summaryrefslogtreecommitdiff
path: root/arch/tile/lib/memset_64.c
diff options
context:
space:
mode:
authorArnd Bergmann <arnd@arndb.de>2018-03-09 16:13:42 +0300
committerArnd Bergmann <arnd@arndb.de>2018-03-16 12:56:03 +0300
commitbb9d812643d8a121df7d614a2b9c60193a92deb0 (patch)
tree419096f57ca0501d8813151a5236387074edb4ea /arch/tile/lib/memset_64.c
parent4ba66a9760722ccbb691b8f7116cad2f791cca7b (diff)
downloadlinux-bb9d812643d8a121df7d614a2b9c60193a92deb0.tar.xz
arch: remove tile port
The Tile architecture port was added by Chris Metcalf in 2010, and maintained until early 2018 when he orphaned it due to his departure from Mellanox, and nobody else stepped up to maintain it. The product line is still around in the form of the BlueField SoC, but no longer uses the Tile architecture. There are also still products for sale with Tile-GX SoCs, notably the Mikrotik CCR router family. The products all use old (linux-3.3) kernels with lots of patches and won't be upgraded by their manufacturers. There have been efforts to port both OpenWRT and Debian to these, but both projects have stalled and are very unlikely to be continued in the future. Given that we are reasonably sure that nobody is still using the port with an upstream kernel any more, it seems better to remove it now while the port is in a good shape than to let it bitrot for a few years first. Cc: Chris Metcalf <chris.d.metcalf@gmail.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Link: http://www.mellanox.com/page/npu_multicore_overview Link: https://jenkins.debian.net/view/rebootstrap/job/rebootstrap_tilegx_gcc7/ Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Diffstat (limited to 'arch/tile/lib/memset_64.c')
-rw-r--r--arch/tile/lib/memset_64.c142
1 files changed, 0 insertions, 142 deletions
diff --git a/arch/tile/lib/memset_64.c b/arch/tile/lib/memset_64.c
deleted file mode 100644
index 03ef69cd73de..000000000000
--- a/arch/tile/lib/memset_64.c
+++ /dev/null
@@ -1,142 +0,0 @@
-/*
- * Copyright 2011 Tilera Corporation. All Rights Reserved.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation, version 2.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for
- * more details.
- */
-
-#include <linux/types.h>
-#include <linux/string.h>
-#include <linux/module.h>
-#include <arch/chip.h>
-#include "string-endian.h"
-
-void *memset(void *s, int c, size_t n)
-{
- uint64_t *out64;
- int n64, to_align64;
- uint64_t v64;
- uint8_t *out8 = s;
-
- /* Experimentation shows that a trivial tight loop is a win up until
- * around a size of 20, where writing a word at a time starts to win.
- */
-#define BYTE_CUTOFF 20
-
-#if BYTE_CUTOFF < 7
- /* This must be at least at least this big, or some code later
- * on doesn't work.
- */
-#error "BYTE_CUTOFF is too small"
-#endif
-
- if (n < BYTE_CUTOFF) {
- /* Strangely, this turns out to be the tightest way to
- * write this loop.
- */
- if (n != 0) {
- do {
- /* Strangely, combining these into one line
- * performs worse.
- */
- *out8 = c;
- out8++;
- } while (--n != 0);
- }
-
- return s;
- }
-
- /* Align 'out8'. We know n >= 7 so this won't write past the end. */
- while (((uintptr_t) out8 & 7) != 0) {
- *out8++ = c;
- --n;
- }
-
- /* Align 'n'. */
- while (n & 7)
- out8[--n] = c;
-
- out64 = (uint64_t *) out8;
- n64 = n >> 3;
-
- /* Tile input byte out to 64 bits. */
- v64 = copy_byte(c);
-
- /* This must be at least 8 or the following loop doesn't work. */
-#define CACHE_LINE_SIZE_IN_DOUBLEWORDS (CHIP_L2_LINE_SIZE() / 8)
-
- /* Determine how many words we need to emit before the 'out32'
- * pointer becomes aligned modulo the cache line size.
- */
- to_align64 = (-((uintptr_t)out64 >> 3)) &
- (CACHE_LINE_SIZE_IN_DOUBLEWORDS - 1);
-
- /* Only bother aligning and using wh64 if there is at least
- * one full cache line to process. This check also prevents
- * overrunning the end of the buffer with alignment words.
- */
- if (to_align64 <= n64 - CACHE_LINE_SIZE_IN_DOUBLEWORDS) {
- int lines_left;
-
- /* Align out64 mod the cache line size so we can use wh64. */
- n64 -= to_align64;
- for (; to_align64 != 0; to_align64--) {
- *out64 = v64;
- out64++;
- }
-
- /* Use unsigned divide to turn this into a right shift. */
- lines_left = (unsigned)n64 / CACHE_LINE_SIZE_IN_DOUBLEWORDS;
-
- do {
- /* Only wh64 a few lines at a time, so we don't
- * exceed the maximum number of victim lines.
- */
- int x = ((lines_left < CHIP_MAX_OUTSTANDING_VICTIMS())
- ? lines_left
- : CHIP_MAX_OUTSTANDING_VICTIMS());
- uint64_t *wh = out64;
- int i = x;
- int j;
-
- lines_left -= x;
-
- do {
- __insn_wh64(wh);
- wh += CACHE_LINE_SIZE_IN_DOUBLEWORDS;
- } while (--i);
-
- for (j = x * (CACHE_LINE_SIZE_IN_DOUBLEWORDS / 4);
- j != 0; j--) {
- *out64++ = v64;
- *out64++ = v64;
- *out64++ = v64;
- *out64++ = v64;
- }
- } while (lines_left != 0);
-
- /* We processed all full lines above, so only this many
- * words remain to be processed.
- */
- n64 &= CACHE_LINE_SIZE_IN_DOUBLEWORDS - 1;
- }
-
- /* Now handle any leftover values. */
- if (n64 != 0) {
- do {
- *out64 = v64;
- out64++;
- } while (--n64 != 0);
- }
-
- return s;
-}
-EXPORT_SYMBOL(memset);