summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_super.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-08-28 21:04:18 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2023-08-28 21:04:18 +0300
commit511fb5bafed197ff76d9adf5448de67f1d0558ae (patch)
tree6683ae0e7b62caa9488040d71705768a306f37dd /fs/xfs/xfs_super.c
parentde16588a7737b12e63ec646d72b45befb2b1f8f7 (diff)
parentcd4284cfd3e11c7a49e4808f76f53284d47d04dd (diff)
downloadlinux-511fb5bafed197ff76d9adf5448de67f1d0558ae.tar.xz
Merge tag 'v6.6-vfs.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull superblock updates from Christian Brauner: "This contains the super rework that was ready for this cycle. The first part changes the order of how we open block devices and allocate superblocks, contains various cleanups, simplifications, and a new mechanism to wait on superblock state changes. This unblocks work to ultimately limit the number of writers to a block device. Jan has already scheduled follow-up work that will be ready for v6.7 and allows us to restrict the number of writers to a given block device. That series builds on this work right here. The second part contains filesystem freezing updates. Overview: The generic superblock changes are rougly organized as follows (ignoring additional minor cleanups): (1) Removal of the bd_super member from struct block_device. This was a very odd back pointer to struct super_block with unclear rules. For all relevant places we have other means to get the same information so just get rid of this. (2) Simplify rules for superblock cleanup. Roughly, everything that is allocated during fs_context initialization and that's stored in fs_context->s_fs_info needs to be cleaned up by the fs_context->free() implementation before the superblock allocation function has been called successfully. After sget_fc() returned fs_context->s_fs_info has been transferred to sb->s_fs_info at which point sb->kill_sb() if fully responsible for cleanup. Adhering to these rules means that cleanup of sb->s_fs_info in fill_super() is to be avoided as it's brittle and inconsistent. Cleanup shouldn't be duplicated between sb->put_super() as sb->put_super() is only called if sb->s_root has been set aka when the filesystem has been successfully born (SB_BORN). That complexity should be avoided. This also means that block devices are to be closed in sb->kill_sb() instead of sb->put_super(). More details in the lower section. (3) Make it possible to lookup or create a superblock before opening block devices There's a subtle dependency on (2) as some filesystems did rely on fill_super() to be called in order to correctly clean up sb->s_fs_info. All these filesystems have been fixed. (4) Switch most filesystem to follow the same logic as the generic mount code now does as outlined in (3). (5) Use the superblock as the holder of the block device. We can now easily go back from block device to owning superblock. (6) Export and extend the generic fs_holder_ops and use them as holder ops everywhere and remove the filesystem specific holder ops. (7) Call from the block layer up into the filesystem layer when the block device is removed, allowing to shut down the filesystem without risk of deadlocks. (8) Get rid of get_super(). We can now easily go back from the block device to owning superblock and can call up from the block layer into the filesystem layer when the device is removed. So no need to wade through all registered superblock to find the owning superblock anymore" Link: https://lore.kernel.org/lkml/20230824-prall-intakt-95dbffdee4a0@brauner/ * tag 'v6.6-vfs.super' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (47 commits) super: use higher-level helper for {freeze,thaw} super: wait until we passed kill super super: wait for nascent superblocks super: make locking naming consistent super: use locking helpers fs: simplify invalidate_inodes fs: remove get_super block: call into the file system for ioctl BLKFLSBUF block: call into the file system for bdev_mark_dead block: consolidate __invalidate_device and fsync_bdev block: drop the "busy inodes on changed media" log message dasd: also call __invalidate_device when setting the device offline amiflop: don't call fsync_bdev in FDFMTBEG floppy: call disk_force_media_change when changing the format block: simplify the disk_force_media_change interface nbd: call blk_mark_disk_dead in nbd_clear_sock_ioctl xfs use fs_holder_ops for the log and RT devices xfs: drop s_umount over opening the log and RT devices ext4: use fs_holder_ops for the log device ext4: drop s_umount over opening the log device ...
