summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorAl Viro <viro@zeniv.linux.org.uk>2023-11-20 04:25:58 +0300
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2024-02-23 10:24:49 +0300
commit0785e298996c8219d8a228cdf20dadba0f9c0d51 (patch)
treecc2abb225ab769969783ab920b83196296e9d1bc /Documentation
parentf0824ca28317b6a30a1344e67780aaeeb842bd78 (diff)
downloadlinux-0785e298996c8219d8a228cdf20dadba0f9c0d51.tar.xz
rename(): fix the locking of subdirectories
commit 22e111ed6c83dcde3037fc81176012721bc34c0b upstream. We should never lock two subdirectories without having taken ->s_vfs_rename_mutex; inode pointer order or not, the "order" proposed in 28eceeda130f "fs: Lock moved directories" is not transitive, with the usual consequences. The rationale for locking renamed subdirectory in all cases was the possibility of race between rename modifying .. in a subdirectory to reflect the new parent and another thread modifying the same subdirectory. For a lot of filesystems that's not a problem, but for some it can lead to trouble (e.g. the case when short directory contents is kept in the inode, but creating a file in it might push it across the size limit and copy its contents into separate data block(s)). However, we need that only in case when the parent does change - otherwise ->rename() doesn't need to do anything with .. entry in the first place. Some instances are lazy and do a tautological update anyway, but it's really not hard to avoid. Amended locking rules for rename(): find the parent(s) of source and target if source and target have the same parent lock the common parent else lock ->s_vfs_rename_mutex lock both parents, in ancestor-first order; if neither is an ancestor of another, lock the parent of source first. find the source and target. if source and target have the same parent if operation is an overwriting rename of a subdirectory lock the target subdirectory else if source is a subdirectory lock the source if target is a subdirectory lock the target lock non-directories involved, in inode pointer order if both source and target are such. That way we are guaranteed that parents are locked (for obvious reasons), that any renamed non-directory is locked (nfsd relies upon that), that any victim is locked (emptiness check needs that, among other things) and subdirectory that changes parent is locked (needed to protect the update of .. entries). We are also guaranteed that any operation locking more than one directory either takes ->s_vfs_rename_mutex or locks a parent followed by its child. Cc: stable@vger.kernel.org Fixes: 28eceeda130f "fs: Lock moved directories" Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/filesystems/directory-locking.rst25
-rw-r--r--Documentation/filesystems/locking.rst5
-rw-r--r--Documentation/filesystems/porting.rst18
3 files changed, 37 insertions, 11 deletions
diff --git a/Documentation/filesystems/directory-locking.rst b/Documentation/filesystems/directory-locking.rst
index e59fc830c9af..6a238477f27f 100644
--- a/Documentation/filesystems/directory-locking.rst
+++ b/Documentation/filesystems/directory-locking.rst
@@ -22,13 +22,16 @@ exclusive.
3) object removal. Locking rules: caller locks parent, finds victim,
locks victim and calls the method. Locks are exclusive.
-4) rename() that is _not_ cross-directory. Locking rules: caller locks the
-parent and finds source and target. We lock both (provided they exist). If we
-need to lock two inodes of different type (dir vs non-dir), we lock directory
-first. If we need to lock two inodes of the same type, lock them in inode
-pointer order. Then call the method. All locks are exclusive.
-NB: we might get away with locking the the source (and target in exchange
-case) shared.
+4) rename() that is _not_ cross-directory. Locking rules: caller locks
+the parent and finds source and target. Then we decide which of the
+source and target need to be locked. Source needs to be locked if it's a
+non-directory; target - if it's a non-directory or about to be removed.
+Take the locks that need to be taken, in inode pointer order if need
+to take both (that can happen only when both source and target are
+non-directories - the source because it wouldn't be locked otherwise
+and the target because mixing directory and non-directory is allowed
+only with RENAME_EXCHANGE, and that won't be removing the target).
+After the locks had been taken, call the method. All locks are exclusive.
5) link creation. Locking rules:
@@ -44,7 +47,7 @@ rules:
* lock the filesystem
* lock parents in "ancestors first" order. If one is not ancestor of
- the other, lock them in inode pointer order.
+ the other, lock the parent of source first.
* find source and target.
* if old parent is equal to or is a descendent of target
fail with -ENOTEMPTY
@@ -54,10 +57,11 @@ rules:
need to lock two inodes of different type (dir vs non-dir), we lock
the directory first. If we need to lock two inodes of the same type,
lock them in inode pointer order.
+ * Lock subdirectories involved (source before target).
+ * Lock non-directories involved, in inode pointer order.
* call the method.
-All ->i_rwsem are taken exclusive. Again, we might get away with locking
-the the source (and target in exchange case) shared.
+All ->i_rwsem are taken exclusive.
The rules above obviously guarantee that all directories that are going to be
read, modified or removed by method will be locked by caller.
@@ -67,6 +71,7 @@ If no directory is its own ancestor, the scheme above is deadlock-free.
Proof:
+[XXX: will be updated once we are done massaging the lock_rename()]
First of all, at any moment we have a linear ordering of the
objects - A < B iff (A is an ancestor of B) or (B is not an ancestor
of A and ptr(A) < ptr(B)).
diff --git a/Documentation/filesystems/locking.rst b/Documentation/filesystems/locking.rst
index fc3a0704553c..b8b2906dc221 100644
--- a/Documentation/filesystems/locking.rst
+++ b/Documentation/filesystems/locking.rst
@@ -95,7 +95,7 @@ symlink: exclusive
mkdir: exclusive
unlink: exclusive (both)
rmdir: exclusive (both)(see below)
-rename: exclusive (all) (see below)
+rename: exclusive (both parents, some children) (see below)
readlink: no
get_link: no
setattr: exclusive
@@ -113,6 +113,9 @@ tmpfile: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_rwsem
exclusive on victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
+ ->unlink() and ->rename() have ->i_rwsem exclusive on all non-directories
+ involved.
+ ->rename() has ->i_rwsem exclusive on any subdirectory that changes parent.
See Documentation/filesystems/directory-locking.rst for more detailed discussion
of the locking scheme for directory operations.
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
index 26c093969573..48301b6b517c 100644
--- a/Documentation/filesystems/porting.rst
+++ b/Documentation/filesystems/porting.rst
@@ -858,3 +858,21 @@ be misspelled d_alloc_anon().
[should've been added in 2016] stale comment in finish_open() nonwithstanding,
failure exits in ->atomic_open() instances should *NOT* fput() the file,
no matter what. Everything is handled by the caller.
+
+---
+
+**mandatory**
+
+If ->rename() update of .. on cross-directory move needs an exclusion with
+directory modifications, do *not* lock the subdirectory in question in your
+->rename() - it's done by the caller now [that item should've been added in
+28eceeda130f "fs: Lock moved directories"].
+
+---
+
+**mandatory**
+
+On same-directory ->rename() the (tautological) update of .. is not protected
+by any locks; just don't do it if the old parent is the same as the new one.
+We really can't lock two subdirectories in same-directory rename - not without
+deadlocks.