summaryrefslogtreecommitdiff
path: root/arch/loongarch/include
AgeCommit message (Collapse)AuthorFilesLines
2024-03-22Merge tag 'loongarch-6.9' of ↵Linus Torvalds17-27/+182
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson Pull LoongArch updates from Huacai Chen: - Add objtool support for LoongArch - Add ORC stack unwinder support for LoongArch - Add kernel livepatching support for LoongArch - Select ARCH_HAS_CURRENT_STACK_POINTER in Kconfig - Select HAVE_ARCH_USERFAULTFD_MINOR in Kconfig - Some bug fixes and other small changes * tag 'loongarch-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: LoongArch/crypto: Clean up useless assignment operations LoongArch: Define the __io_aw() hook as mmiowb() LoongArch: Remove superfluous flush_dcache_page() definition LoongArch: Move {dmw,tlb}_virt_to_page() definition to page.h LoongArch: Change __my_cpu_offset definition to avoid mis-optimization LoongArch: Select HAVE_ARCH_USERFAULTFD_MINOR in Kconfig LoongArch: Select ARCH_HAS_CURRENT_STACK_POINTER in Kconfig LoongArch: Add kernel livepatching support LoongArch: Add ORC stack unwinder support objtool: Check local label in read_unwind_hints() objtool: Check local label in add_dead_ends() objtool/LoongArch: Enable orc to be built objtool/x86: Separate arch-specific and generic parts objtool/LoongArch: Implement instruction decoder objtool/LoongArch: Enable objtool to be built
2024-03-19LoongArch: Define the __io_aw() hook as mmiowb()Huacai Chen3-18/+3
Commit fb24ea52f78e0d595852e ("drivers: Remove explicit invocations of mmiowb()") remove all mmiowb() in drivers, but it says: "NOTE: mmiowb() has only ever guaranteed ordering in conjunction with spin_unlock(). However, pairing each mmiowb() removal in this patch with the corresponding call to spin_unlock() is not at all trivial, so there is a small chance that this change may regress any drivers incorrectly relying on mmiowb() to order MMIO writes between CPUs using lock-free synchronisation." The mmio in radeon_ring_commit() is protected by a mutex rather than a spinlock, but in the mutex fastpath it behaves similar to spinlock. We can add mmiowb() calls in the radeon driver but the maintainer says he doesn't like such a workaround, and radeon is not the only example of mutex protected mmio. So we should extend the mmiowb tracking system from spinlock to mutex, and maybe other locking primitives. This is not easy and error prone, so we solve it in the architectural code, by simply defining the __io_aw() hook as mmiowb(). And we no longer need to override queued_spin_unlock() so use the generic definition. Without this, we get such an error when run 'glxgears' on weak ordering architectures such as LoongArch: radeon 0000:04:00.0: ring 0 stalled for more than 10324msec radeon 0000:04:00.0: ring 3 stalled for more than 10240msec radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3) radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) radeon 0000:04:00.0: scheduling IB failed (-35). [drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) Link: https://lore.kernel.org/dri-devel/29df7e26-d7a8-4f67-b988-44353c4270ac@amd.com/T/#t Link: https://lore.kernel.org/linux-arch/20240301130532.3953167-1-chenhuacai@loongson.cn/T/#t Cc: stable@vger.kernel.org Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-19LoongArch: Remove superfluous flush_dcache_page() definitionHuacai Chen1-3/+0
LoongArch doesn't have cache aliases, so flush_dcache_page() is a no-op. There is a generic implementation for this case in include/asm-generic/ cacheflush.h. So remove the superfluous flush_dcache_page() definition, which also silences such build warnings: In file included from crypto/scompress.c:12: include/crypto/scatterwalk.h: In function 'scatterwalk_pagedone': include/crypto/scatterwalk.h:76:30: warning: variable 'page' set but not used [-Wunused-but-set-variable] 76 | struct page *page; | ^~~~ crypto/scompress.c: In function 'scomp_acomp_comp_decomp': >> crypto/scompress.c:174:38: warning: unused variable 'dst_page' [-Wunused-variable] 174 | struct page *dst_page = sg_page(req->dst); | Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202403091614.NeUw5zcv-lkp@intel.com/ Suggested-by: Barry Song <baohua@kernel.org> Acked-by: Barry Song <baohua@kernel.org> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-19LoongArch: Move {dmw,tlb}_virt_to_page() definition to page.hMax Kellermann2-3/+3
These two functions are implemented in pgtable.c, and they are needed only by the virt_to_page() macro in page.h. Having the prototypes in pgtable.h causes a circular dependency between page.h and pgtable.h, because the virt_to_page() macro in page.h needs pgtable.h for these two functions, while pgtable.h needs various definitions from page.h (e.g. pte_t and pgt_t). Let's avoid this circular dependency by moving the function prototypes to page.h. Signed-off-by: Max Kellermann <max.kellermann@ionos.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-19LoongArch: Change __my_cpu_offset definition to avoid mis-optimizationHuacai Chen1-1/+6
From GCC commit 3f13154553f8546a ("df-scan: remove ad-hoc handling of global regs in asms"), global registers will no longer be forced to add to the def-use chain. Then current_thread_info(), current_stack_pointer and __my_cpu_offset may be lifted out of the loop because they are no longer treated as "volatile variables". This optimization is still correct for the current_thread_info() and current_stack_pointer usages because they are associated to a thread. However it is wrong for __my_cpu_offset because it is associated to a CPU rather than a thread: if the thread migrates to a different CPU in the loop, __my_cpu_offset should be changed. Change __my_cpu_offset definition to treat it as a "volatile variable", in order to avoid such a mis-optimization. Cc: stable@vger.kernel.org Reported-by: Xiaotian Wu <wuxiaotian@loongson.cn> Reported-by: Miao Wang <shankerwangmiao@gmail.com> Signed-off-by: Xing Li <lixing@loongson.cn> Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn> Signed-off-by: Rui Wang <wangrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-2/+0
Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ...