Diffstat (limited to 'fs/xfs/xfs_super.c')
-rw-r--r--fs/xfs/xfs_super.c136
1 files changed, 80 insertions, 56 deletions
diff --git a/fs/xfs/xfs_super.c b/fs/xfs/xfs_super.c
index 4b10edb2c972..c79eac048456 100644
--- a/fs/xfs/xfs_super.c
+++ b/fs/xfs/xfs_super.c
@@ -377,17 +377,6 @@ disable_dax:
return 0;
}
-static void
-xfs_bdev_mark_dead(
- struct block_device *bdev)
-{
- xfs_force_shutdown(bdev->bd_holder, SHUTDOWN_DEVICE_REMOVED);
-}
-
-static const struct blk_holder_ops xfs_holder_ops = {
- .mark_dead = xfs_bdev_mark_dead,
-};
-
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
@@ -396,8 +385,8 @@ xfs_blkdev_get(
{
int error = 0;
- *bdevp = blkdev_get_by_path(name, BLK_OPEN_READ | BLK_OPEN_WRITE, mp,
- &xfs_holder_ops);
+ *bdevp = blkdev_get_by_path(name, BLK_OPEN_READ | BLK_OPEN_WRITE,
+ mp->m_super, &fs_holder_ops);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
@@ -407,31 +396,45 @@ xfs_blkdev_get(
}
STATIC void
-xfs_blkdev_put(
- struct xfs_mount *mp,
- struct block_device *bdev)
-{
- if (bdev)
- blkdev_put(bdev, mp);
-}
-
-STATIC void
-xfs_close_devices(
+xfs_shutdown_devices(
struct xfs_mount *mp)
{
+ /*
+ * Udev is triggered whenever anyone closes a block device or unmounts
+ * a file systemm on a block device.
+ * The default udev rules invoke blkid to read the fs super and create
+ * symlinks to the bdev under /dev/disk. For this, it uses buffered
+ * reads through the page cache.
+ *
+ * xfs_db also uses buffered reads to examine metadata. There is no
+ * coordination between xfs_db and udev, which means that they can run
+ * concurrently. Note there is no coordination between the kernel and
+ * blkid either.
+ *
+ * On a system with 64k pages, the page cache can cache the superblock
+ * and the root inode (and hence the root directory) with the same 64k
+ * page. If udev spawns blkid after the mkfs and the system is busy
+ * enough that it is still running when xfs_db starts up, they'll both
+ * read from the same page in the pagecache.
+ *
+ * The unmount writes updated inode metadata to disk directly. The XFS
+ * buffer cache does not use the bdev pagecache, so it needs to
+ * invalidate that pagecache on unmount. If the above scenario occurs,
+ * the pagecache no longer reflects what's on disk, xfs_db reads the
+ * stale metadata, and fails to find /a. Most of the time this succeeds
+ * because closing a bdev invalidates the page cache, but when processes
+ * race, everyone loses.
+ */
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
- struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
-
- xfs_free_buftarg(mp->m_logdev_targp);
- xfs_blkdev_put(mp, logdev);
+ blkdev_issue_flush(mp->m_logdev_targp->bt_bdev);
+ invalidate_bdev(mp->m_logdev_targp->bt_bdev);
}
if (mp->m_rtdev_targp) {
- struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
-
- xfs_free_buftarg(mp->m_rtdev_targp);
- xfs_blkdev_put(mp, rtdev);
+ blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
+ invalidate_bdev(mp->m_rtdev_targp->bt_bdev);
}
- xfs_free_buftarg(mp->m_ddev_targp);
+ blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
+ invalidate_bdev(mp->m_ddev_targp->bt_bdev);
}
/*
@@ -448,17 +451,24 @@ STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
- struct block_device *ddev = mp->m_super->s_bdev;
+ struct super_block *sb = mp->m_super;
+ struct block_device *ddev = sb->s_bdev;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
+ * blkdev_put() can't be called under s_umount, see the comment
+ * in get_tree_bdev() for more details
+ */
+ up_write(&sb->s_umount);
+
+ /*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
if (error)
- return error;
+ goto out_relock;
}
if (mp->m_rtname) {
@@ -496,7 +506,10 @@ xfs_open_devices(
mp->m_logdev_targp = mp->m_ddev_targp;
}
- return 0;
+ error = 0;
+out_relock:
+ down_write(&sb->s_umount);
+ return error;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
@@ -504,11 +517,12 @@ xfs_open_devices(
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
- xfs_blkdev_put(mp, rtdev);
+ if (rtdev)
+ blkdev_put(rtdev, sb);
out_close_logdev:
if (logdev && logdev != ddev)
- xfs_blkdev_put(mp, logdev);
- return error;
+ blkdev_put(logdev, sb);
+ goto out_relock;
}
/*
@@ -758,6 +772,17 @@ static void
xfs_mount_free(
struct xfs_mount *mp)
{
+ /*
+ * Free the buftargs here because blkdev_put needs to be called outside
+ * of sb->s_umount, which is held around the call to ->put_super.
