summaryrefslogtreecommitdiff
path: root/Documentation/process
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/process')
-rw-r--r--Documentation/process/changes.rst14
-rw-r--r--Documentation/process/maintainer-handbooks.rst4
-rw-r--r--Documentation/process/maintainer-kvm-x86.rst390
-rw-r--r--Documentation/process/maintainer-soc.rst177
-rw-r--r--Documentation/process/maintainer-tip.rst2
5 files changed, 586 insertions, 1 deletions
diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst
index 5cf6a5f8ca57..5561dae94f85 100644
--- a/Documentation/process/changes.rst
+++ b/Documentation/process/changes.rst
@@ -60,6 +60,8 @@ openssl & libcrypto 1.0.0 openssl version
bc 1.06.95 bc --version
Sphinx\ [#f1]_ 1.7 sphinx-build --version
cpio any cpio --version
+GNU tar 1.28 tar --version
+gtags (optional) 6.6.5 gtags --version
====================== =============== ========================================
.. [#f1] Sphinx is needed only to build the Kernel documentation
@@ -174,6 +176,18 @@ You will need openssl to build kernels 3.7 and higher if module signing is
enabled. You will also need openssl development packages to build kernels 4.3
and higher.
+Tar
+---
+
+GNU tar is needed if you want to enable access to the kernel headers via sysfs
+(CONFIG_IKHEADERS).
+
+gtags / GNU GLOBAL (optional)
+-----------------------------
+
+The kernel build requires GNU GLOBAL version 6.6.5 or later to generate
+tag files through ``make gtags``. This is due to its use of the gtags
+``-C (--directory)`` flag.
System utilities
****************
diff --git a/Documentation/process/maintainer-handbooks.rst b/Documentation/process/maintainer-handbooks.rst
index d783060b4cc6..9992bfd7eaa3 100644
--- a/Documentation/process/maintainer-handbooks.rst
+++ b/Documentation/process/maintainer-handbooks.rst
@@ -15,5 +15,7 @@ Contents:
:numbered:
:maxdepth: 2
- maintainer-tip
maintainer-netdev
+ maintainer-soc
+ maintainer-tip
+ maintainer-kvm-x86
diff --git a/Documentation/process/maintainer-kvm-x86.rst b/Documentation/process/maintainer-kvm-x86.rst
new file mode 100644
index 000000000000..9183bd449762
--- /dev/null
+++ b/Documentation/process/maintainer-kvm-x86.rst
@@ -0,0 +1,390 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+KVM x86
+=======
+
+Foreword
+--------
+KVM strives to be a welcoming community; contributions from newcomers are
+valued and encouraged. Please do not be discouraged or intimidated by the
+length of this document and the many rules/guidelines it contains. Everyone
+makes mistakes, and everyone was a newbie at some point. So long as you make
+an honest effort to follow KVM x86's guidelines, are receptive to feedback,
+and learn from any mistakes you make, you will be welcomed with open arms, not
+torches and pitchforks.
+
+TL;DR
+-----
+Testing is mandatory. Be consistent with established styles and patterns.
+
+Trees
+-----
+KVM x86 is currently in a transition period from being part of the main KVM
+tree, to being "just another KVM arch". As such, KVM x86 is split across the
+main KVM tree, ``git.kernel.org/pub/scm/virt/kvm/kvm.git``, and a KVM x86
+specific tree, ``github.com/kvm-x86/linux.git``.
+
+Generally speaking, fixes for the current cycle are applied directly to the
+main KVM tree, while all development for the next cycle is routed through the
+KVM x86 tree. In the unlikely event that a fix for the current cycle is routed
+through the KVM x86 tree, it will be applied to the ``fixes`` branch before
+making its way to the main KVM tree.
+
+Note, this transition period is expected to last quite some time, i.e. will be
+the status quo for the foreseeable future.
+
+Branches
+~~~~~~~~
+The KVM x86 tree is organized into multiple topic branches. The purpose of
+using finer-grained topic branches is to make it easier to keep tabs on an area
+of development, and to limit the collateral damage of human errors and/or buggy
+commits, e.g. dropping the HEAD commit of a topic branch has no impact on other
+in-flight commits' SHA1 hashes, and having to reject a pull request due to bugs
+delays only that topic branch.
