summaryrefslogtreecommitdiff
path: root/misc/pylib/fontbuild/italics.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'misc/pylib/fontbuild/italics.pyx')
-rw-r--r--misc/pylib/fontbuild/italics.pyx308
1 files changed, 0 insertions, 308 deletions
diff --git a/misc/pylib/fontbuild/italics.pyx b/misc/pylib/fontbuild/italics.pyx
deleted file mode 100644
index 769586f40..000000000
--- a/misc/pylib/fontbuild/italics.pyx
+++ /dev/null
@@ -1,308 +0,0 @@
-# Copyright 2015 Google Inc. All Rights Reserved.
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-
-import math
-
-from fontTools.misc.transform import Transform
-import numpy as np
-from numpy.linalg import norm
-from scipy.sparse.linalg import cg
-from scipy.ndimage.filters import gaussian_filter1d as gaussian
-from scipy.cluster.vq import vq, whiten
-
-from fontbuild.alignpoints import alignCorners
-from fontbuild.curveFitPen import fitGlyph, segmentGlyph
-
-
-def italicizeGlyph(f, g, angle=10, stemWidth=185, meanYCenter=-825, scaleX=1):
- unic = g.unicode #save unicode
-
- glyph = f[g.name]
- slope = np.tanh(math.pi * angle / 180)
-
- # determine how far on the x axis the glyph should slide
- # to compensate for the slant.
- # meanYCenter:
- # -600 is a magic number that assumes a 2048 unit em square,
- # and -825 for a 2816 unit em square. (UPM*0.29296875)
- m = Transform(1, 0, slope, 1, 0, 0)
- xoffset, junk = m.transformPoint((0, meanYCenter))
- m = Transform(scaleX, 0, slope, 1, xoffset, 0)
-
- if len(glyph) > 0:
- g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth)
- f.insertGlyph(g2, g.name)
-
- transformFLGlyphMembers(f[g.name], m)
-
- if unic > 0xFFFF: #restore unicode
- g.unicode = unic
-
-
-def italicize(glyph, angle=12, stemWidth=180, xoffset=-50):
- CURVE_CORRECTION_WEIGHT = .03
- CORNER_WEIGHT = 10
-
- # decompose the glyph into smaller segments
- ga, subsegments = segmentGlyph(glyph,25)
- va, e = glyphToMesh(ga)
- n = len(va)
- grad = mapEdges(lambda a, pn: normalize(pn[0]-a), va, e)
- cornerWeights = mapEdges(lambda a, pn: normalize(pn[0]-a).dot(normalize(a-pn[1])), grad, e)[:,0].reshape((-1,1))
- smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT
-
- controlPoints = findControlPointsInMesh(glyph, va, subsegments)
- smooth[controlPoints > 0] = 1
- smooth[cornerWeights < .6] = CORNER_WEIGHT
- # smooth[cornerWeights >= .9999] = 1
-
- out = va.copy()
- hascurves = False
- for c in glyph.contours:
- for s in c.segments:
- if s.type == "curve":
- hascurves = True
- break
- if hascurves:
- break
- if stemWidth > 100:
- outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6)
- # out = copyMeshDetails(va, out, e, 6)
- else:
- outCorrected = out
-
- # create a transform for italicizing
- normals = edgeNormals(out, e)
- center = va + normals * stemWidth * .4
- if stemWidth > 130:
- center[:, 0] = va[:, 0] * .7 + center[:,0] * .3
- centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9)
-
- # apply the transform
- out = outCorrected + (centerSkew - center)
- out[:,1] = outCorrected[:,1]
-
- # make some corrections
- smooth = np.ones((n,1)) * .1
- out = alignCorners(glyph, out, subsegments)
- out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth)
- # grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e)
- # out = recompose(out, grad, e, smooth=smooth)
-
- out = skewMesh(out, angle * .1)
- out[:,0] += xoffset
- # out[:,1] = outCorrected[:,1]
- out[va[:,1] == 0, 1] = 0
- gOut = meshToGlyph(out, ga)
- # gOut.width *= .97
- # gOut.width += 10
- # return gOut
-
- # recompose the glyph into original segments
- return fitGlyph(glyph, gOut, subsegments)
-
-
-def transformFLGlyphMembers(g, m, transformAnchors = True):
- # g.transform(m)
- g.width = g.width * m[0]
- p = m.transformPoint((0,0))
- for c in g.components:
- d = m.transformPoint(c.offset)
- c.offset = (d[0] - p[0], d[1] - p[1])
- if transformAnchors:
- for a in g.anchors:
- aa = m.transformPoint((a.x,a.y))
- a.x = aa[0]
- # a.x,a.y = (aa[0] - p[0], aa[1] - p[1])
- # a.x = a.x - m[4]
-
-
-def glyphToMesh(g):
- points = []
- edges = {}
- offset = 0
- for c in g.contours:
- if len(c) < 2:
- continue
- for i,prev,next in rangePrevNext(len(c)):
- points.append((c[i].points[0].x, c[i].points[0].y))
- edges[i + offset] = np.array([prev + offset, next + offset], dtype=int)
