summaryrefslogtreecommitdiff
path: root/fs/xfs/libxfs/xfs_sb.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2022-05-26 05:34:40 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2022-05-26 05:34:40 +0300
commitbabf0bb978e3c9fce6c4eba6b744c8754fd43d8e (patch)
tree5ba842c2855515047416e5b5950a0b56ff25d9e1 /fs/xfs/libxfs/xfs_sb.c
parente375780b631a5fc2a61a3b4fa12429255361a31e (diff)
parentefd409a4329f6927795be5ae080cd3ec8c014f49 (diff)
downloadlinux-babf0bb978e3c9fce6c4eba6b744c8754fd43d8e.tar.xz
Merge tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Dave Chinner: "This is a big update with lots of new code. The summary below them all, so I'll just touch on teh higlights. The two main new features are Large Extent Counts and Logged Attribute Replay - these are two new foundational features that we are building more complex future features on top of. For upcoming functionality, we need to be able to store hundreds of millions of xattrs per inode. The Large Extent Count feature removes the limits that prevent this scale of xattr storage, and while we were modifying the on disk extent count format we also increased the number of data extents we support per inode from 2^32 to 2^47. We also need to be able to modify xattrs as part of larger atomic transactions rather than as standalone transactions. The Logged Attribute Replay feature introduces the infrastructure that allows us to use intents to record the attribute modifications in the journal before we start them, hence allowing other atomic transactions to log attribute modification intents and then defer the actual modification to later. If we then crash, log recovery then guarantees that the attribute is replayed in the context of the atomic transaction that logged the intent. A significant chunk of the commits in this merge are for the base attribute replay functionality along with fixes, improvements and cleanups related to this new functioanlity. Allison deserves a big round of thanks for her ongoing work to get this functionality into XFS. There are also many other smaller changes and improvements, so overall this is one of the bigger XFS merge requests in some time. I will be following up next week with another smaller pull request - we already have another round of fixes and improvements to the logged attribute replay functionality just about ready to go. They'll soak and test over the next week, and I'll send a pull request for them near the end of the merge window. Summary: - support for printk message indexing. - large extent counts to provide support for up to 2^47 data extents and 2^32 attribute extents, allowing us to scale beyond 4 billion data extents to billions of xattrs per inode. - conversion of various flags fields to be consistently declared as unsigned bit fields. - improvements to realtime extent accounting and converts them to per-cpu counters to match all the other block and inode accounting. - reworks core log formatting code to reduce iterations, have a shorter, cleaner fast path and generally be easier to understand and maintain. - improvements to rmap btree searches that reduce overhead by up to 30% resulting in xfs_scrub runtime reductions of 15%. - improvements to reflink that remove the size limitations in remapping operations and greatly reduce the size of transaction reservations. - reworks the minimum log size calculations to allow us to change transaction reservations without changing the minimum supported log size. - removal of quota warning support as it has never been used on Linux. - intent whiteouts to allow us to cancel intents that are completed entirely in memory rather than having use CPU and disk bandwidth formatting and writing them into the journal when it is not necessary. This makes rmap, reflink and extent freeing slightly more efficient, but provides massive improvements for.... - Logged Attribute Replay feature support. This is a fundamental change to the way we modify attributes, laying the foundation for future integration of attribute modifications as part of other atomic transactional operations the filesystem performs. - Lots of cleanups and fixes for the logged attribute replay functionality" * tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (124 commits) xfs: can't use kmem_zalloc() for attribute buffers xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify xfs: ATTR_REPLACE algorithm with LARP enabled needs rework xfs: use XFS_DA_OP flags in deferred attr ops xfs: remove xfs_attri_remove_iter xfs: switch attr remove to xfs_attri_set_iter xfs: introduce attr remove initial states into xfs_attr_set_iter xfs: xfs_attr_set_iter() does not need to return EAGAIN xfs: clean up final attr removal in xfs_attr_set_iter xfs: remote xattr removal in xfs_attr_set_iter() is conditional xfs: XFS_DAS_LEAF_REPLACE state only needed if !LARP xfs: split remote attr setting out from replace path xfs: consolidate leaf/node states in xfs_attr_set_iter xfs: kill XFS_DAC_LEAF_ADDNAME_INIT xfs: separate out initial attr_set states xfs: don't set quota warning values xfs: remove warning counters from struct xfs_dquot_res xfs: remove quota warning limit from struct xfs_quota_limits xfs: rework deferred attribute operation setup xfs: make xattri_leaf_bp more useful ...
Diffstat (limited to 'fs/xfs/libxfs/xfs_sb.c')
-rw-r--r--fs/xfs/libxfs/xfs_sb.c80
1 files changed, 70 insertions, 10 deletions
diff --git a/fs/xfs/libxfs/xfs_sb.c b/fs/xfs/libxfs/xfs_sb.c
index f4e84aa1d50a..a20cade590e9 100644
--- a/fs/xfs/libxfs/xfs_sb.c
+++ b/fs/xfs/libxfs/xfs_sb.c
@@ -31,15 +31,66 @@
*/
/*
+ * Check that all the V4 feature bits that the V5 filesystem format requires are
+ * correctly set.
+ */
+static bool
+xfs_sb_validate_v5_features(
+ struct xfs_sb *sbp)
+{
+ /* We must not have any unknown V4 feature bits set */
+ if (sbp->sb_versionnum & ~XFS_SB_VERSION_OKBITS)
+ return false;
+
+ /*
+ * The CRC bit is considered an invalid V4 flag, so we have to add it
+ * manually to the OKBITS mask.