2024-03-11LoongArch: Add kernel livepatching supportJinyang He1-0/+2
The arch-specified function ftrace_regs_set_instruction_pointer() has been implemented in arch/loongarch/include/asm/ftrace.h, so here only implement arch_stack_walk_reliable() function. Here are the test logs: [root@linux fedora]# cat /proc/cmdline BOOT_IMAGE=/vmlinuz-6.8.0-rc2 root=/dev/sda3 [root@linux fedora]# modprobe livepatch-sample [root@linux fedora]# cat /proc/cmdline this has been live patched [root@linux fedora]# echo 0 > /sys/kernel/livepatch/livepatch_sample/enabled [root@linux fedora]# rmmod livepatch_sample [root@linux fedora]# cat /proc/cmdline BOOT_IMAGE=/vmlinuz-6.8.0-rc2 root=/dev/sda3 [root@linux fedora]# dmesg -t | tail -5 livepatch: enabling patch 'livepatch_sample' livepatch: 'livepatch_sample': starting patching transition livepatch: 'livepatch_sample': patching complete livepatch: 'livepatch_sample': starting unpatching transition livepatch: 'livepatch_sample': unpatching complete Signed-off-by: Jinyang He <hejinyang@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-11LoongArch: Add ORC stack unwinder supportTiezhu Yang10-2/+168
The kernel CONFIG_UNWINDER_ORC option enables the ORC unwinder, which is similar in concept to a DWARF unwinder. The difference is that the format of the ORC data is much simpler than DWARF, which in turn allows the ORC unwinder to be much simpler and faster. The ORC data consists of unwind tables which are generated by objtool. After analyzing all the code paths of a .o file, it determines information about the stack state at each instruction address in the file and outputs that information to the .orc_unwind and .orc_unwind_ip sections. The per-object ORC sections are combined at link time and are sorted and post-processed at boot time. The unwinder uses the resulting data to correlate instruction addresses with their stack states at run time. Most of the logic are similar with x86, in order to get ra info before ra is saved into stack, add ra_reg and ra_offset into orc_entry. At the same time, modify some arch-specific code to silence the objtool warnings. Co-developed-by: Jinyang He <hejinyang@loongson.cn> Signed-off-by: Jinyang He <hejinyang@loongson.cn> Co-developed-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-03-09Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of ↵Paolo Bonzini1-2/+2
https://github.com/kvm-x86/linux into HEAD KVM GUEST_MEMFD fixes for 6.8: - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to avoid creating ABI that KVM can't sanely support. - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly clear that such VMs are purely a development and testing vehicle, and come with zero guarantees. - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan is to support confidential VMs with deterministic private memory (SNP and TDX) only in the TDP MMU. - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-06arch: consolidate existing CONFIG_PAGE_SIZE_*KB definitionsArnd Bergmann1-9/+1
These four architectures define the same Kconfig symbols for configuring the page size. Move the logic into a common place where it can be shared with all other architectures. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-02-10work around gcc bugs with 'asm goto' with outputsLinus Torvalds1-2/+2
We've had issues with gcc and 'asm goto' before, and we created a 'asm_volatile_goto()' macro for that in the past: see commits 3f0116c3238a ("compiler/gcc4: Add quirk for 'asm goto' miscompilation bug") and a9f180345f53 ("compiler/gcc4: Make quirk for asm_volatile_goto() unconditional"). Then, much later, we ended up removing the workaround in commit 43c249ea0b1e ("compiler-gcc.h: remove ancient workaround for gcc PR 58670") because we no longer supported building the kernel with the affected gcc versions, but we left the macro uses around. Now, Sean Christopherson reports a new version of a very similar problem, which is fixed by re-applying that ancient workaround. But the problem in question is limited to only the 'asm goto with outputs' cases, so instead of re-introducing the old workaround as-is, let's rename and limit the workaround to just that much less common case. It looks like there are at least two separate issues that all hit in this area: (a) some versions of gcc don't mark the asm goto as 'volatile' when it has outputs: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420 which is easy to work around by just adding the 'volatile' by hand. (b) Internal compiler errors: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422 which are worked around by adding the extra empty 'asm' as a barrier, as in the original workaround. but the problem Sean sees may be a third thing since it involves bad code generation (not an ICE) even with the manually added 'volatile'. but the same old workaround works for this case, even if this feels a bit like voodoo programming and may only be hiding the issue. Reported-and-tested-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/ Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Andrew Pinski <quic_apinski@quicinc.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-02-08kvm: replace __KVM_HAVE_READONLY_MEM with Kconfig symbolPaolo Bonzini1-2/+0
KVM uses __KVM_HAVE_* symbols in the architecture-dependent uapi/asm/kvm.h to mask unused definitions in include/uapi/linux/kvm.h. __KVM_HAVE_READONLY_MEM however was nothing but a misguided attempt to define KVM_CAP_READONLY_MEM only on architectures where KVM_CHECK_EXTENSION(KVM_CAP_READONLY_MEM) could possibly return nonzero. This however does not make sense, and it prevented userspace from supporting this architecture-independent feature without recompilation. Therefore, these days __KVM_HAVE_READONLY_MEM does not mask anything and is only used in virt/kvm/kvm_main.c. Userspace does not need to test it and there should be no need for it to exist. Remove it and replace it with a Kconfig symbol within Linux source code. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-02-06LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC]Huacai Chen1-1/+3
With default config, the value of NR_CPUS is 64. When HW platform has more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC is the maximum cpu number in MADT table (max physical number) which can exceed the supported maximum cpu number (NR_CPUS, max logical number), but kernel should not crash. Kernel should boot cpus with NR_CPUS, let the remainder cpus stay in BIOS. The potential crash reason is that the array acpi_core_pic[NR_CPUS] can be overflowed when parsing MADT table, and it is obvious that CORE_PIC should be corresponding to physical core rather than logical core, so it is better to define the array as acpi_core_pic[MAX_CORE_PIC]. With the patch, system can boot up 64 vcpus with qemu parameter -smp 128, otherwise system will crash with the following message. [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192 [ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 [ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60 [ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8 [ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005 [ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001 [ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063 [ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98 [ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90 [ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330 [ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250 [ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94 [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 0.000000] BADV: 0000420000004259 [ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec [ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000 [ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60 [ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000 [ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c [ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08 [ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018 [ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000 [ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000 [ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94 [ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250 [ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c [ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670 [ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc Signed-off-by: Bibo Mao <maobibo@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-26LoongArch: KVM: Add returns to SIMD stubsRandy Dunlap1-2/+2
The stubs for kvm_own/lsx()/kvm_own_lasx() when CONFIG_CPU_HAS_LSX or CONFIG_CPU_HAS_LASX is not defined should have a return value since they return an int, so add "return -EINVAL;" to the stubs. Fixes the build error: In file included from ../arch/loongarch/include/asm/kvm_csr.h:12, from ../arch/loongarch/kvm/interrupt.c:8: ../arch/loongarch/include/asm/kvm_vcpu.h: In function 'kvm_own_lasx': ../arch/loongarch/include/asm/kvm_vcpu.h:73:39: error: no return statement in function returning non-void [-Werror=return-type] 73 | static inline int kvm_own_lasx(struct kvm_vcpu *vcpu) { } Fixes: db1ecca22edf ("LoongArch: KVM: Add LSX (128bit SIMD) support") Fixes: 118e10cd893d ("LoongArch: KVM: Add LASX (256bit SIMD) support") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-20Merge tag 'loongarch-6.8' of ↵Linus Torvalds5-20/+17
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson Pull LoongArch updates from Huacai Chen: - Raise minimum clang version to 18.0.0 - Enable initial Rust support for LoongArch - Add built-in dtb support for LoongArch - Use generic interface to support crashkernel=X,[high,low] - Some bug fixes and other small changes - Update the default config file. * tag 'loongarch-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (22 commits) MAINTAINERS: Add BPF JIT for LOONGARCH entry LoongArch: Update Loongson-3 default config file LoongArch: BPF: Prevent out-of-bounds memory access LoongArch: BPF: Support 64-bit pointers to kfuncs LoongArch: Fix definition of ftrace_regs_set_instruction_pointer() LoongArch: Use generic interface to support crashkernel=X,[high,low] LoongArch: Fix and simplify fcsr initialization on execve() LoongArch: Let cores_io_master cover the largest NR_CPUS LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE LoongArch: Add a missing call to efi_esrt_init() LoongArch: Parsing CPU-related information from DTS LoongArch: dts: DeviceTree for Loongson-2K2000 LoongArch: dts: DeviceTree for Loongson-2K1000 LoongArch: dts: DeviceTree for Loongson-2K0500 LoongArch: Allow device trees be built into the kernel dt-bindings: interrupt-controller: loongson,liointc: Fix dtbs_check warning for interrupt-names dt-bindings: interrupt-controller: loongson,liointc: Fix dtbs_check warning for reg-names dt-bindings: loongarch: Add Loongson SoC boards compatibles dt-bindings: loongarch: Add CPU bindings for LoongArch LoongArch: Enable initial Rust support ...