+
+All topic branches, except for ``next`` and ``fixes``, are rolled into ``next``
+via a Cthulhu merge on an as-needed basis, i.e. when a topic branch is updated.
+As a result, force pushes to ``next`` are common.
+
+Lifecycle
+~~~~~~~~~
+Fixes that target the current release, a.k.a. mainline, are typically applied
+directly to the main KVM tree, i.e. do not route through the KVM x86 tree.
+
+Changes that target the next release are routed through the KVM x86 tree. Pull
+requests (from KVM x86 to main KVM) are sent for each KVM x86 topic branch,
+typically the week before Linus' opening of the merge window, e.g. the week
+following rc7 for "normal" releases. If all goes well, the topic branches are
+rolled into the main KVM pull request sent during Linus' merge window.
+
+The KVM x86 tree doesn't have its own official merge window, but there's a soft
+close around rc5 for new features, and a soft close around rc6 for fixes (for
+the next release; see above for fixes that target the current release).
+
+Timeline
+~~~~~~~~
+Submissions are typically reviewed and applied in FIFO order, with some wiggle
+room for the size of a series, patches that are "cache hot", etc. Fixes,
+especially for the current release and or stable trees, get to jump the queue.
+Patches that will be taken through a non-KVM tree (most often through the tip
+tree) and/or have other acks/reviews also jump the queue to some extent.
+
+Note, the vast majority of review is done between rc1 and rc6, give or take.
+The period between rc6 and the next rc1 is used to catch up on other tasks,
+i.e. radio silence during this period isn't unusual.
+
+Pings to get a status update are welcome, but keep in mind the timing of the
+current release cycle and have realistic expectations. If you are pinging for
+acceptance, i.e. not just for feedback or an update, please do everything you
+can, within reason, to ensure that your patches are ready to be merged! Pings
+on series that break the build or fail tests lead to unhappy maintainers!
+
+Development
+-----------
+
+Base Tree/Branch
+~~~~~~~~~~~~~~~~
+Fixes that target the current release, a.k.a. mainline, should be based on
+``git://git.kernel.org/pub/scm/virt/kvm/kvm.git master``. Note, fixes do not
+automatically warrant inclusion in the current release. There is no singular
+rule, but typically only fixes for bugs that are urgent, critical, and/or were
+introduced in the current release should target the current release.
+
+Everything else should be based on ``kvm-x86/next``, i.e. there is no need to
+select a specific topic branch as the base. If there are conflicts and/or
+dependencies across topic branches, it is the maintainer's job to sort them
+out.
+
+The only exception to using ``kvm-x86/next`` as the base is if a patch/series
+is a multi-arch series, i.e. has non-trivial modifications to common KVM code
+and/or has more than superficial changes to other architectures' code. Multi-
+arch patch/series should instead be based on a common, stable point in KVM's
+history, e.g. the release candidate upon which ``kvm-x86 next`` is based. If
+you're unsure whether a patch/series is truly multi-arch, err on the side of
+caution and treat it as multi-arch, i.e. use a common base.
+
+Coding Style
+~~~~~~~~~~~~
+When it comes to style, naming, patterns, etc., consistency is the number one
+priority in KVM x86. If all else fails, match what already exists.
+
+With a few caveats listed below, follow the tip tree maintainers' preferred
+:ref:`maintainer-tip-coding-style`, as patches/series often touch both KVM and
+non-KVM x86 files, i.e. draw the attention of KVM *and* tip tree maintainers.
+
+Using reverse fir tree, a.k.a. reverse Christmas tree or reverse XMAS tree, for
+variable declarations isn't strictly required, though it is still preferred.
+
+Except for a handful of special snowflakes, do not use kernel-doc comments for
+functions. The vast majority of "public" KVM functions aren't truly public as
+they are intended only for KVM-internal consumption (there are plans to
+privatize KVM's headers and exports to enforce this).
