summaryrefslogtreecommitdiff
path: root/mm/internal.h
diff options
context:
space:
mode:
authorMel Gorman <mgorman@techsingularity.net>2023-01-13 14:12:12 +0300
committerAndrew Morton <akpm@linux-foundation.org>2023-02-03 09:33:11 +0300
commit524c48072e5673f4511f1ad81493e2485863fd65 (patch)
treeead35272ae696995922d2c5325c71cc0ef3c31f1 /mm/internal.h
parent6189eb82f0aec8a877190bf52e629c687ed02773 (diff)
downloadlinux-524c48072e5673f4511f1ad81493e2485863fd65.tar.xz
mm/page_alloc: rename ALLOC_HIGH to ALLOC_MIN_RESERVE
Patch series "Discard __GFP_ATOMIC", v3. Neil's patch has been residing in mm-unstable as commit 2fafb4fe8f7a ("mm: discard __GFP_ATOMIC") for a long time and recently brought up again. Most recently, I was worried that __GFP_HIGH allocations could use high-order atomic reserves which is unintentional but there was no response so lets revisit -- this series reworks how min reserves are used, protects highorder reserves and then finishes with Neil's patch with very minor modifications so it fits on top. There was a review discussion on renaming __GFP_DIRECT_RECLAIM to __GFP_ALLOW_BLOCKING but I didn't think it was that big an issue and is orthogonal to the removal of __GFP_ATOMIC. There were some concerns about how the gfp flags affect the min reserves but it never reached a solid conclusion so I made my own attempt. The series tries to iron out some of the details on how reserves are used. ALLOC_HIGH becomes ALLOC_MIN_RESERVE and ALLOC_HARDER becomes ALLOC_NON_BLOCK and documents how the reserves are affected. For example, ALLOC_NON_BLOCK (no direct reclaim) on its own allows 25% of the min reserve. ALLOC_MIN_RESERVE (__GFP_HIGH) allows 50% and both combined allows deeper access again. ALLOC_OOM allows access to 75%. High-order atomic allocations are explicitly handled with the caveat that no __GFP_ATOMIC flag means that any high-order allocation that specifies GFP_HIGH and cannot enter direct reclaim will be treated as if it was GFP_ATOMIC. This patch (of 6): __GFP_HIGH aliases to ALLOC_HIGH but the name does not really hint what it means. As ALLOC_HIGH is internal to the allocator, rename it to ALLOC_MIN_RESERVE to document that the min reserves can be depleted. Link: https://lkml.kernel.org/r/20230113111217.14134-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20230113111217.14134-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: NeilBrown <neilb@suse.de> Cc: Thierry Reding <thierry.reding@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/internal.h')
-rw-r--r--mm/internal.h4
1 files changed, 3 insertions, 1 deletions
diff --git a/mm/internal.h b/mm/internal.h
index 973b48e8b1af..99eb544fbded 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -779,7 +779,9 @@ unsigned int reclaim_clean_pages_from_list(struct zone *zone,
#endif
#define ALLOC_HARDER 0x10 /* try to alloc harder */
-#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
+#define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
+ * of the min watermark.
+ */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
#ifdef CONFIG_ZONE_DMA32