2024-01-18Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds3-4/+43
Pull kvm updates from Paolo Bonzini: "Generic: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures. - Clean up Kconfigs that all KVM architectures were selecting - New functionality around "guest_memfd", a new userspace API that creates an anonymous file and returns a file descriptor that refers to it. guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to switch a memory area between guest_memfd and regular anonymous memory. - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify per-page attributes for a given page of guest memory; right now the only attribute is whether the guest expects to access memory via guest_memfd or not, which in Confidential SVMs backed by SEV-SNP, TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM). x86: - Support for "software-protected VMs" that can use the new guest_memfd and page attributes infrastructure. This is mostly useful for testing, since there is no pKVM-like infrastructure to provide a meaningfully reduced TCB. - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Use more generic lockdep assertions in paths that don't actually care about whether the caller is a reader or a writer. - let Xen guests opt out of having PV clock reported as "based on a stable TSC", because some of them don't expect the "TSC stable" bit (added to the pvclock ABI by KVM, but never set by Xen) to be set. - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL. - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always flushes on nested transitions, i.e. always satisfies flush requests. This allows running bleeding edge versions of VMware Workstation on top of KVM. - Sanity check that the CPU supports flush-by-ASID when enabling SEV support. - On AMD machines with vNMI, always rely on hardware instead of intercepting IRET in some cases to detect unmasking of NMIs - Support for virtualizing Linear Address Masking (LAM) - Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow. - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds. - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on CONFIG_HYPERV as a minor optimization, and to self-document the code. - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation" at build time. ARM64: - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base granule sizes. Branch shared with the arm64 tree. - Large Fine-Grained Trap rework, bringing some sanity to the feature, although there is more to come. This comes with a prefix branch shared with the arm64 tree. - Some additional Nested Virtualization groundwork, mostly introducing the NV2 VNCR support and retargetting the NV support to that version of the architecture. - A small set of vgic fixes and associated cleanups. Loongarch: - Optimization for memslot hugepage checking - Cleanup and fix some HW/SW timer issues - Add LSX/LASX (128bit/256bit SIMD) support RISC-V: - KVM_GET_REG_LIST improvement for vector registers - Generate ISA extension reg_list using macros in get-reg-list selftest - Support for reporting steal time along with selftest s390: - Bugfixes Selftests: - Fix an annoying goof where the NX hugepage test prints out garbage instead of the magic token needed to run the test. - Fix build errors when a header is delete/moved due to a missing flag in the Makefile. - Detect if KVM bugged/killed a selftest's VM and print out a helpful message instead of complaining that a random ioctl() failed. - Annotate the guest printf/assert helpers with __printf(), and fix the various bugs that were lurking due to lack of said annotation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits) x86/kvm: Do not try to disable kvmclock if it was not enabled KVM: x86: add missing "depends on KVM" KVM: fix direction of dependency on MMU notifiers KVM: introduce CONFIG_KVM_COMMON KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache RISC-V: KVM: selftests: Add get-reg-list test for STA registers RISC-V: KVM: selftests: Add steal_time test support RISC-V: KVM: selftests: Add guest_sbi_probe_extension RISC-V: KVM: selftests: Move sbi_ecall to processor.c RISC-V: KVM: Implement SBI STA extension RISC-V: KVM: Add support for SBI STA registers RISC-V: KVM: Add support for SBI extension registers RISC-V: KVM: Add SBI STA info to vcpu_arch RISC-V: KVM: Add steal-update vcpu request RISC-V: KVM: Add SBI STA extension skeleton RISC-V: paravirt: Implement steal-time support RISC-V: Add SBI STA extension definitions RISC-V: paravirt: Add skeleton for pv-time support RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr() ...
2024-01-17LoongArch: Fix definition of ftrace_regs_set_instruction_pointer()Tiezhu Yang1-1/+1
The current definition of ftrace_regs_set_instruction_pointer() is not correct. Obviously, this function is used to set instruction pointer but not return value, so it should call instruction_pointer_set() instead of regs_set_return_value(). There is no side effect by now because it is only used for kernel live- patching which is not supported, so fix it to avoid failure when testing livepatch in the future. Fixes: 6fbff14a6382 ("LoongArch: ftrace: Abstract DYNAMIC_FTRACE_WITH_ARGS accesses") Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-17LoongArch: Use generic interface to support crashkernel=X,[high,low]Youling Tang1-0/+12
LoongArch already supports two crashkernel regions in kexec-tools, so we can directly use the common interface to support crashkernel=X,[high,low] after commit 0ab97169aa0517079b ("crash_core: add generic function to do reservation"). With the help of newly changed function parse_crashkernel() and generic reserve_crashkernel_generic(), crashkernel reservation can be simplified by steps: 1) Add a new header file <asm/crash_core.h>, then define CRASH_ALIGN, CRASH_ADDR_LOW_MAX and CRASH_ADDR_HIGH_MAX and in <asm/crash_core.h>; 2) Add arch_reserve_crashkernel() to call parse_crashkernel() and reserve_crashkernel_generic(); 3) Add ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION Kconfig in arch/loongarch/Kconfig. One can reserve the crash kernel from high memory above DMA zone range by explicitly passing "crashkernel=X,high"; or reserve a memory range below 4G with "crashkernel=X,low". Besides, there are few rules need to take notice: 1) "crashkernel=X,[high,low]" will be ignored if "crashkernel=size" is specified. 2) "crashkernel=X,low" is valid only when "crashkernel=X,high" is passed and there is enough memory to be allocated under 4G. 3) When allocating crashkernel above 4G and no "crashkernel=X,low" is specified, a 128M low memory will be allocated automatically for swiotlb bounce buffer. See Documentation/admin-guide/kernel-parameters.txt for more information. Following test cases have been performed as expected: 1) crashkernel=256M //low=256M 2) crashkernel=1G //low=1G 3) crashkernel=4G //high=4G, low=128M(default) 4) crashkernel=4G crashkernel=256M,high //high=4G, low=128M(default), high is ignored 5) crashkernel=4G crashkernel=256M,low //high=4G, low=128M(default), low is ignored 6) crashkernel=4G,high //high=4G, low=128M(default) 7) crashkernel=256M,low //low=0M, invalid 8) crashkernel=4G,high crashkernel=256M,low //high=4G, low=256M 9) crashkernel=4G,high crashkernel=4G,low //high=0M, low=0M, invalid 10) crashkernel=512M@2560M //low=512M 11) crashkernel=1G,high crashkernel=0M,low //high=1G, low=0M Recommended usage in general: 1) In the case of small memory: crashkernel=512M 2) In the case of large memory: crashkernel=1024M,high crashkernel=128M,low Signed-off-by: Youling Tang <tangyouling@kylinos.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-17LoongArch: Fix and simplify fcsr initialization on execve()Xi Ruoyao1-5/+0