+
+Comments
+~~~~~~~~
+Write comments using imperative mood and avoid pronouns. Use comments to
+provide a high level overview of the code, and/or to explain why the code does
+what it does. Do not reiterate what the code literally does; let the code
+speak for itself. If the code itself is inscrutable, comments will not help.
+
+SDM and APM References
+~~~~~~~~~~~~~~~~~~~~~~
+Much of KVM's code base is directly tied to architectural behavior defined in
+Intel's Software Development Manual (SDM) and AMD's Architecture Programmer’s
+Manual (APM). Use of "Intel's SDM" and "AMD's APM", or even just "SDM" or
+"APM", without additional context is a-ok.
+
+Do not reference specific sections, tables, figures, etc. by number, especially
+not in comments. Instead, if necessary (see below), copy-paste the relevant
+snippet and reference sections/tables/figures by name. The layouts of the SDM
+and APM are constantly changing, and so the numbers/labels aren't stable.
+
+Generally speaking, do not explicitly reference or copy-paste from the SDM or
+APM in comments. With few exceptions, KVM *must* honor architectural behavior,
+therefore it's implied that KVM behavior is emulating SDM and/or APM behavior.
+Note, referencing the SDM/APM in changelogs to justify the change and provide
+context is perfectly ok and encouraged.
+
+Shortlog
+~~~~~~~~
+The preferred prefix format is ``KVM: <topic>:``, where ``<topic>`` is one of::
+
+ - x86
+ - x86/mmu
+ - x86/pmu
+ - x86/xen
+ - selftests
+ - SVM
+ - nSVM
+ - VMX
+ - nVMX
+
+**DO NOT use x86/kvm!** ``x86/kvm`` is used exclusively for Linux-as-a-KVM-guest
+changes, i.e. for arch/x86/kernel/kvm.c. Do not use file names or complete file
+paths as the subject/shortlog prefix.
+
+Note, these don't align with the topics branches (the topic branches care much
+more about code conflicts).
+
+All names are case sensitive! ``KVM: x86:`` is good, ``kvm: vmx:`` is not.
+
+Capitalize the first word of the condensed patch description, but omit ending
+punctionation. E.g.::
+
+ KVM: x86: Fix a null pointer dereference in function_xyz()
+
+not::
+
+ kvm: x86: fix a null pointer dereference in function_xyz.
+
+If a patch touches multiple topics, traverse up the conceptual tree to find the
+first common parent (which is often simply ``x86``). When in doubt,
+``git log path/to/file`` should provide a reasonable hint.
+
+New topics do occasionally pop up, but please start an on-list discussion if
+you want to propose introducing a new topic, i.e. don't go rogue.
+
+See :ref:`the_canonical_patch_format` for more information, with one amendment:
+do not treat the 70-75 character limit as an absolute, hard limit. Instead,
+use 75 characters as a firm-but-not-hard limit, and use 80 characters as a hard
+limit. I.e. let the shortlog run a few characters over the standard limit if
+you have good reason to do so.
+
+Changelog
+~~~~~~~~~
+Most importantly, write changelogs using imperative mood and avoid pronouns.
+
+See :ref:`describe_changes` for more information, with one amendment: lead with
+a short blurb on the actual changes, and then follow up with the context and
+background. Note! This order directly conflicts with the tip tree's preferred
+approach! Please follow the tip tree's preferred style when sending patches
+that primarily target arch/x86 code that is _NOT_ KVM code.
+
+Stating what a patch does before diving into details is preferred by KVM x86
+for several reasons. First and foremost, what code is actually being changed
+is arguably the most important information, and so that info should be easy to
+find. Changelogs that bury the "what's actually changing" in a one-liner after
+3+ paragraphs of background make it very hard to find that information.
+
+For initial review, one could argue the "what's broken" is more important, but
+for skimming logs and git archaeology, the gory details matter less and less.
+E.g. when doing a series of "git blame", the details of each change along the
+way are useless, the details only matter for the culprit. Providing the "what
+changed" makes it easy to quickly determine whether or not a commit might be of
+interest.
