summaryrefslogtreecommitdiff
path: root/mm/huge_memory.c
diff options
context:
space:
mode:
authorHugh Dickins <hughd@google.com>2022-02-15 05:21:52 +0300
committerMatthew Wilcox (Oracle) <willy@infradead.org>2022-02-17 19:56:36 +0300
commitb67bf49ce7aae72f63739abee6ac25f64bf20081 (patch)
treee94cfac0f8ad4e293bf4aa3d4370ab7a5cd473e7 /mm/huge_memory.c
parentebcbc6ea7d8a604ad8504dae70a6ac1b1e64a0b7 (diff)
downloadlinux-b67bf49ce7aae72f63739abee6ac25f64bf20081.tar.xz
mm/munlock: delete FOLL_MLOCK and FOLL_POPULATE
If counting page mlocks, we must not double-count: follow_page_pte() can tell if a page has already been Mlocked or not, but cannot tell if a pte has already been counted or not: that will have to be done when the pte is mapped in (which lru_cache_add_inactive_or_unevictable() already tracks for new anon pages, but there's no such tracking yet for others). Delete all the FOLL_MLOCK code - faulting in the missing pages will do all that is necessary, without special mlock_vma_page() calls from here. But then FOLL_POPULATE turns out to serve no purpose - it was there so that its absence would tell faultin_page() not to faultin page when setting up VM_LOCKONFAULT areas; but if there's no special work needed here for mlock, then there's no work at all here for VM_LOCKONFAULT. Have I got that right? I've not looked into the history, but see that FOLL_POPULATE goes back before VM_LOCKONFAULT: did it serve a different purpose before? Ah, yes, it was used to skip the old stack guard page. And is it intentional that COW is not broken on existing pages when setting up a VM_LOCKONFAULT area? I can see that being argued either way, and have no reason to disagree with current behaviour. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Diffstat (limited to 'mm/huge_memory.c')
-rw-r--r--mm/huge_memory.c33
1 files changed, 0 insertions, 33 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 406a3c28c026..9a34b85ebcf8 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -1380,39 +1380,6 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
if (flags & FOLL_TOUCH)
touch_pmd(vma, addr, pmd, flags);
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
- /*
- * We don't mlock() pte-mapped THPs. This way we can avoid
- * leaking mlocked pages into non-VM_LOCKED VMAs.
- *
- * For anon THP:
- *
- * In most cases the pmd is the only mapping of the page as we
- * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
- * writable private mappings in populate_vma_page_range().
- *
- * The only scenario when we have the page shared here is if we
- * mlocking read-only mapping shared over fork(). We skip
- * mlocking such pages.
- *
- * For file THP:
- *
- * We can expect PageDoubleMap() to be stable under page lock:
- * for file pages we set it in page_add_file_rmap(), which
- * requires page to be locked.
- */
-
- if (PageAnon(page) && compound_mapcount(page) != 1)
- goto skip_mlock;
- if (PageDoubleMap(page) || !page->mapping)
- goto skip_mlock;
- if (!trylock_page(page))
- goto skip_mlock;
- if (page->mapping && !PageDoubleMap(page))
- mlock_vma_page(page);
- unlock_page(page);
- }
-skip_mlock:
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);