There has been a lingering bug in LoongArch Linux systems causing some GCC tests to intermittently fail (see Closes link). I've made a minimal reproducer: zsh% cat measure.s .align 4 .globl _start _start: movfcsr2gr $a0, $fcsr0 bstrpick.w $a0, $a0, 16, 16 beqz $a0, .ok break 0 .ok: li.w $a7, 93 syscall 0 zsh% cc mesaure.s -o measure -nostdlib zsh% echo $((1.0/3)) 0.33333333333333331 zsh% while ./measure; do ; done This while loop should not stop as POSIX is clear that execve must set fenv to the default, where FCSR should be zero. But in fact it will just stop after running for a while (normally less than 30 seconds). Note that "$((1.0/3))" is needed to reproduce this issue because it raises FE_INVALID and makes fcsr0 non-zero. The problem is we are currently relying on SET_PERSONALITY2() to reset current->thread.fpu.fcsr. But SET_PERSONALITY2() is executed before start_thread which calls lose_fpu(0). We can see if kernel preempt is enabled, we may switch to another thread after SET_PERSONALITY2() but before lose_fpu(0). Then bad thing happens: during the thread switch the value of the fcsr0 register is stored into current->thread.fpu.fcsr, making it dirty again. The issue can be fixed by setting current->thread.fpu.fcsr after lose_fpu(0) because lose_fpu() clears TIF_USEDFPU, then the thread switch won't touch current->thread.fpu.fcsr. The only other architecture setting FCSR in SET_PERSONALITY2() is MIPS. I've ran a similar test on MIPS with mainline kernel and it turns out MIPS is buggy, too. Anyway MIPS do this for supporting different FP flavors (NaN encodings, etc.) which do not exist on LoongArch. So for LoongArch, we can simply remove the current->thread.fpu.fcsr setting from SET_PERSONALITY2() and do it in start_thread(), after lose_fpu(0). The while loop failing with the mainline kernel has survived one hour after this change on LoongArch. Fixes: 803b0fc5c3f2baa ("LoongArch: Add process management") Closes: https://github.com/loongson-community/discussions/issues/7 Link: https://lore.kernel.org/linux-mips/7a6aa1bbdbbe2e63ae96ff163fab0349f58f1b9e.camel@xry111.site/ Cc: stable@vger.kernel.org Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-17LoongArch: Let cores_io_master cover the largest NR_CPUSHuacai Chen1-2/+4
Now loongson_system_configuration::cores_io_master only covers 64 cpus, if NR_CPUS > 64 there will be memory corruption. So let cores_io_master cover the largest NR_CPUS (256). Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-17LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZEHuacai Chen1-12/+0
LoongArch has hardware page coloring for L1 Cache, so we don't have cache aliases. But SFB (Store Fill Buffer) still has aliases. So we define SHMLBA to SZ_64K previously. But there are losts of applications use PAGE_SIZE rather than SHMLBA to mmap() file pages and shared pages. Of course we can fix them one by one, but not easy. On the other hand, we can simply disable SFB for 4KB page size to fix cache alias (there will be performance decrease, but acceptable), and in future we will fix SFB in hardware. So we can safely define SHMLBA to PAGE_SIZE (use the generic shmparam.h) to make life easier. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2024-01-10Merge tag 'efi-next-for-v6.8' of ↵Linus Torvalds1-2/+0
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: - Fix a syzbot reported issue in efivarfs where concurrent accesses to the file system resulted in list corruption - Add support for accessing EFI variables via the TEE subsystem (and a trusted application in the secure world) instead of via EFI runtime firmware running in the OS's execution context - Avoid linker tricks to discover the image base on LoongArch * tag 'efi-next-for-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi: memmap: fix kernel-doc warnings efi/loongarch: Directly position the loaded image file efivarfs: automatically update super block flag efi: Add tee-based EFI variable driver efi: Add EFI_ACCESS_DENIED status code efi: expose efivar generic ops register function efivarfs: Move efivarfs list into superblock s_fs_info efivarfs: Free s_fs_info on unmount efivarfs: Move efivar availability check into FS context init efivarfs: force RO when remounting if SetVariable is not supported
2024-01-09Merge tag 'mm-stable-2024-01-08-15-31' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Peng Zhang has done some mapletree maintainance work in the series 'maple_tree: add mt_free_one() and mt_attr() helpers' 'Some cleanups of maple tree' - In the series 'mm: use memmap_on_memory semantics for dax/kmem' Vishal Verma has altered the interworking between memory-hotplug and dax/kmem so that newly added 'device memory' can more easily have its memmap placed within that newly added memory. - Matthew Wilcox continues folio-related work (including a few fixes) in the patch series 'Add folio_zero_tail() and folio_fill_tail()' 'Make folio_start_writeback return void' 'Fix fault handler's handling of poisoned tail pages' 'Convert aops->error_remove_page to ->error_remove_folio' 'Finish two folio conversions' 'More swap folio conversions' - Kefeng Wang has also contributed folio-related work in the series 'mm: cleanup and use more folio in page fault' - Jim Cromie has improved the kmemleak reporting output in the series 'tweak kmemleak report format'. - In the series 'stackdepot: allow evicting stack traces' Andrey Konovalov to permits clients (in this case KASAN) to cause eviction of no longer needed stack traces. - Charan Teja Kalla has fixed some accounting issues in the page allocator's atomic reserve calculations in the series 'mm: page_alloc: fixes for high atomic reserve caluculations'. - Dmitry Rokosov has added to the samples/ dorectory some sample code for a userspace memcg event listener application. See the series 'samples: introduce cgroup events listeners'. - Some mapletree maintanance work from Liam Howlett in the series 'maple_tree: iterator state changes'. - Nhat Pham has improved zswap's approach to writeback in the series 'workload-specific and memory pressure-driven zswap writeback'. - DAMON/DAMOS feature and maintenance work from SeongJae Park in the series 'mm/damon: let users feed and tame/auto-tune DAMOS' 'selftests/damon: add Python-written DAMON functionality tests' 'mm/damon: misc updates for 6.8' - Yosry Ahmed has improved memcg's stats flushing in the series 'mm: memcg: subtree stats flushing and thresholds'. - In the series 'Multi-size THP for anonymous memory' Ryan Roberts has added a runtime opt-in feature to transparent hugepages which improves performance by allocating larger chunks of memory during anonymous page faults. - Matthew Wilcox has also contributed some cleanup and maintenance work against eh buffer_head code int he series 'More buffer_head cleanups'. - Suren Baghdasaryan has done work on Andrea Arcangeli's series 'userfaultfd move option'. UFFDIO_MOVE permits userspace heap compaction algorithms to move userspace's pages around rather than UFFDIO_COPY'a alloc/copy/free. - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm: Add ksm advisor'. This is a governor which tunes KSM's scanning aggressiveness in response to userspace's current needs. - Chengming Zhou has optimized zswap's temporary working memory use in the series 'mm/zswap: dstmem reuse optimizations and cleanups'. - Matthew Wilcox has performed some maintenance work on the writeback code, both code and within filesystems. The series is 'Clean up the writeback paths'. - Andrey Konovalov has optimized KASAN's handling of alloc and free stack traces for secondary-level allocators, in the series 'kasan: save mempool stack traces'. - Andrey also performed some KASAN maintenance work in the series 'kasan: assorted clean-ups'. - David Hildenbrand has gone to town on the rmap code. Cleanups, more pte batching, folio conversions and more. See the series 'mm/rmap: interface overhaul'. - Kinsey Ho has contributed some maintenance work on the MGLRU code in the series 'mm/mglru: Kconfig cleanup'. - Matthew Wilcox has contributed lruvec page accounting code cleanups in the series 'Remove some lruvec page accounting functions'" * tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits) mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER mm, treewide: introduce NR_PAGE_ORDERS selftests/mm: add separate UFFDIO_MOVE test for PMD splitting selftests/mm: skip test if application doesn't has root privileges selftests/mm: conform test to TAP format output selftests: mm: hugepage-mmap: conform to TAP format output selftests/mm: gup_test: conform test to TAP format output mm/selftests: hugepage-mremap: conform test to TAP format output mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large mm/memcontrol: remove __mod_lruvec_page_state() mm/khugepaged: use a folio more in collapse_file() slub: use a folio in __kmalloc_large_node slub: use folio APIs in free_large_kmalloc() slub: use alloc_pages_node() in alloc_slab_page() mm: remove inc/dec lruvec page state functions mm: ratelimit stat flush from workingset shrinker kasan: stop leaking stack trace handles mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE mm/mglru: add dummy pmd_dirty() ...