+
+Another benefit of stating "what's changing" first is that it's almost always
+possible to state "what's changing" in a single sentence. Conversely, all but
+the most simple bugs require multiple sentences or paragraphs to fully describe
+the problem. If both the "what's changing" and "what's the bug" are super
+short then the order doesn't matter. But if one is shorter (almost always the
+"what's changing), then covering the shorter one first is advantageous because
+it's less of an inconvenience for readers/reviewers that have a strict ordering
+preference. E.g. having to skip one sentence to get to the context is less
+painful than having to skip three paragraphs to get to "what's changing".
+
+Fixes
+~~~~~
+If a change fixes a KVM/kernel bug, add a Fixes: tag even if the change doesn't
+need to be backported to stable kernels, and even if the change fixes a bug in
+an older release.
+
+Conversely, if a fix does need to be backported, explicitly tag the patch with
+"Cc: stable@vger.kernel" (though the email itself doesn't need to Cc: stable);
+KVM x86 opts out of backporting Fixes: by default. Some auto-selected patches
+do get backported, but require explicit maintainer approval (search MANUALSEL).
+
+Function References
+~~~~~~~~~~~~~~~~~~~
+When a function is mentioned in a comment, changelog, or shortlog (or anywhere
+for that matter), use the format ``function_name()``. The parentheses provide
+context and disambiguate the reference.
+
+Testing
+-------
+At a bare minimum, *all* patches in a series must build cleanly for KVM_INTEL=m
+KVM_AMD=m, and KVM_WERROR=y. Building every possible combination of Kconfigs
+isn't feasible, but the more the merrier. KVM_SMM, KVM_XEN, PROVE_LOCKING, and
+X86_64 are particularly interesting knobs to turn.
+
+Running KVM selftests and KVM-unit-tests is also mandatory (and stating the
+obvious, the tests need to pass). The only exception is for changes that have
+negligible probability of affecting runtime behavior, e.g. patches that only
+modify comments. When possible and relevant, testing on both Intel and AMD is
+strongly preferred. Booting an actual VM is encouraged, but not mandatory.
+
+For changes that touch KVM's shadow paging code, running with TDP (EPT/NPT)
+disabled is mandatory. For changes that affect common KVM MMU code, running
+with TDP disabled is strongly encouraged. For all other changes, if the code
+being modified depends on and/or interacts with a module param, testing with
+the relevant settings is mandatory.
+
+Note, KVM selftests and KVM-unit-tests do have known failures. If you suspect
+a failure is not due to your changes, verify that the *exact same* failure
+occurs with and without your changes.
+
+Changes that touch reStructured Text documentation, i.e. .rst files, must build
+htmldocs cleanly, i.e. with no new warnings or errors.
+
+If you can't fully test a change, e.g. due to lack of hardware, clearly state
+what level of testing you were able to do, e.g. in the cover letter.
+
+New Features
+~~~~~~~~~~~~
+With one exception, new features *must* come with test coverage. KVM specific
+tests aren't strictly required, e.g. if coverage is provided by running a
+sufficiently enabled guest VM, or by running a related kernel selftest in a VM,
+but dedicated KVM tests are preferred in all cases. Negative testcases in
+particular are mandatory for enabling of new hardware features as error and
+exception flows are rarely exercised simply by running a VM.
+
+The only exception to this rule is if KVM is simply advertising support for a
+feature via KVM_GET_SUPPORTED_CPUID, i.e. for instructions/features that KVM
+can't prevent a guest from using and for which there is no true enabling.
+
+Note, "new features" does not just mean "new hardware features"! New features
+that can't be well validated using existing KVM selftests and/or KVM-unit-tests
+must come with tests.
+
+Posting new feature development without tests to get early feedback is more
+than welcome, but such submissions should be tagged RFC, and the cover letter
+should clearly state what type of feedback is requested/expected. Do not abuse
+the RFC process; RFCs will typically not receive in-depth review.
+
+Bug Fixes
+~~~~~~~~~
+Except for "obvious" found-by-inspection bugs, fixes must be accompanied by a
+reproducer for the bug being fixed. In many cases the reproducer is implicit,
+e.g. for build errors and test failures, but it should still be clear to
+readers what is broken and how to verify the fix. Some leeway is given for
+bugs that are found via non-public workloads/tests, but providing regression
+tests for such bugs is strongly preferred.
