summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-03-15 03:43:30 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2024-03-15 03:43:30 +0300
commit902861e34c401696ed9ad17a54c8790e7e8e3069 (patch)
tree126324c3ec4101b1e17f002ef029d3ffb296ada7 /Documentation/admin-guide
parent1bbeaf83dd7b5e3628b98bec66ff8fe2646e14aa (diff)
parent270700dd06ca41a4779c19eb46608f076bb7d40e (diff)
downloadlinux-902861e34c401696ed9ad17a54c8790e7e8e3069.tar.xz
Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames from hotplugged memory rather than only from main memory. Series "implement "memmap on memory" feature on s390". - More folio conversions from Matthew Wilcox in the series "Convert memcontrol charge moving to use folios" "mm: convert mm counter to take a folio" - Chengming Zhou has optimized zswap's rbtree locking, providing significant reductions in system time and modest but measurable reductions in overall runtimes. The series is "mm/zswap: optimize the scalability of zswap rb-tree". - Chengming Zhou has also provided the series "mm/zswap: optimize zswap lru list" which provides measurable runtime benefits in some swap-intensive situations. - And Chengming Zhou further optimizes zswap in the series "mm/zswap: optimize for dynamic zswap_pools". Measured improvements are modest. - zswap cleanups and simplifications from Yosry Ahmed in the series "mm: zswap: simplify zswap_swapoff()". - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has contributed several DAX cleanups as well as adding a sysfs tunable to control the memmap_on_memory setting when the dax device is hotplugged as system memory. - Johannes Weiner has added the large series "mm: zswap: cleanups", which does that. - More DAMON work from SeongJae Park in the series "mm/damon: make DAMON debugfs interface deprecation unignorable" "selftests/damon: add more tests for core functionalities and corner cases" "Docs/mm/damon: misc readability improvements" "mm/damon: let DAMOS feeds and tame/auto-tune itself" - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs extension" Rakie Kim has developed a new mempolicy interleaving policy wherein we allocate memory across nodes in a weighted fashion rather than uniformly. This is beneficial in heterogeneous memory environments appearing with CXL. - Christophe Leroy has contributed some cleanup and consolidation work against the ARM pagetable dumping code in the series "mm: ptdump: Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute". - Luis Chamberlain has added some additional xarray selftesting in the series "test_xarray: advanced API multi-index tests". - Muhammad Usama Anjum has reworked the selftest code to make its human-readable output conform to the TAP ("Test Anything Protocol") format. Amongst other things, this opens up the use of third-party tools to parse and process out selftesting results. - Ryan Roberts has added fork()-time PTE batching of THP ptes in the series "mm/memory: optimize fork() with PTE-mapped THP". Mainly targeted at arm64, this significantly speeds up fork() when the process has a large number of pte-mapped folios. - David Hildenbrand also gets in on the THP pte batching game in his series "mm/memory: optimize unmap/zap with PTE-mapped THP". It implements batching during munmap() and other pte teardown situations. The microbenchmark improvements are nice. - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte mappings"). Kernel build times on arm64 improved nicely. Ryan's series "Address some contpte nits" provides some followup work. - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has fixed an obscure hugetlb race which was causing unnecessary page faults. He has also added a reproducer under the selftest code. - In the series "selftests/mm: Output cleanups for the compaction test", Mark Brown did what the title claims. - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring". - Even more zswap material from Nhat Pham. The series "fix and extend zswap kselftests" does as claimed. - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in our handling of DAX on archiecctures which have virtually aliasing data caches. The arm architecture is the main beneficiary. - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic improvements in worst-case mmap_lock hold times during certain userfaultfd operations. - Some page_owner enhancements and maintenance work from