2024-01-05mm/mglru: add dummy pmd_dirty()Kinsey Ho1-0/+1
Add dummy pmd_dirty() for architectures that don't provide it. This is similar to commit 6617da8fb565 ("mm: add dummy pmd_young() for architectures not having it"). Link: https://lkml.kernel.org/r/20231227141205.2200125-5-kinseyho@google.com Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202312210606.1Etqz3M4-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202312210042.xQEiqlEh-lkp@intel.com/ Signed-off-by: Kinsey Ho <kinseyho@google.com> Suggested-by: Yu Zhao <yuzhao@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Donet Tom <donettom@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-02Merge tag 'loongarch-kvm-6.8' of ↵Paolo Bonzini9-17/+54
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.8 1. Optimization for memslot hugepage checking. 2. Cleanup and fix some HW/SW timer issues. 3. Add LSX/LASX (128bit/256bit SIMD) support.
2023-12-19efi/loongarch: Directly position the loaded image fileWang Yao1-2/+0
The use of the 'kernel_offset' variable to position the image file that has been loaded by UEFI or GRUB is unnecessary, because we can directly position the loaded image file through using the image_base field of the efi_loaded_image struct provided by UEFI. Replace kernel_offset with image_base to position the image file that has been loaded by UEFI or GRUB. Signed-off-by: Wang Yao <wangyao@lemote.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-12-19LoongArch: KVM: Add LASX (256bit SIMD) supportTianrui Zhao2-2/+18
This patch adds LASX (256bit SIMD) support for LoongArch KVM. There will be LASX exception in KVM when guest use the LASX instructions. KVM will enable LASX and restore the vector registers for guest and then return to guest to continue running. Reviewed-by: Bibo Mao <maobibo@loongson.cn> Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-12-19LoongArch: KVM: Add LSX (128bit SIMD) supportTianrui Zhao3-2/+24
This patch adds LSX (128bit SIMD) support for LoongArch KVM. There will be LSX exception in KVM when guest use the LSX instructions. KVM will enable LSX and restore the vector registers for guest and then return to guest to continue running. Signed-off-by: Tianrui Zhao <zhaotianrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-12-19LoongArch: KVM: Remove kvm_acquire_timer() before entering guestBibo Mao1-1/+0
Timer emulation method in VM is switch to SW timer, there are two places where timer emulation is needed. One is during vcpu thread context switch, the other is halt-polling with idle instruction emulation. SW timer switching is removed during halt-polling mode, so it is not necessary to disable SW timer before entering to guest. This patch removes SW timer handling before entering guest mode, and put it in HW timer restoring flow when vcpu thread is sched-in. With this patch, vm timer emulation is simpler, there is SW/HW timer switch only in vcpu thread context switch scenario. Signed-off-by: Bibo Mao <maobibo@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-12-19LoongArch: KVM: Optimization for memslot hugepage checkingBibo Mao1-0/+3
During shadow mmu page fault, there is checking for huge page for specified memslot. Page fault is hot path, check logic can be done when memslot is created. Here two flags are added for huge page checking, KVM_MEM_HUGEPAGE_CAPABLE and KVM_MEM_HUGEPAGE_INCAPABLE. Indeed for an optimized qemu, memslot for DRAM is always huge page aligned. The flag is firstly checked during hot page fault path. Now only huge page flag is supported, there is a long way for super page support in LoongArch system. Since super page size is 64G for 16K pagesize and 1G for 4K pagesize, 64G physical address is rarely used and LoongArch kernel needs support super page for 4K. Also memory layout of LoongArch qemu VM should be 1G aligned. Signed-off-by: Bibo Mao <maobibo@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-12-13Merge tag 'efi-urgent-for-v6.7-2' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI fixes from Ard Biesheuvel: - Deal with a regression in the recently refactored x86 EFI stub code on older Dell systems by disabling randomization of the physical load address - Use the correct load address for relocatable Loongarch kernels * tag 'efi-urgent-for-v6.7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: efi/x86: Avoid physical KASLR on older Dell systems efi/loongarch: Use load address to calculate kernel entry address
2023-12-11efi/loongarch: Use load address to calculate kernel entry addressWang Yao1-1/+1
The efi_relocate_kernel() may load the PIE kernel to anywhere, the loaded address may not be equal to link address or EFI_KIMG_PREFERRED_ADDRESS. Acked-by: Huacai Chen <chenhuacai@loongson.cn> Signed-off-by: Wang Yao <wangyao@lemote.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-12-09LoongArch: Preserve syscall nr across execve()Hengqi Chen1-1/+1
Currently, we store syscall nr in pt_regs::regs[11] and syscall execve() accidentally overrides it during its execution: sys_execve() -> do_execve() -> do_execveat_common() -> bprm_execve() -> exec_binprm() -> search_binary_handler() -> load_elf_binary() -> ELF_PLAT_INIT() ELF_PLAT_INIT() reset regs[11] to 0, so in syscall_exit_to_user_mode() we later get a wrong syscall nr. This breaks tools like execsnoop since it relies on execve() tracepoints. Skip pt_regs::regs[11] reset in ELF_PLAT_INIT() to fix the issue. Signed-off-by: Hengqi Chen <hengqi.chen@gmail.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-12-09LoongArch: Slightly clean up drdtime()Xi Ruoyao1-3/+2
As we are just discarding the stable clock ID, simply write it into $zero instead of allocating a temporary register. Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-21LoongArch: Add __percpu annotation for __percpu_read()/__percpu_write()Huacai Chen1-6/+5
When build kernel with C=1, we get: arch/loongarch/kernel/process.c:234:46: warning: incorrect type in argument 1 (different address spaces) arch/loongarch/kernel/process.c:234:46: expected void *ptr arch/loongarch/kernel/process.c:234:46: got unsigned long [noderef] __percpu * arch/loongarch/kernel/process.c:234:46: warning: incorrect type in argument 1 (different address spaces) arch/loongarch/kernel/process.c:234:46: expected void *ptr arch/loongarch/kernel/process.c:234:46: got unsigned long [noderef] __percpu * arch/loongarch/kernel/process.c:234:46: warning: incorrect type in argument 1 (different address spaces) arch/loongarch/kernel/process.c:234:46: expected void *ptr arch/loongarch/kernel/process.c:234:46: got unsigned long [noderef] __percpu * arch/loongarch/kernel/process.c:234:46: warning: incorrect type in argument 1 (different address spaces) arch/loongarch/kernel/process.c:234:46: expected void *ptr arch/loongarch/kernel/process.c:234:46: got unsigned long [noderef] __percpu * Add __percpu annotation for __percpu_read()/__percpu_write() can avoid such warnings. __percpu_xchg() and other functions don't need annotation because their wrapper, i.e. _pcp_protect(), already suppresses warnings. Also adjust the indentations in this file. Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202311080409.LlOfTR3m-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311080840.Vc2kXhfp-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311081340.3k72KKdg-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311120926.cjYHyoYw-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311152142.g6UyNx1R-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311160339.DbhaH8LX-lkp@intel.com/ Closes: https://lore.kernel.org/oe-kbuild-all/202311181454.CTPrSYmQ-lkp@intel.com/ Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-21LoongArch: Record pc instead of offset in la_abs relocationWANG Rui2-3/+2
To clarify, the previous version functioned flawlessly. However, it's worth noting that the LLVM's LoongArch backend currently lacks support for cross-section label calculations. With this patch, we enable the use of clang to compile relocatable kernels. Tested-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: WANG Rui <wangrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-14Merge branch 'kvm-guestmemfd' into HEADPaolo Bonzini1-1/+0