+
+In general, regression tests are preferred for any bug that is not trivial to
+hit. E.g. even if the bug was originally found by a fuzzer such as syzkaller,
+a targeted regression test may be warranted if the bug requires hitting a
+one-in-a-million type race condition.
+
+Note, KVM bugs are rarely urgent *and* non-trivial to reproduce. Ask yourself
+if a bug is really truly the end of the world before posting a fix without a
+reproducer.
+
+Posting
+-------
+
+Links
+~~~~~
+Do not explicitly reference bug reports, prior versions of a patch/series, etc.
+via ``In-Reply-To:`` headers. Using ``In-Reply-To:`` becomes an unholy mess
+for large series and/or when the version count gets high, and ``In-Reply-To:``
+is useless for anyone that doesn't have the original message, e.g. if someone
+wasn't Cc'd on the bug report or if the list of recipients changes between
+versions.
+
+To link to a bug report, previous version, or anything of interest, use lore
+links. For referencing previous version(s), generally speaking do not include
+a Link: in the changelog as there is no need to record the history in git, i.e.
+put the link in the cover letter or in the section git ignores. Do provide a
+formal Link: for bug reports and/or discussions that led to the patch. The
+context of why a change was made is highly valuable for future readers.
+
+Git Base
+~~~~~~~~
+If you are using git version 2.9.0 or later (Googlers, this is all of you!),
+use ``git format-patch`` with the ``--base`` flag to automatically include the
+base tree information in the generated patches.
+
+Note, ``--base=auto`` works as expected if and only if a branch's upstream is
+set to the base topic branch, e.g. it will do the wrong thing if your upstream
+is set to your personal repository for backup purposes. An alternative "auto"
+solution is to derive the names of your development branches based on their
+KVM x86 topic, and feed that into ``--base``. E.g. ``x86/pmu/my_branch_name``,
+and then write a small wrapper to extract ``pmu`` from the current branch name
+to yield ``--base=x/pmu``, where ``x`` is whatever name your repository uses to
+track the KVM x86 remote.
+
+Co-Posting Tests
+~~~~~~~~~~~~~~~~
+KVM selftests that are associated with KVM changes, e.g. regression tests for
+bug fixes, should be posted along with the KVM changes as a single series. The
+standard kernel rules for bisection apply, i.e. KVM changes that result in test
+failures should be ordered after the selftests updates, and vice versa, new
+tests that fail due to KVM bugs should be ordered after the KVM fixes.
+
+KVM-unit-tests should *always* be posted separately. Tools, e.g. b4 am, don't
+know that KVM-unit-tests is a separate repository and get confused when patches
+in a series apply on different trees. To tie KVM-unit-tests patches back to
+KVM patches, first post the KVM changes and then provide a lore Link: to the
+KVM patch/series in the KVM-unit-tests patch(es).
+
+Notifications
+-------------
+When a patch/series is officially accepted, a notification email will be sent
+in reply to the original posting (cover letter for multi-patch series). The
+notification will include the tree and topic branch, along with the SHA1s of
+the commits of applied patches.
+
+If a subset of patches is applied, this will be clearly stated in the
+notification. Unless stated otherwise, it's implied that any patches in the
+series that were not accepted need more work and should be submitted in a new
+version.
+
+If for some reason a patch is dropped after officially being accepted, a reply
+will be sent to the notification email explaining why the patch was dropped, as
+well as the next steps.
+
+SHA1 Stability
+~~~~~~~~~~~~~~
+SHA1s are not 100% guaranteed to be stable until they land in Linus' tree! A
+SHA1 is *usually* stable once a notification has been sent, but things happen.
+In most cases, an update to the notification email be provided if an applied
+patch's SHA1 changes. However, in some scenarios, e.g. if all KVM x86 branches
+need to be rebased, individual notifications will not be given.