Oscar Salvador in his series "page_owner: print stacks and their outstanding allocations" "page_owner: Fixup and cleanup" - Uladzislau Rezki has contributed some vmalloc scalability improvements in his series "Mitigate a vmap lock contention". It realizes a 12x improvement for a certain microbenchmark. - Some kexec/crash cleanup work from Baoquan He in the series "Split crash out from kexec and clean up related config items". - Some zsmalloc maintenance work from Chengming Zhou in the series "mm/zsmalloc: fix and optimize objects/page migration" "mm/zsmalloc: some cleanup for get/set_zspage_mapping()" - Zi Yan has taught the MM to perform compaction on folios larger than order=0. This a step along the path to implementaton of the merging of large anonymous folios. The series is named "Enable >0 order folio memory compaction". - Christoph Hellwig has done quite a lot of cleanup work in the pagecache writeback code in his series "convert write_cache_pages() to an iterator". - Some modest hugetlb cleanups and speedups in Vishal Moola's series "Handle hugetlb faults under the VMA lock". - Zi Yan has changed the page splitting code so we can split huge pages into sizes other than order-0 to better utilize large folios. The series is named "Split a folio to any lower order folios". - David Hildenbrand has contributed the series "mm: remove total_mapcount()", a cleanup. - Matthew Wilcox has sought to improve the performance of bulk memory freeing in his series "Rearrange batched folio freeing". - Gang Li's series "hugetlb: parallelize hugetlb page init on boot" provides large improvements in bootup times on large machines which are configured to use large numbers of hugetlb pages. - Matthew Wilcox's series "PageFlags cleanups" does that. - Qi Zheng's series "minor fixes and supplement for ptdesc" does that also. S390 is affected. - Cleanups to our pagemap utility functions from Peter Xu in his series "mm/treewide: Replace pXd_large() with pXd_leaf()". - Nico Pache has fixed a few things with our hugepage selftests in his series "selftests/mm: Improve Hugepage Test Handling in MM Selftests". - Also, of course, many singleton patches to many things. Please see the individual changelogs for details. * tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits) mm/zswap: remove the memcpy if acomp is not sleepable crypto: introduce: acomp_is_async to expose if comp drivers might sleep memtest: use {READ,WRITE}_ONCE in memory scanning mm: prohibit the last subpage from reusing the entire large folio mm: recover pud_leaf() definitions in nopmd case selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements selftests/mm: skip uffd hugetlb tests with insufficient hugepages selftests/mm: dont fail testsuite due to a lack of hugepages mm/huge_memory: skip invalid debugfs new_order input for folio split mm/huge_memory: check new folio order when split a folio mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure mm: add an explicit smp_wmb() to UFFDIO_CONTINUE mm: fix list corruption in put_pages_list mm: remove folio from deferred split list before uncharging it filemap: avoid unnecessary major faults in filemap_fault() mm,page_owner: drop unnecessary check mm,page_owner: check for null stack_record before bumping its refcount mm: swap: fix race between free_swap_and_cache() and swapoff() mm/treewide: align up pXd_leaf() retval across archs mm/treewide: drop pXd_large() ...
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/kdump/vmcoreinfo.rst8
-rw-r--r--Documentation/admin-guide/mm/damon/reclaim.rst27
-rw-r--r--Documentation/admin-guide/mm/damon/usage.rst158
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst9
4 files changed, 114 insertions, 88 deletions
diff --git a/Documentation/admin-guide/kdump/vmcoreinfo.rst b/Documentation/admin-guide/kdump/vmcoreinfo.rst
index bced9e4b6e08..0f714fc945ac 100644
--- a/Documentation/admin-guide/kdump/vmcoreinfo.rst
+++ b/Documentation/admin-guide/kdump/vmcoreinfo.rst
@@ -65,11 +65,11 @@ Defines the beginning of the text section. In general, _stext indicates
the kernel start address. Used to convert a virtual address from the
direct kernel map to a physical address.
-vmap_area_list
---------------
+VMALLOC_START
+-------------
-Stores the virtual area list. makedumpfile gets the vmalloc start value
-from this variable and its value is necessary for vmalloc translation.
