summaryrefslogtreecommitdiff
path: root/drivers/phy
diff options
context:
space:
mode:
authorJacob Keller <jacob.e.keller@intel.com>2023-12-12 05:05:52 +0300
committerTony Nguyen <anthony.l.nguyen@intel.com>2024-01-29 21:01:08 +0300
commitf1f6a6b1830a8f1dc92ee26fae76333f446b0663 (patch)
tree1be2437cfb2cb17c8fabc5c034f54f56ed51308b /drivers/phy
parent577e4432f3ac810049cb7e6b71f4d96ec7c6e894 (diff)
downloadlinux-f1f6a6b1830a8f1dc92ee26fae76333f446b0663.tar.xz
e1000e: correct maximum frequency adjustment values
The e1000e driver supports hardware with a variety of different clock speeds, and thus a variety of different increment values used for programming its PTP hardware clock. The values currently programmed in e1000e_ptp_init are incorrect. In particular, only two maximum adjustments are used: 24000000 - 1, and 600000000 - 1. These were originally intended to be used with the 96 MHz clock and the 25 MHz clock. Both of these values are actually slightly too high. For the 96 MHz clock, the actual maximum value that can safely be programmed is 23,999,938. For the 25 MHz clock, the maximum value is 599,999,904. Worse, several devices use a 24 MHz clock or a 38.4 MHz clock. These parts are incorrectly assigned one of either the 24million or 600million values. For the 24 MHz clock, this is not a significant issue: its current increment value can support an adjustment up to 7billion in the positive direction. However, the 38.4 KHz clock uses an increment value which can only support up to 230,769,157 before it starts overflowing. To understand where these values come from, consider that frequency adjustments have the form of: new_incval = base_incval + (base_incval * adjustment) / (unit of adjustment) The maximum adjustment is reported in terms of parts per billion: new_incval = base_incval + (base_incval * adjustment) / 1 billion The largest possible adjustment is thus given by the following: max_incval = base_incval + (base_incval * max_adj) / 1 billion Re-arranging to solve for max_adj: max_adj = (max_incval - base_incval) * 1 billion / base_incval We also need to ensure that negative adjustments cannot underflow. This can be achieved simply by ensuring max_adj is always less than 1 billion. Introduce new macros in e1000.h codifying the maximum adjustment in PPB for each frequency given its associated increment values. Also clarify where these values come from by commenting about the above equations. Replace the switch statement in e1000e_ptp_init with one which mirrors the increment value switch statement from e1000e_get_base_timinica. For each device, assign the appropriate maximum adjustment based on its frequency. Some parts can have one of two frequency modes as determined by E1000_TSYNCRXCTL_SYSCFI. Since the new flow directly matches the assignments in e1000e_get_base_timinca, and uses well defined macro names, it is much easier to verify that the resulting maximum adjustments are correct. It also avoids difficult to parse construction such as the "hw->mac.type < e1000_phc_lpt", and the use of fallthrough which was especially confusing when combined with a conditional block. Note that I believe the current increment value configuration used for 24MHz clocks is sub-par, as it leaves at least 3 extra bits available in the INCVALUE register. However, fixing that requires more careful review of the clock rate and associated values. Reported-by: Trey Harrison <harrisondigitalmedia@gmail.com> Fixes: 68fe1d5da548 ("e1000e: Add Support for 38.4MHZ frequency") Fixes: d89777bf0e42 ("e1000e: add support for IEEE-1588 PTP") Signed-off-by: Jacob Keller <jacob.e.keller@intel.com> Tested-by: Naama Meir <naamax.meir@linux.intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Diffstat (limited to 'drivers/phy')
0 files changed, 0 insertions, 0 deletions