Introduce several new KVM uAPIs to ultimately create a guest-first memory subsystem within KVM, a.k.a. guest_memfd. Guest-first memory allows KVM to provide features, enhancements, and optimizations that are kludgly or outright impossible to implement in a generic memory subsystem. The core KVM ioctl() for guest_memfd is KVM_CREATE_GUEST_MEMFD, which similar to the generic memfd_create(), creates an anonymous file and returns a file descriptor that refers to it. Again like "regular" memfd files, guest_memfd files live in RAM, have volatile storage, and are automatically released when the last reference is dropped. The key differences between memfd files (and every other memory subystem) is that guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to convert a guest memory area between the shared and guest-private states. A second KVM ioctl(), KVM_SET_MEMORY_ATTRIBUTES, allows userspace to specify attributes for a given page of guest memory. In the long term, it will likely be extended to allow userspace to specify per-gfn RWX protections, including allowing memory to be writable in the guest without it also being writable in host userspace. The immediate and driving use case for guest_memfd are Confidential (CoCo) VMs, specifically AMD's SEV-SNP, Intel's TDX, and KVM's own pKVM. For such use cases, being able to map memory into KVM guests without requiring said memory to be mapped into the host is a hard requirement. While SEV+ and TDX prevent untrusted software from reading guest private data by encrypting guest memory, pKVM provides confidentiality and integrity *without* relying on memory encryption. In addition, with SEV-SNP and especially TDX, accessing guest private memory can be fatal to the host, i.e. KVM must be prevent host userspace from accessing guest memory irrespective of hardware behavior. Long term, guest_memfd may be useful for use cases beyond CoCo VMs, for example hardening userspace against unintentional accesses to guest memory. As mentioned earlier, KVM's ABI uses userspace VMA protections to define the allow guest protection (with an exception granted to mapping guest memory executable), and similarly KVM currently requires the guest mapping size to be a strict subset of the host userspace mapping size. Decoupling the mappings sizes would allow userspace to precisely map only what is needed and with the required permissions, without impacting guest performance. A guest-first memory subsystem also provides clearer line of sight to things like a dedicated memory pool (for slice-of-hardware VMs) and elimination of "struct page" (for offload setups where userspace _never_ needs to DMA from or into guest memory). guest_memfd is the result of 3+ years of development and exploration; taking on memory management responsibilities in KVM was not the first, second, or even third choice for supporting CoCo VMs. But after many failed attempts to avoid KVM-specific backing memory, and looking at where things ended up, it is quite clear that of all approaches tried, guest_memfd is the simplest, most robust, and most extensible, and the right thing to do for KVM and the kernel at-large. The "development cycle" for this version is going to be very short; ideally, next week I will merge it as is in kvm/next, taking this through the KVM tree for 6.8 immediately after the end of the merge window. The series is still based on 6.6 (plus KVM changes for 6.7) so it will require a small fixup for changes to get_file_rcu() introduced in 6.7 by commit 0ede61d8589c ("file: convert to SLAB_TYPESAFE_BY_RCU"). The fixup will be done as part of the merge commit, and most of the text above will become the commit message for the merge. Pending post-merge work includes: - hugepage support - looking into using the restrictedmem framework for guest memory - introducing a testing mechanism to poison memory, possibly using the same memory attributes introduced here - SNP and TDX support There are two non-KVM patches buried in the middle of this series: fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure() mm: Add AS_UNMOVABLE to mark mapping as completely unmovable The first is small and mostly suggested-by Christian Brauner; the second a bit less so but it was written by an mm person (Vlastimil Babka).
2023-11-13KVM: Convert KVM_ARCH_WANT_MMU_NOTIFIER to CONFIG_KVM_GENERIC_MMU_NOTIFIERSean Christopherson1-1/+0
Convert KVM_ARCH_WANT_MMU_NOTIFIER into a Kconfig and select it where appropriate to effectively maintain existing behavior. Using a proper Kconfig will simplify building more functionality on top of KVM's mmu_notifier infrastructure. Add a forward declaration of kvm_gfn_range to kvm_types.h so that including arch/powerpc/include/asm/kvm_ppc.h's with CONFIG_KVM=n doesn't generate warnings due to kvm_gfn_range being undeclared. PPC defines hooks for PR vs. HV without guarding them via #ifdeffery, e.g. bool (*unmap_gfn_range)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*test_age_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); bool (*set_spte_gfn)(struct kvm *kvm, struct kvm_gfn_range *range); Alternatively, PPC could forward declare kvm_gfn_range, but there's no good reason not to define it in common KVM. Acked-by: Anup Patel <anup@brainfault.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> Message-Id: <20231027182217.3615211-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-11-12Merge tag 'loongarch-6.7' of ↵Linus Torvalds3-25/+86
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson Pull LoongArch updates from Huacai Chen: - support PREEMPT_DYNAMIC with static keys - relax memory ordering for atomic operations - support BPF CPU v4 instructions for LoongArch - some build and runtime warning fixes * tag 'loongarch-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: selftests/bpf: Enable cpu v4 tests for LoongArch LoongArch: BPF: Support signed mod instructions LoongArch: BPF: Support signed div instructions LoongArch: BPF: Support 32-bit offset jmp instructions LoongArch: BPF: Support unconditional bswap instructions LoongArch: BPF: Support sign-extension mov instructions LoongArch: BPF: Support sign-extension load instructions LoongArch: Add more instruction opcodes and emit_* helpers LoongArch/smp: Call rcutree_report_cpu_starting() earlier LoongArch: Relax memory ordering for atomic operations LoongArch: Mark __percpu functions as always inline LoongArch: Disable module from accessing external data directly LoongArch: Support PREEMPT_DYNAMIC with static keys
2023-11-08LoongArch: Add more instruction opcodes and emit_* helpersHengqi Chen1-0/+13
This patch adds more instruction opcodes and their corresponding emit_* helpers which will be used in later patches. Signed-off-by: Hengqi Chen <hengqi.chen@gmail.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-08LoongArch: Relax memory ordering for atomic operationsWANG Rui1-20/+68
This patch relaxes the implementation while satisfying the memory ordering requirements for atomic operations, which will help improve performance on LA664+. Unixbench with full threads (8) before after Dhrystone 2 using register variables 203910714.2 203909539.8 0.00% Double-Precision Whetstone 37930.9 37931 0.00% Execl Throughput 29431.5 29545.8 0.39% File Copy 1024 bufsize 2000 maxblocks 6645759.5 6676320 0.46% File Copy 256 bufsize 500 maxblocks 2138772.4 2144182.4 0.25% File Copy 4096 bufsize 8000 maxblocks 11640698.4 11602703 -0.33% Pipe Throughput 8849077.7 8917009.4 0.77% Pipe-based Context Switching 1255108.5 1287277.3 2.56% Process Creation 50825.9 50442.1 -0.76% Shell Scripts (1 concurrent) 25795.8 25942.3 0.57% Shell Scripts (8 concurrent) 3812.6 3835.2 0.59% System Call Overhead 9248212.6 9353348.6 1.14% ======= System Benchmarks Index Score 8076.6 8114.4 0.47% Signed-off-by: WANG Rui <wangrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-08LoongArch: Mark __percpu functions as always inlineNathan Chancellor1-5/+5