+Stores the base address of vmalloc area. makedumpfile gets this value
+since is necessary for vmalloc translation.
mem_map
-------
diff --git a/Documentation/admin-guide/mm/damon/reclaim.rst b/Documentation/admin-guide/mm/damon/reclaim.rst
index 343e25b252f4..af05ae617018 100644
--- a/Documentation/admin-guide/mm/damon/reclaim.rst
+++ b/Documentation/admin-guide/mm/damon/reclaim.rst
@@ -117,6 +117,33 @@ milliseconds.
1 second by default.
+quota_mem_pressure_us
+---------------------
+
+Desired level of memory pressure-stall time in microseconds.
+
+While keeping the caps that set by other quotas, DAMON_RECLAIM automatically
+increases and decreases the effective level of the quota aiming this level of
+memory pressure is incurred. System-wide ``some`` memory PSI in microseconds
+per quota reset interval (``quota_reset_interval_ms``) is collected and
+compared to this value to see if the aim is satisfied. Value zero means
+disabling this auto-tuning feature.
+
+Disabled by default.
+
+quota_autotune_feedback
+-----------------------
+
+User-specifiable feedback for auto-tuning of the effective quota.
+
+While keeping the caps that set by other quotas, DAMON_RECLAIM automatically
+increases and decreases the effective level of the quota aiming receiving this
+feedback of value ``10,000`` from the user. DAMON_RECLAIM assumes the feedback
+value and the quota are positively proportional. Value zero means disabling
+this auto-tuning feature.
+
+Disabled by default.
+
wmarks_interval
---------------
diff --git a/Documentation/admin-guide/mm/damon/usage.rst b/Documentation/admin-guide/mm/damon/usage.rst
index 9d23144bf985..6fce035fdbf5 100644
--- a/Documentation/admin-guide/mm/damon/usage.rst
+++ b/Documentation/admin-guide/mm/damon/usage.rst
@@ -83,10 +83,10 @@ comma (",").
│ │ │ │ │ │ │ │ sz/min,max
│ │ │ │ │ │ │ │ nr_accesses/min,max
│ │ │ │ │ │ │ │ age/min,max
- │ │ │ │ │ │ │ :ref:`quotas <sysfs_quotas>`/ms,bytes,reset_interval_ms
+ │ │ │ │ │ │ │ :ref:`quotas <sysfs_quotas>`/ms,bytes,reset_interval_ms,effective_bytes
│ │ │ │ │ │ │ │ weights/sz_permil,nr_accesses_permil,age_permil
│ │ │ │ │ │ │ │ :ref:`goals <sysfs_schemes_quota_goals>`/nr_goals
- │ │ │ │ │ │ │ │ │ 0/target_value,current_value
+ │ │ │ │ │ │ │ │ │ 0/target_metric,target_value,current_value
│ │ │ │ │ │ │ :ref:`watermarks <sysfs_watermarks>`/metric,interval_us,high,mid,low
│ │ │ │ │ │ │ :ref:`filters <sysfs_filters>`/nr_filters
│ │ │ │ │ │ │ │ 0/type,matching,memcg_id
@@ -153,6 +153,9 @@ Users can write below commands for the kdamond to the ``state`` file.
- ``clear_schemes_tried_regions``: Clear the DAMON-based operating scheme
action tried regions directory for each DAMON-based operation scheme of the
kdamond.
+- ``update_schemes_effective_bytes``: Update the contents of
+ ``effective_bytes`` files for each DAMON-based operation scheme of the
+ kdamond. For more details, refer to :ref:`quotas directory <sysfs_quotas>`.
If the state is ``on``, reading ``pid`` shows the pid of the kdamond thread.
@@ -180,19 +183,14 @@ In each context directory, two files (``avail_operations`` and ``operations``)
and three directories (``monitoring_attrs``, ``targets``, and ``schemes``)
exist.
-DAMON supports multiple types of monitoring operations, including those for
-virtual address space and the physical address space. You can get the list of
-available monitoring operations set on the currently running kernel by reading
+DAMON supports multiple types of :ref:`monitoring operations
+<damon_design_configurable_operations_set>`, including those for virtual address
+space and the physical address space. You can get the list of available
+monitoring operations set on the currently running kernel by reading
``avail_operations`` file. Based on the kernel configuration, the file will
-list some or all of below keywords.