+
+Vulnerabilities
+---------------
+Bugs that can be exploited by the guest to attack the host (kernel or
+userspace), or that can be exploited by a nested VM to *its* host (L2 attacking
+L1), are of particular interest to KVM. Please follow the protocol for
+:ref:`securitybugs` if you suspect a bug can lead to an escape, data leak, etc.
+
diff --git a/Documentation/process/maintainer-soc.rst b/Documentation/process/maintainer-soc.rst
new file mode 100644
index 000000000000..49f08289d62c
--- /dev/null
+++ b/Documentation/process/maintainer-soc.rst
@@ -0,0 +1,177 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+SoC Subsystem
+=============
+
+Overview
+--------
+
+The SoC subsystem is a place of aggregation for SoC-specific code.
+The main components of the subsystem are:
+
+* devicetrees for 32- & 64-bit ARM and RISC-V
+* 32-bit ARM board files (arch/arm/mach*)
+* 32- & 64-bit ARM defconfigs
+* SoC-specific drivers across architectures, in particular for 32- & 64-bit
+ ARM, RISC-V and Loongarch
+
+These "SoC-specific drivers" do not include clock, GPIO etc drivers that have
+other top-level maintainers. The drivers/soc/ directory is generally meant
+for kernel-internal drivers that are used by other drivers to provide SoC-
+specific functionality like identifying an SoC revision or interfacing with
+power domains.
+
+The SoC subsystem also serves as an intermediate location for changes to
+drivers/bus, drivers/firmware, drivers/reset and drivers/memory. The addition
+of new platforms, or the removal of existing ones, often go through the SoC
+tree as a dedicated branch covering multiple subsystems.
+
+The main SoC tree is housed on git.kernel.org:
+ https://git.kernel.org/pub/scm/linux/kernel/git/soc/soc.git/
+
+Clearly this is quite a wide range of topics, which no one person, or even
+small group of people are capable of maintaining. Instead, the SoC subsystem
+is comprised of many submaintainers, each taking care of individual platforms
+and driver subdirectories.
+In this regard, "platform" usually refers to a series of SoCs from a given
+vendor, for example, Nvidia's series of Tegra SoCs. Many submaintainers operate
+on a vendor level, responsible for multiple product lines. For several reasons,
+including acquisitions/different business units in a company, things vary
+significantly here. The various submaintainers are documented in the
+MAINTAINERS file.
+
+Most of these submaintainers have their own trees where they stage patches,
+sending pull requests to the main SoC tree. These trees are usually, but not
+always, listed in MAINTAINERS. The main SoC maintainers can be reached via the
+alias soc@kernel.org if there is no platform-specific maintainer, or if they
+are unresponsive.
+
+What the SoC tree is not, however, is a location for architecture-specific code
+changes. Each architecture has its own maintainers that are responsible for
+architectural details, CPU errata and the like.
+
+Information for (new) Submaintainers
+------------------------------------
+
+As new platforms spring up, they often bring with them new submaintainers,
+many of whom work for the silicon vendor, and may not be familiar with the
+process.
+
+Devicetree ABI Stability
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Perhaps one of the most important things to highlight is that dt-bindings
+document the ABI between the devicetree and the kernel.
+Please read Documentation/devicetree/bindings/ABI.rst.
+
+If changes are being made to a devicetree that are incompatible with old
+kernels, the devicetree patch should not be applied until the driver is, or an
+appropriate time later. Most importantly, any incompatible changes should be
+clearly pointed out in the patch description and pull request, along with the
+expected impact on existing users, such as bootloaders or other operating
+systems.
+
+Driver Branch Dependencies
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A common problem is synchronizing changes between device drivers and devicetree
+files. Even if a change is compatible in both directions, this may require
+coordinating how the changes get merged through different maintainer trees.
+
+Usually the branch that includes a driver change will also include the
+corresponding change to the devicetree binding description, to ensure they are
+in fact compatible. This means that the devicetree branch can end up causing
+warnings in the "make dtbs_check" step. If a devicetree change depends on
+missing additions to a header file in include/dt-bindings/, it will fail the
+"make dtbs" step and not get merged.