+ */
+ if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
+ xfs_free_buftarg(mp->m_logdev_targp);
+ if (mp->m_rtdev_targp)
+ xfs_free_buftarg(mp->m_rtdev_targp);
+ if (mp->m_ddev_targp)
+ xfs_free_buftarg(mp->m_ddev_targp);
+
kfree(mp->m_rtname);
kfree(mp->m_logname);
kmem_free(mp);
@@ -1133,10 +1158,6 @@ xfs_fs_put_super(
{
struct xfs_mount *mp = XFS_M(sb);
- /* if ->fill_super failed, we have no mount to tear down */
- if (!sb->s_fs_info)
- return;
-
xfs_notice(mp, "Unmounting Filesystem %pU", &mp->m_sb.sb_uuid);
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
@@ -1147,10 +1168,7 @@ xfs_fs_put_super(
xfs_inodegc_free_percpu(mp);
xfs_destroy_percpu_counters(mp);
xfs_destroy_mount_workqueues(mp);
- xfs_close_devices(mp);
-
- sb->s_fs_info = NULL;
- xfs_mount_free(mp);
+ xfs_shutdown_devices(mp);
}
static long
@@ -1492,7 +1510,7 @@ xfs_fs_fill_super(
error = xfs_fs_validate_params(mp);
if (error)
- goto out_free_names;
+ return error;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
@@ -1519,11 +1537,11 @@ xfs_fs_fill_super(
error = xfs_open_devices(mp);
if (error)
- goto out_free_names;
+ return error;
error = xfs_init_mount_workqueues(mp);
if (error)
- goto out_close_devices;
+ goto out_shutdown_devices;
error = xfs_init_percpu_counters(mp);
if (error)
@@ -1737,11 +1755,8 @@ xfs_fs_fill_super(
xfs_destroy_percpu_counters(mp);
out_destroy_workqueues:
xfs_destroy_mount_workqueues(mp);
- out_close_devices:
- xfs_close_devices(mp);
- out_free_names:
- sb->s_fs_info = NULL;
- xfs_mount_free(mp);
+ out_shutdown_devices:
+ xfs_shutdown_devices(mp);
return error;
out_unmount:
@@ -1934,7 +1949,8 @@ xfs_fs_reconfigure(
return 0;
}
-static void xfs_fs_free(
+static void
+xfs_fs_free(
struct fs_context *fc)
{
struct xfs_mount *mp = fc->s_fs_info;
@@ -2003,12 +2019,20 @@ static int xfs_init_fs_context(
return 0;
}
+static void
+xfs_kill_sb(
+ struct super_block *sb)
+{
+ kill_block_super(sb);
+ xfs_mount_free(XFS_M(sb));
+}
+
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.init_fs_context = xfs_init_fs_context,
.parameters = xfs_fs_parameters,
- .kill_sb = kill_block_super,
+ .kill_sb = xfs_kill_sb,
.fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
};
MODULE_ALIAS_FS("xfs");