-
- - vaddr: Monitor virtual address spaces of specific processes
- - fvaddr: Monitor fixed virtual address ranges
- - paddr: Monitor the physical address space of the system
-
-Please refer to :ref:`regions sysfs directory <sysfs_regions>` for detailed
-differences between the operations sets in terms of the monitoring target
-regions.
+list different available operation sets. Please refer to the :ref:`design
+<damon_operations_set>` for the list of all available operation sets and their
+brief explanations.
You can set and get what type of monitoring operations DAMON will use for the
context by writing one of the keywords listed in ``avail_operations`` file and
@@ -247,17 +245,11 @@ process to the ``pid_target`` file.
targets/<N>/regions
-------------------
-When ``vaddr`` monitoring operations set is being used (``vaddr`` is written to
-the ``contexts/<N>/operations`` file), DAMON automatically sets and updates the
-monitoring target regions so that entire memory mappings of target processes
-can be covered. However, users could want to set the initial monitoring region
-to specific address ranges.
-
-In contrast, DAMON do not automatically sets and updates the monitoring target
-regions when ``fvaddr`` or ``paddr`` monitoring operations sets are being used
-(``fvaddr`` or ``paddr`` have written to the ``contexts/<N>/operations``).
-Therefore, users should set the monitoring target regions by themselves in the
-cases.
+In case of ``fvaddr`` or ``paddr`` monitoring operations sets, users are
+required to set the monitoring target address ranges. In case of ``vaddr``
+operations set, it is not mandatory, but users can optionally set the initial
+monitoring region to specific address ranges. Please refer to the :ref:`design
+<damon_design_vaddr_target_regions_construction>` for more details.
For such cases, users can explicitly set the initial monitoring target regions
as they want, by writing proper values to the files under this directory.
@@ -302,27 +294,8 @@ In each scheme directory, five directories (``access_pattern``, ``quotas``,
The ``action`` file is for setting and getting the scheme's :ref:`action
<damon_design_damos_action>`. The keywords that can be written to and read
-from the file and their meaning are as below.
-
-Note that support of each action depends on the running DAMON operations set
-:ref:`implementation <sysfs_context>`.
-
- - ``willneed``: Call ``madvise()`` for the region with ``MADV_WILLNEED``.
- Supported by ``vaddr`` and ``fvaddr`` operations set.
- - ``cold``: Call ``madvise()`` for the region with ``MADV_COLD``.
- Supported by ``vaddr`` and ``fvaddr`` operations set.
- - ``pageout``: Call ``madvise()`` for the region with ``MADV_PAGEOUT``.
- Supported by ``vaddr``, ``fvaddr`` and ``paddr`` operations set.
- - ``hugepage``: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``.
- Supported by ``vaddr`` and ``fvaddr`` operations set.
- - ``nohugepage``: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``.
- Supported by ``vaddr`` and ``fvaddr`` operations set.
- - ``lru_prio``: Prioritize the region on its LRU lists.
- Supported by ``paddr`` operations set.
- - ``lru_deprio``: Deprioritize the region on its LRU lists.
- Supported by ``paddr`` operations set.
- - ``stat``: Do nothing but count the statistics.
- Supported by all operations sets.
+from the file and their meaning are same to those of the list on
+:ref:`design doc <damon_design_damos_action>`.
The ``apply_interval_us`` file is for setting and getting the scheme's
:ref:`apply_interval <damon_design_damos>` in microseconds.
@@ -350,8 +323,9 @@ schemes/<N>/quotas/
The directory for the :ref:`quotas <damon_design_damos_quotas>` of the given
DAMON-based operation scheme.
-Under ``quotas`` directory, three files (``ms``, ``bytes``,
-``reset_interval_ms``) and two directores (``weights`` and ``goals``) exist.
+Under ``quotas`` directory, four files (``ms``, ``bytes``,
+``reset_interval_ms``, ``effective_bytes``) and two directores (``weights`` and
+``goals``) exist.