+ */
+ if (sbp->sb_features2 & ~(XFS_SB_VERSION2_OKBITS |
+ XFS_SB_VERSION2_CRCBIT))
+ return false;
+
+ /* Now check all the required V4 feature flags are set. */
+
+#define V5_VERS_FLAGS (XFS_SB_VERSION_NLINKBIT | \
+ XFS_SB_VERSION_ALIGNBIT | \
+ XFS_SB_VERSION_LOGV2BIT | \
+ XFS_SB_VERSION_EXTFLGBIT | \
+ XFS_SB_VERSION_DIRV2BIT | \
+ XFS_SB_VERSION_MOREBITSBIT)
+
+#define V5_FEAT_FLAGS (XFS_SB_VERSION2_LAZYSBCOUNTBIT | \
+ XFS_SB_VERSION2_ATTR2BIT | \
+ XFS_SB_VERSION2_PROJID32BIT | \
+ XFS_SB_VERSION2_CRCBIT)
+
+ if ((sbp->sb_versionnum & V5_VERS_FLAGS) != V5_VERS_FLAGS)
+ return false;
+ if ((sbp->sb_features2 & V5_FEAT_FLAGS) != V5_FEAT_FLAGS)
+ return false;
+ return true;
+}
+
+/*
* We support all XFS versions newer than a v4 superblock with V2 directories.
*/
bool
xfs_sb_good_version(
struct xfs_sb *sbp)
{
- /* all v5 filesystems are supported */
+ /*
+ * All v5 filesystems are supported, but we must check that all the
+ * required v4 feature flags are enabled correctly as the code checks
+ * those flags and not for v5 support.
+ */
if (xfs_sb_is_v5(sbp))
- return true;
+ return xfs_sb_validate_v5_features(sbp);
+
+ /* We must not have any unknown v4 feature bits set */
+ if ((sbp->sb_versionnum & ~XFS_SB_VERSION_OKBITS) ||
+ ((sbp->sb_versionnum & XFS_SB_VERSION_MOREBITSBIT) &&
+ (sbp->sb_features2 & ~XFS_SB_VERSION2_OKBITS)))
+ return false;
/* versions prior to v4 are not supported */
if (XFS_SB_VERSION_NUM(sbp) < XFS_SB_VERSION_4)
@@ -51,12 +102,6 @@ xfs_sb_good_version(
if (!(sbp->sb_versionnum & XFS_SB_VERSION_EXTFLGBIT))
return false;
- /* And must not have any unknown v4 feature bits set */
- if ((sbp->sb_versionnum & ~XFS_SB_VERSION_OKBITS) ||
- ((sbp->sb_versionnum & XFS_SB_VERSION_MOREBITSBIT) &&
- (sbp->sb_features2 & ~XFS_SB_VERSION2_OKBITS)))
- return false;
-
/* It's a supported v4 filesystem */
return true;
}
@@ -70,6 +115,8 @@ xfs_sb_version_to_features(
/* optional V4 features */
if (sbp->sb_rblocks > 0)
features |= XFS_FEAT_REALTIME;
+ if (sbp->sb_versionnum & XFS_SB_VERSION_NLINKBIT)
+ features |= XFS_FEAT_NLINK;
if (sbp->sb_versionnum & XFS_SB_VERSION_ATTRBIT)
features |= XFS_FEAT_ATTR;
if (sbp->sb_versionnum & XFS_SB_VERSION_QUOTABIT)
@@ -124,6 +171,9 @@ xfs_sb_version_to_features(
features |= XFS_FEAT_BIGTIME;
if (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR)
features |= XFS_FEAT_NEEDSREPAIR;
+ if (sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_NREXT64)
+ features |= XFS_FEAT_NREXT64;
+
return features;
}
@@ -262,12 +312,15 @@ xfs_validate_sb_common(
bool has_dalign;
if (!xfs_verify_magic(bp, dsb->sb_magicnum)) {
- xfs_warn(mp, "bad magic number");
+ xfs_warn(mp,
+"Superblock has bad magic number 0x%x. Not an XFS filesystem?",
+ be32_to_cpu(dsb->sb_magicnum));
return -EWRONGFS;
}
if (!xfs_sb_good_version(sbp)) {
- xfs_warn(mp, "bad version");
+ xfs_warn(mp,
+"Superblock has unknown features enabled or corrupted feature masks.");
return -EWRONGFS;
}
@@ -911,6 +964,11 @@ xfs_log_sb(
* reservations that have been taken out percpu counters. If we have an
* unclean shutdown, this will be corrected by log recovery rebuilding
* the counters from the AGF block counts.
+ *
+ * Do not update sb_frextents here because it is not part of the lazy
+ * sb counters, despite having a percpu counter. It is always kept
+ * consistent with the ondisk rtbitmap by xfs_trans_apply_sb_deltas()
+ * and hence we don't need have to update it here.
*/
if (xfs_has_lazysbcount(mp)) {
mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount);
@@ -1135,6 +1193,8 @@ xfs_fs_geometry(
} else {
geo->logsectsize = BBSIZE;
}
+ if (xfs_has_large_extent_counts(mp))
+ geo->flags |= XFS_FSOP_GEOM_FLAGS_NREXT64;
geo->rtsectsize = sbp->sb_blocksize;
geo->dirblocksize = xfs_dir2_dirblock_bytes(sbp);