- offset += len(c)
- return np.array(points), edges
-
-
-def meshToGlyph(points, g):
- g1 = g.copy()
- j = 0
- for c in g1.contours:
- if len(c) < 2:
- continue
- for i in range(len(c)):
- c[i].points[0].x = points[j][0]
- c[i].points[0].y = points[j][1]
- j += 1
- return g1
-
-
-def quantizeGradient(grad, book=None):
- if book == None:
- book = np.array([(1,0),(0,1),(0,-1),(-1,0)])
- indexArray = vq(whiten(grad), book)[0]
- out = book[indexArray]
- for i,v in enumerate(out):
- out[i] = normalize(v)
- return out
-
-
-def findControlPointsInMesh(glyph, va, subsegments):
- controlPointIndices = np.zeros((len(va),1))
- index = 0
- for i,c in enumerate(subsegments):
- segmentCount = len(glyph.contours[i].segments) - 1
- for j,s in enumerate(c):
- if j < segmentCount:
- if glyph.contours[i].segments[j].type == "line":
- controlPointIndices[index] = 1
- index += s[1]
- return controlPointIndices
-
-
-def recompose(v, grad, e, smooth=1, P=None, distance=None):
- n = len(v)
- if distance == None:
- distance = mapEdges(lambda a, pn: norm(pn[0] - a), v, e)
- if (P == None):
- P = mP(v,e)
- P += np.identity(n) * smooth
- f = v.copy()
- for i,(prev,next) in e.iteritems():
- f[i] = (grad[next] * distance[next] - grad[i] * distance[i])
- out = v.copy()
- f += v * smooth
- for i in range(len(out[0,:])):
- out[:,i] = cg(P, f[:,i])[0]
- return out
-
-
-def mP(v,e):
- n = len(v)
- M = np.zeros((n,n))
- for i, edges in e.iteritems():
- w = -2 / float(len(edges))
- for index in edges:
- M[i,index] = w
- M[i,i] = 2
- return M
-
-
-def normalize(v):
- n = np.linalg.norm(v)
- if n == 0:
- return v
- return v/n
-
-
-def mapEdges(func,v,e,*args):
- b = v.copy()
- for i, edges in e.iteritems():
- b[i] = func(v[i], [v[j] for j in edges], *args)
- return b
-
-
-def getNormal(a,b,c):
- "Assumes TT winding direction"
- p = np.roll(normalize(b - a), 1)
- n = -np.roll(normalize(c - a), 1)
- p[1] *= -1
- n[1] *= -1
- # print p, n, normalize((p + n) * .5)
- return normalize((p + n) * .5)
-
-
-def edgeNormals(v,e):
- "Assumes a mesh where each vertex has exactly least two edges"
- return mapEdges(lambda a, pn : getNormal(a,pn[0],pn[1]),v,e)
-
-
-def rangePrevNext(count):
- c = np.arange(count,dtype=int)
- r = np.vstack((c, np.roll(c, 1), np.roll(c, -1)))
- return r.T
-
-
-def skewMesh(v,angle):
- slope = np.tanh([math.pi * angle / 180])
- return v.dot(np.array([[1,0],[slope,1]]))
-
-
-def labelConnected(e):
- label = 0
- labels = np.zeros((len(e),1))
- for i,(prev,next) in e.iteritems():
- labels[i] = label
- if next <= i:
- label += 1
- return labels
-
-
-def copyGradDetails(a,b,e,scale=15):
- n = len(a)
- labels = labelConnected(e)
- out = a.astype(float).copy()
- for i in range(labels[-1]+1):
- mask = (labels==i).flatten()
- out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0)
- return out
-
-
-def copyMeshDetails(va,vb,e,scale=5,smooth=.01):
- gradA = mapEdges(lambda a, pn: normalize(pn[0]-a), va, e)
- gradB = mapEdges(lambda a, pn: normalize(pn[0]-a), vb, e)
- grad = copyGradDetails(gradA, gradB, e, scale)
- grad = mapEdges(lambda a, pn: normalize(a), grad, e)
- return recompose(vb, grad, e, smooth=smooth)
-
-
-def condenseGlyph(glyph, scale=.8, stemWidth=185):
- ga, subsegments = segmentGlyph(glyph, 25)
- va, e = glyphToMesh(ga)
- n = len(va)
-
- normals = edgeNormals(va,e)
- cn = va.dot(np.array([[scale, 0],[0,1]]))
- grad = mapEdges(lambda a, pn: normalize(pn[0]-a), cn, e)
- # ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e)
-
- cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale)
- out = recompose(cn, grad, e, smooth=.5)
- # out = recompose(out, grad, e, smooth=.1)
- out = recompose(out, grad, e, smooth=.01)
-
- # cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
- # smooth = np.ones((n,1)) * .1
- # smooth[cornerWeights < .6] = 10
- #
- # grad2 = quantizeGradient(grad).astype(float)
- # grad2 = copyGradDetails(grad, grad2, e, scale=10)
- # grad2 = mapEdges(lambda a,e: normalize(a), grad2, e)
- # out = recompose(out, grad2, e, smooth=smooth)
- out[:,0] += 15
- out[:,1] = va[:,1]
- # out = recompose(out, grad, e, smooth=.5)
- gOut = meshToGlyph(out, ga)
- gOut = fitGlyph(glyph, gOut, subsegments)
- for i,seg in enumerate(gOut):
- gOut[i].points[0].y = glyph[i].points[0].y
- return gOut