G != ∞")
-+ }
-+ }
-+
-+ byteLen := len(c.Params().N.Bytes())
-+ bitLen := c.Params().N.BitLen()
-+ t.Run("0", func(t *testing.T) { checkScalar(t, make([]byte, byteLen)) })
-+ t.Run("1", func(t *testing.T) {
-+ checkScalar(t, big.NewInt(1).FillBytes(make([]byte, byteLen)))
-+ })
-+ t.Run("N-1", func(t *testing.T) {
-+ checkScalar(t, new(big.Int).Sub(c.Params().N, big.NewInt(1)).Bytes())
-+ })
-+ t.Run("N", func(t *testing.T) { checkScalar(t, c.Params().N.Bytes()) })
-+ t.Run("N+1", func(t *testing.T) {
-+ checkScalar(t, new(big.Int).Add(c.Params().N, big.NewInt(1)).Bytes())
-+ })
-+ t.Run("all1s", func(t *testing.T) {
-+ s := new(big.Int).Lsh(big.NewInt(1), uint(bitLen))
-+ s.Sub(s, big.NewInt(1))
-+ checkScalar(t, s.Bytes())
-+ })
-+ if testing.Short() {
-+ return
-+ }
-+ for i := 0; i < bitLen; i++ {
-+ t.Run(fmt.Sprintf("1<<%d", i), func(t *testing.T) {
-+ s := new(big.Int).Lsh(big.NewInt(1), uint(i))
-+ checkScalar(t, s.FillBytes(make([]byte, byteLen)))
-+ })
-+ }
-+ // Test N+1...N+32 since they risk overlapping with precomputed table values
-+ // in the final additions.
-+ for i := int64(2); i <= 32; i++ {
-+ t.Run(fmt.Sprintf("N+%d", i), func(t *testing.T) {
-+ checkScalar(t, new(big.Int).Add(c.Params().N, big.NewInt(i)).Bytes())
-+ })
-+ }
-+}
-+
-+func fatalIfErr(t *testing.T, err error) {
-+ t.Helper()
-+ if err != nil {
-+ t.Fatal(err)
-+ }
-+}
-+
- func BenchmarkScalarMult(b *testing.B) {
- b.Run("P224", func(b *testing.B) {
- benchmarkScalarMult(b, nistec.NewP224Point().SetGenerator(), 28)
-diff --git a/src/crypto/internal/nistec/p256_asm.go b/src/crypto/internal/nistec/p256_asm.go
-index 6ea161eb49953..99a22b833f028 100644
---- a/src/crypto/internal/nistec/p256_asm.go
-+++ b/src/crypto/internal/nistec/p256_asm.go
-@@ -364,6 +364,21 @@ func p256PointDoubleAsm(res, in *P256Point)
- // Montgomery domain (with R 2²⁵⁶) as four uint64 limbs in little-endian order.
- type p256OrdElement [4]uint64
-
-+// p256OrdReduce ensures s is in the range [0, ord(G)-1].
-+func p256OrdReduce(s *p256OrdElement) {
-+ // Since 2 * ord(G) > 2²⁵⁶, we can just conditionally subtract ord(G),
-+ // keeping the result if it doesn't underflow.
-+ t0, b := bits.Sub64(s[0], 0xf3b9cac2fc632551, 0)
-+ t1, b := bits.Sub64(s[1], 0xbce6faada7179e84, b)
-+ t2, b := bits.Sub64(s[2], 0xffffffffffffffff, b)
-+ t3, b := bits.Sub64(s[3], 0xffffffff00000000, b)
-+ tMask := b - 1 // zero if subtraction underflowed
-+ s[0] ^= (t0 ^ s[0]) & tMask
-+ s[1] ^= (t1 ^ s[1]) & tMask
-+ s[2] ^= (t2 ^ s[2]) & tMask
-+ s[3] ^= (t3 ^ s[3]) & tMask
-+}
-+
- // Add sets q = p1 + p2, and returns q. The points may overlap.
- func (q *P256Point) Add(r1, r2 *P256Point) *P256Point {
- var sum, double P256Point
-@@ -393,6 +408,7 @@ func (r *P256Point) ScalarBaseMult(scalar []byte) (*P256Point, error) {
- }
- scalarReversed := new(p256OrdElement)
- p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
-+ p256OrdReduce(scalarReversed)
-
- r.p256BaseMult(scalarReversed)
- return r, nil
-@@ -407,6 +423,7 @@ func (r *P256Point) ScalarMult(q *P256Point, scalar []byte) (*P256Point, error)
- }
- scalarReversed := new(p256OrdElement)
- p256OrdBigToLittle(scalarReversed, (*[32]byte)(scalar))
-+ p256OrdReduce(scalarReversed)
-
- r.Set(q).p256ScalarMult(scalarReversed)
- return r, nil
-diff --git a/src/crypto/internal/nistec/p256_ordinv.go b/src/crypto/internal/nistec/p256_ordinv.go
-index 86a7a230bdce8..1274fb7fd3f5c 100644
---- a/src/crypto/internal/nistec/p256_ordinv.go
-+++ b/src/crypto/internal/nistec/p256_ordinv.go
-@@ -25,6 +25,7 @@ func P256OrdInverse(k []byte) ([]byte, error) {
-
- x := new(p256OrdElement)
- p256OrdBigToLittle(x, (*[32]byte)(k))
-+ p256OrdReduce(x)
-
- // Inversion is implemented as exponentiation by n - 2, per Fermat's little theorem.
- //