A recent change to the optimization pipeline in LLVM reveals some fragility around the inlining of LoongArch's __percpu functions, which manifests as a BUILD_BUG() failure: In file included from kernel/sched/build_policy.c:17: In file included from include/linux/sched/cputime.h:5: In file included from include/linux/sched/signal.h:5: In file included from include/linux/rculist.h:11: In file included from include/linux/rcupdate.h:26: In file included from include/linux/irqflags.h:18: arch/loongarch/include/asm/percpu.h:97:3: error: call to '__compiletime_assert_51' declared with 'error' attribute: BUILD_BUG failed 97 | BUILD_BUG(); | ^ include/linux/build_bug.h:59:21: note: expanded from macro 'BUILD_BUG' 59 | #define BUILD_BUG() BUILD_BUG_ON_MSG(1, "BUILD_BUG failed") | ^ include/linux/build_bug.h:39:37: note: expanded from macro 'BUILD_BUG_ON_MSG' 39 | #define BUILD_BUG_ON_MSG(cond, msg) compiletime_assert(!(cond), msg) | ^ include/linux/compiler_types.h:425:2: note: expanded from macro 'compiletime_assert' 425 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) | ^ include/linux/compiler_types.h:413:2: note: expanded from macro '_compiletime_assert' 413 | __compiletime_assert(condition, msg, prefix, suffix) | ^ include/linux/compiler_types.h:406:4: note: expanded from macro '__compiletime_assert' 406 | prefix ## suffix(); \ | ^ <scratch space>:86:1: note: expanded from here 86 | __compiletime_assert_51 | ^ 1 error generated. If these functions are not inlined (which the compiler is free to do even with functions marked with the standard 'inline' keyword), the BUILD_BUG() in the default case cannot be eliminated since the compiler cannot prove it is never used, resulting in a build failure due to the error attribute. Mark these functions as __always_inline to guarantee inlining so that the BUILD_BUG() only triggers when the default case genuinely cannot be eliminated due to an unexpected size. Cc: <stable@vger.kernel.org> Closes: https://github.com/ClangBuiltLinux/linux/issues/1955 Fixes: 46859ac8af52 ("LoongArch: Add multi-processor (SMP) support") Link: https://github.com/llvm/llvm-project/commit/1a2e77cf9e11dbf56b5720c607313a566eebb16e Suggested-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-11-03Merge tag 'mm-stable-2023-11-01-14-33' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds8-5/+829
Pull kvm updates from Paolo Bonzini: "ARM: - Generalized infrastructure for 'writable' ID registers, effectively allowing userspace to opt-out of certain vCPU features for its guest - Optimization for vSGI injection, opportunistically compressing MPIDR to vCPU mapping into a table - Improvements to KVM's PMU emulation, allowing userspace to select the number of PMCs available to a VM - Guest support for memory operation instructions (FEAT_MOPS) - Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing bugs and getting rid of useless code - Changes to the way the SMCCC filter is constructed, avoiding wasted memory allocations when not in use - Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing the overhead of errata mitigations - Miscellaneous kernel and selftest fixes LoongArch: - New architecture for kvm. The hardware uses the same model as x86, s390 and RISC-V, where guest/host mode is orthogonal to supervisor/user mode. The virtualization extensions are very similar to MIPS, therefore the code also has some similarities but it's been cleaned up to avoid some of the historical bogosities that are found in arch/mips. The kernel emulates MMU, timer and CSR accesses, while interrupt controllers are only emulated in userspace, at least for now. RISC-V: - Support for the Smstateen and Zicond extensions - Support for virtualizing senvcfg - Support for virtualized SBI debug console (DBCN) S390: - Nested page table management can be monitored through tracepoints and statistics x86: - Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC, which could result in a dropped timer IRQ - Avoid WARN on systems with Intel IPI virtualization - Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without forcing more common use cases to eat the extra memory overhead. - Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and SBPB, aka Selective Branch Predictor Barrier). - Fix a bug where restoring a vCPU snapshot that was taken within 1 second of creating the original vCPU would cause KVM to try to synchronize the vCPU's TSC and thus clobber the correct TSC being set by userspace. - Compute guest wall clock using a single TSC read to avoid generating an inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads. - "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain about a "Firmware Bug" if the bit isn't set for select F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server 2022. - Don't apply side effects to Hyper-V's synthetic timer on writes from userspace to fix an issue where the auto-enable behavior can trigger spurious interrupts, i.e. do auto-enabling only for guest writes. - Remove an unnecessary kick of all vCPUs when synchronizing the dirty log without PML enabled. - Advertise "support" for non-serializing FS/GS base MSR writes as appropriate. - Harden the fast page fault path to guard against encountering an invalid root when walking SPTEs. - Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n. - Use the fast path directly from the timer callback when delivering Xen timer events, instead of waiting for the next iteration of the run loop. This was not done so far because previously proposed code had races, but now care is taken to stop the hrtimer at critical points such as restarting the timer or saving the timer information for userspace. - Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag. - Optimize injection of PMU interrupts that are simultaneous with NMIs. - Usual handful of fixes for typos and other warts. x86 - MTRR/PAT fixes and optimizations: - Clean up code that deals with honoring guest MTRRs when the VM has non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled. - Zap EPT entries when non-coherent DMA assignment stops/start to prevent using stale entries with the wrong memtype. - Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y This was done as a workaround for virtual machine BIOSes that did not bother to clear CR0.CD (because ancient KVM/QEMU did not bother to set it, in turn), and there's zero reason to extend the quirk to also ignore guest PAT. x86 - SEV fixes: - Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. - Clean up the recognition of emulation failures on SEV guests, when KVM would like to "skip" the instruction but it had already been partially emulated. This makes it possible to drop a hack that second guessed the (insufficient) information provided by the emulator, and just do the right thing. Documentation: - Various updates and fixes, mostly for x86 - MTRR and PAT fixes and optimizations" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits) KVM: selftests: Avoid using forced target for generating arm64 headers tools headers arm64: Fix references to top srcdir in Makefile KVM: arm64: Add tracepoint for MMIO accesses where ISV==0 KVM: arm64: selftest: Perform ISB before reading PAR_EL1 KVM: arm64: selftest: Add the missing .guest_prepare() KVM: arm64: Always invalidate TLB for stage-2 permission faults KVM: x86: Service NMI requests after PMI requests in VM-Enter path KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs KVM: arm64: Refine _EL2 system register list that require trap reinjection arm64: Add missing _EL2 encodings arm64: Add missing _EL12 encodings KVM: selftests: aarch64: vPMU test for validating user accesses KVM: selftests: aarch64: vPMU register test for unimplemented counters KVM: selftests: aarch64: vPMU register test for implemented counters KVM: selftests: aarch64: Introduce vpmu_counter_access test tools: Import arm_pmuv3.h KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} ...