You can set the ``time quota`` in milliseconds, ``size quota`` in bytes, and
``reset interval`` in milliseconds by writing the values to the three files,
@@ -359,7 +333,17 @@ respectively. Then, DAMON tries to use only up to ``time quota`` milliseconds
for applying the ``action`` to memory regions of the ``access_pattern``, and to
apply the action to only up to ``bytes`` bytes of memory regions within the
``reset_interval_ms``. Setting both ``ms`` and ``bytes`` zero disables the
-quota limits.
+quota limits unless at least one :ref:`goal <sysfs_schemes_quota_goals>` is
+set.
+
+The time quota is internally transformed to a size quota. Between the
+transformed size quota and user-specified size quota, smaller one is applied.
+Based on the user-specified :ref:`goal <sysfs_schemes_quota_goals>`, the
+effective size quota is further adjusted. Reading ``effective_bytes`` returns
+the current effective size quota. The file is not updated in real time, so
+users should ask DAMON sysfs interface to update the content of the file for
+the stats by writing a special keyword, ``update_schemes_effective_bytes`` to
+the relevant ``kdamonds/<N>/state`` file.
Under ``weights`` directory, three files (``sz_permil``,
``nr_accesses_permil``, and ``age_permil``) exist.
@@ -382,11 +366,11 @@ number (``N``) to the file creates the number of child directories named ``0``
to ``N-1``. Each directory represents each goal and current achievement.
Among the multiple feedback, the best one is used.
-Each goal directory contains two files, namely ``target_value`` and
-``current_value``. Users can set and get any number to those files to set the
-feedback. User space main workload's latency or throughput, system metrics
-like free memory ratio or memory pressure stall time (PSI) could be example
-metrics for the values. Note that users should write
+Each goal directory contains three files, namely ``target_metric``,
+``target_value`` and ``current_value``. Users can set and get the three
+parameters for the quota auto-tuning goals that specified on the :ref:`design
+doc <damon_design_damos_quotas_auto_tuning>` by writing to and reading from each
+of the files. Note that users should further write
``commit_schemes_quota_goals`` to the ``state`` file of the :ref:`kdamond
directory <sysfs_kdamond>` to pass the feedback to DAMON.
@@ -579,11 +563,11 @@ monitoring results recording.
While the monitoring is turned on, you could record the tracepoint events and
show results using tracepoint supporting tools like ``perf``. For example::
- # echo on > monitor_on
+ # echo on > kdamonds/0/state
# perf record -e damon:damon_aggregated &
# sleep 5
# kill 9 $(pidof perf)
- # echo off > monitor_on
+ # echo off > kdamonds/0/state
# perf script
kdamond.0 46568 [027] 79357.842179: damon:damon_aggregated: target_id=0 nr_regions=11 122509119488-135708762112: 0 864
[...]
@@ -628,9 +612,17 @@ debugfs Interface (DEPRECATED!)
move, please report your usecase to damon@lists.linux.dev and
linux-mm@kvack.org.
-DAMON exports eight files, ``attrs``, ``target_ids``, ``init_regions``,
-``schemes``, ``monitor_on``, ``kdamond_pid``, ``mk_contexts`` and
-``rm_contexts`` under its debugfs directory, ``<debugfs>/damon/``.
+DAMON exports nine files, ``DEPRECATED``, ``attrs``, ``target_ids``,
+``init_regions``, ``schemes``, ``monitor_on_DEPRECATED``, ``kdamond_pid``,
+``mk_contexts`` and ``rm_contexts`` under its debugfs directory,
+``<debugfs>/damon/``.
+
+
+``DEPRECATED`` is a read-only file for the DAMON debugfs interface deprecation
+notice. Reading it returns the deprecation notice, as below::
+
+ # cat DEPRECATED
+ DAMON debugfs interface is deprecated, so users should move to DAMON_SYSFS. If you cannot, please report your usecase to damon@lists.linux.dev and linux-mm@kvack.org.
Attributes
@@ -755,19 +747,17 @@ Action
~~~~~~
The ``<action>`` is a predefined integer for memory management :ref:`actions
-<damon_design_damos_action>`. The supported numbers and their meanings are as
-below.