+
+There are multiple ways to deal with this:
+
+* Avoid defining custom macros in include/dt-bindings/ for hardware constants
+ that can be derived from a datasheet -- binding macros in header files should
+ only be used as a last resort if there is no natural way to define a binding
+
+* Use literal values in the devicetree file in place of macros even when a
+ header is required, and change them to the named representation in a
+ following release
+
+* Defer the devicetree changes to a release after the binding and driver have
+ already been merged
+
+* Change the bindings in a shared immutable branch that is used as the base for
+ both the driver change and the devicetree changes
+
+* Add duplicate defines in the devicetree file guarded by an #ifndef section,
+ removing them in a later release
+
+Devicetree Naming Convention
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The general naming scheme for devicetree files is as follows. The aspects of a
+platform that are set at the SoC level, like CPU cores, are contained in a file
+named $soc.dtsi, for example, jh7100.dtsi. Integration details, that will vary
+from board to board, are described in $soc-$board.dts. An example of this is
+jh7100-beaglev-starlight.dts. Often many boards are variations on a theme, and
+frequently there are intermediate files, such as jh7100-common.dtsi, which sit
+between the $soc.dtsi and $soc-$board.dts files, containing the descriptions of
+common hardware.
+
+Some platforms also have System on Modules, containing an SoC, which are then
+integrated into several different boards. For these platforms, $soc-$som.dtsi
+and $soc-$som-$board.dts are typical.
+
+Directories are usually named after the vendor of the SoC at the time of its
+inclusion, leading to some historical directory names in the tree.
+
+Validating Devicetree Files
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+``make dtbs_check`` can be used to validate that devicetree files are compliant
+with the dt-bindings that describe the ABI. Please read the section
+"Running checks" of Documentation/devicetree/bindings/writing-schema.rst for
+more information on the validation of devicetrees.
+
+For new platforms, or additions to existing ones, ``make dtbs_check`` should not
+add any new warnings. For RISC-V, as it has the advantage of being a newer
+architecture, ``make dtbs_check W=1`` is required to not add any new warnings.
+If in any doubt about a devicetree change, reach out to the devicetree
+maintainers.
+
+Branches and Pull Requests
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Just as the main SoC tree has several branches, it is expected that
+submaintainers will do the same. Driver, defconfig and devicetree changes should
+all be split into separate branches and appear in separate pull requests to the
+SoC maintainers. Each branch should be usable by itself and avoid
+regressions that originate from dependencies on other branches.
+
+Small sets of patches can also be sent as separate emails to soc@kernel.org,
+grouped into the same categories.
+
+If changes do not fit into the normal patterns, there can be additional
+top-level branches, e.g. for a treewide rework, or the addition of new SoC
+platforms including dts files and drivers.
+
+Branches with a lot of changes can benefit from getting split up into separate
+topics branches, even if they end up getting merged into the same branch of the
+SoC tree. An example here would be one branch for devicetree warning fixes, one
+for a rework and one for newly added boards.
+
+Another common way to split up changes is to send an early pull request with the
+majority of the changes at some point between rc1 and rc4, following up with one
+or more smaller pull requests towards the end of the cycle that can add late
+changes or address problems identified while testing the first set.
+
+While there is no cut-off time for late pull requests, it helps to only send
+small branches as time gets closer to the merge window.
+
+Pull requests for bugfixes for the current release can be sent at any time, but
+again having multiple smaller branches is better than trying to combine too many
+patches into one pull request.
+
+The subject line of a pull request should begin with "[GIT PULL]" and made using
+a signed tag, rather than a branch. This tag should contain a short description
+summarising the changes in the pull request. For more detail on sending pull
+requests, please see Documentation/maintainer/pull-requests.rst.
diff --git a/Documentation/process/maintainer-tip.rst b/Documentation/process/maintainer-tip.rst
index 93d8a794bdfc..08dd0f804410 100644
--- a/Documentation/process/maintainer-tip.rst
+++ b/Documentation/process/maintainer-tip.rst
@@ -455,6 +455,8 @@ and can be added to an existing kernel config by running:
Some of these options are x86-specific and can be left out when testing
on other architectures.
+.. _maintainer-tip-coding-style:
+
Coding style notes
------------------