2023-10-31Merge tag 'loongarch-kvm-6.7' of ↵Paolo Bonzini8-5/+829
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD LoongArch KVM changes for v6.7 Add LoongArch's KVM support. Loongson 3A5000/3A6000 supports hardware assisted virtualization. With cpu virtualization, there are separate hw-supported user mode and kernel mode in guest mode. With memory virtualization, there are two-level hw mmu table for guest mode and host mode. Also there is separate hw cpu timer with consant frequency in guest mode, so that vm can migrate between hosts with different freq. Currently, we are able to boot LoongArch Linux Guests. Few key aspects of KVM LoongArch added by this series are: 1. Enable kvm hardware function when kvm module is loaded. 2. Implement VM and vcpu related ioctl interface such as vcpu create, vcpu run etc. GET_ONE_REG/SET_ONE_REG ioctl commands are use to get general registers one by one. 3. Hardware access about MMU, timer and csr are emulated in kernel. 4. Hardwares such as mmio and iocsr device are emulated in user space such as IPI, irqchips, pci devices etc.
2023-10-31Merge tag 'locking-core-2023-10-28' of ↵Linus Torvalds1-11/+16
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Info Molnar: "Futex improvements: - Add the 'futex2' syscall ABI, which is an attempt to get away from the multiplex syscall and adds a little room for extentions, while lifting some limitations. - Fix futex PI recursive rt_mutex waiter state bug - Fix inter-process shared futexes on no-MMU systems - Use folios instead of pages Micro-optimizations of locking primitives: - Improve arch_spin_value_unlocked() on asm-generic ticket spinlock architectures, to improve lockref code generation - Improve the x86-32 lockref_get_not_zero() main loop by adding build-time CMPXCHG8B support detection for the relevant lockref code, and by better interfacing the CMPXCHG8B assembly code with the compiler - Introduce arch_sync_try_cmpxchg() on x86 to improve sync_try_cmpxchg() code generation. Convert some sync_cmpxchg() users to sync_try_cmpxchg(). - Micro-optimize rcuref_put_slowpath() Locking debuggability improvements: - Improve CONFIG_DEBUG_RT_MUTEXES=y to have a fast-path as well - Enforce atomicity of sched_submit_work(), which is de-facto atomic but was un-enforced previously. - Extend <linux/cleanup.h>'s no_free_ptr() with __must_check semantics - Fix ww_mutex self-tests - Clean up const-propagation in <linux/seqlock.h> and simplify the API-instantiation macros a bit RT locking improvements: - Provide the rt_mutex_*_schedule() primitives/helpers and use them in the rtmutex code to avoid recursion vs. rtlock on the PI state. - Add nested blocking lockdep asserts to rt_mutex_lock(), rtlock_lock() and rwbase_read_lock() .. plus misc fixes & cleanups" * tag 'locking-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (39 commits) futex: Don't include process MM in futex key on no-MMU locking/seqlock: Fix grammar in comment alpha: Fix up new futex syscall numbers locking/seqlock: Propagate 'const' pointers within read-only methods, remove forced type casts locking/lockdep: Fix string sizing bug that triggers a format-truncation compiler-warning locking/seqlock: Change __seqprop() to return the function pointer locking/seqlock: Simplify SEQCOUNT_LOCKNAME() locking/atomics: Use atomic_try_cmpxchg_release() to micro-optimize rcuref_put_slowpath() locking/atomic, xen: Use sync_try_cmpxchg() instead of sync_cmpxchg() locking/atomic/x86: Introduce arch_sync_try_cmpxchg() locking/atomic: Add generic support for sync_try_cmpxchg() and its fallback locking/seqlock: Fix typo in comment futex/requeue: Remove unnecessary ‘NULL’ initialization from futex_proxy_trylock_atomic() locking/local, arch: Rewrite local_add_unless() as a static inline function locking/debug: Fix debugfs API return value checks to use IS_ERR() locking/ww_mutex/test: Make sure we bail out instead of livelock locking/ww_mutex/test: Fix potential workqueue corruption locking/ww_mutex/test: Use prng instead of rng to avoid hangs at bootup futex: Add sys_futex_requeue() futex: Add flags2 argument to futex_requeue() ...
2023-10-18LoongArch: Disable WUC for pgprot_writecombine() like ioremap_wc()Icenowy Zheng2-4/+5
Currently the code disables WUC only disables it for ioremap_wc(), which is only used when mapping writecombine pages like ioremap() (mapped to the kernel space). But for VRAM mapped in TTM/GEM, it is mapped with a crafted pgprot by the pgprot_writecombine() function, in which case WUC isn't disabled now. Disable WUC for pgprot_writecombine() (fallback to SUC) if needed, like ioremap_wc(). This improves the AMDGPU driver's stability (solves some misrendering) on Loongson-3A5000/3A6000 machines. Signed-off-by: Icenowy Zheng <uwu@icenowy.me> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-10-18LoongArch: Use SYM_CODE_* to annotate exception handlersTiezhu Yang1-0/+8
As described in include/linux/linkage.h, FUNC -- C-like functions (proper stack frame etc.) CODE -- non-C code (e.g. irq handlers with different, special stack etc.) SYM_FUNC_{START, END} -- use for global functions SYM_CODE_{START, END} -- use for non-C (special) functions So use SYM_CODE_* to annotate exception handlers. Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2023-10-09Merge tag 'v6.6-rc5' into locking/core, to pick up fixesIngo Molnar5-56/+70
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-07mm: add statistics for PUD level pagetableBaolin Wang1-0/+1
Recently, we found that cross-die access to pagetable pages on ARM64 machines can cause performance fluctuations in our business. Currently, there are no PMU events available to track this situation on our ARM64 machines, so accurate pagetable accounting can help to analyze this issue, but now the PUD level pagetable accounting is missed. So introduce pagetable_pud_ctor/dtor() to help to get accurate PUD pagetable accounting, as well as converting the architectures which use generic PUD pagetable allocation to add corresponding PUD pagetable accounting. Moreover this patch will mark the PUD level pagetable with PG_table flag, which will help to do sanity validation in unpoison_memory(). On my testing machine, I can see more pagetables statistics after the patch with page-types tool: Before patch: flags page-count MB symbolic-flags long-symbolic-flags 0x0000000004000000 27326 106 __________________________g_________________ pgtable After patch: 0x0000000004000000 27541 107 __________________________g_________________ pgtable Link: https://lkml.kernel.org/r/876c71c03a7e69c17722a690e3225a4f7b172fb2.1695017383.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Acked-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>