-
- - 0: Call ``madvise()`` for the region with ``MADV_WILLNEED``. Ignored if
- ``target`` is ``paddr``.
- - 1: Call ``madvise()`` for the region with ``MADV_COLD``. Ignored if
- ``target`` is ``paddr``.
- - 2: Call ``madvise()`` for the region with ``MADV_PAGEOUT``.
- - 3: Call ``madvise()`` for the region with ``MADV_HUGEPAGE``. Ignored if
- ``target`` is ``paddr``.
- - 4: Call ``madvise()`` for the region with ``MADV_NOHUGEPAGE``. Ignored if
- ``target`` is ``paddr``.
- - 5: Do nothing but count the statistics
+<damon_design_damos_action>`. The mapping between the ``<action>`` values and
+the memory management actions is as below. For the detailed meaning of the
+action and DAMON operations set supporting each action, please refer to the
+list on :ref:`design doc <damon_design_damos_action>`.
+
+ - 0: ``willneed``
+ - 1: ``cold``
+ - 2: ``pageout``
+ - 3: ``hugepage``
+ - 4: ``nohugepage``
+ - 5: ``stat``
Quota
~~~~~
@@ -848,16 +838,16 @@ Turning On/Off
Setting the files as described above doesn't incur effect unless you explicitly
start the monitoring. You can start, stop, and check the current status of the
-monitoring by writing to and reading from the ``monitor_on`` file. Writing
-``on`` to the file starts the monitoring of the targets with the attributes.
-Writing ``off`` to the file stops those. DAMON also stops if every target
-process is terminated. Below example commands turn on, off, and check the
-status of DAMON::
+monitoring by writing to and reading from the ``monitor_on_DEPRECATED`` file.
+Writing ``on`` to the file starts the monitoring of the targets with the
+attributes. Writing ``off`` to the file stops those. DAMON also stops if
+every target process is terminated. Below example commands turn on, off, and
+check the status of DAMON::
# cd <debugfs>/damon
- # echo on > monitor_on
- # echo off > monitor_on
- # cat monitor_on
+ # echo on > monitor_on_DEPRECATED
+ # echo off > monitor_on_DEPRECATED
+ # cat monitor_on_DEPRECATED
off
Please note that you cannot write to the above-mentioned debugfs files while
@@ -873,11 +863,11 @@ can get the pid of the thread by reading the ``kdamond_pid`` file. When the
monitoring is turned off, reading the file returns ``none``. ::
# cd <debugfs>/damon
- # cat monitor_on
+ # cat monitor_on_DEPRECATED
off
# cat kdamond_pid
none
- # echo on > monitor_on
+ # echo on > monitor_on_DEPRECATED
# cat kdamond_pid
18594
@@ -907,5 +897,5 @@ directory by putting the name of the context to the ``rm_contexts`` file. ::
# ls foo
# ls: cannot access 'foo': No such file or directory
-Note that ``mk_contexts``, ``rm_contexts``, and ``monitor_on`` files are in the
-root directory only.
+Note that ``mk_contexts``, ``rm_contexts``, and ``monitor_on_DEPRECATED`` files
+are in the root directory only.
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index eca38fa81e0f..a70f20ce1ffb 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -250,6 +250,15 @@ MPOL_PREFERRED_MANY
can fall back to all existing numa nodes. This is effectively
MPOL_PREFERRED allowed for a mask rather than a single node.
+MPOL_WEIGHTED_INTERLEAVE
+ This mode operates the same as MPOL_INTERLEAVE, except that
+ interleaving behavior is executed based on weights set in
+ /sys/kernel/mm/mempolicy/weighted_interleave/
+
+ Weighted interleave allocates pages on nodes according to a
+ weight. For example if nodes [0,1] are weighted [5,2], 5 pages
+ will be allocated on node0 for every 2 pages allocated on node1.
+
NUMA memory policy supports the following optional mode flags:
MPOL_F_STATIC_NODES