summaryrefslogtreecommitdiff
path: root/arch/sparc
AgeCommit message (Collapse)AuthorFilesLines
2017-05-08sparc64: Fix kernel panic due to erroneous #ifdef surrounding pmd_write()Tom Hromatka1-7/+8
[ Upstream commit 9ae34dbd8afd790cb5f52467e4f816434379eafa ] This commit moves sparc64's prototype of pmd_write() outside of the CONFIG_TRANSPARENT_HUGEPAGE ifdef. In 2013, commit a7b9403f0e6d ("sparc64: Encode huge PMDs using PTE encoding.") exposed a path where pmd_write() could be called without CONFIG_TRANSPARENT_HUGEPAGE defined. This can result in the panic below. The diff is awkward to read, but the changes are straightforward. pmd_write() was moved outside of #ifdef CONFIG_TRANSPARENT_HUGEPAGE. Also, __HAVE_ARCH_PMD_WRITE was defined. kernel BUG at include/asm-generic/pgtable.h:576! \|/ ____ \|/ "@'/ .. \`@" /_| \__/ |_\ \__U_/ oracle_8114_cdb(8114): Kernel bad sw trap 5 [#1] CPU: 120 PID: 8114 Comm: oracle_8114_cdb Not tainted 4.1.12-61.7.1.el6uek.rc1.sparc64 #1 task: fff8400700a24d60 ti: fff8400700bc4000 task.ti: fff8400700bc4000 TSTATE: 0000004411e01607 TPC: 00000000004609f8 TNPC: 00000000004609fc Y: 00000005 Not tainted TPC: <gup_huge_pmd+0x198/0x1e0> g0: 000000000001c000 g1: 0000000000ef3954 g2: 0000000000000000 g3: 0000000000000001 g4: fff8400700a24d60 g5: fff8001fa5c10000 g6: fff8400700bc4000 g7: 0000000000000720 o0: 0000000000bc5058 o1: 0000000000000240 o2: 0000000000006000 o3: 0000000000001c00 o4: 0000000000000000 o5: 0000048000080000 sp: fff8400700bc6ab1 ret_pc: 00000000004609f0 RPC: <gup_huge_pmd+0x190/0x1e0> l0: fff8400700bc74fc l1: 0000000000020000 l2: 0000000000002000 l3: 0000000000000000 l4: fff8001f93250950 l5: 000000000113f800 l6: 0000000000000004 l7: 0000000000000000 i0: fff8400700ca46a0 i1: bd0000085e800453 i2: 000000026a0c4000 i3: 000000026a0c6000 i4: 0000000000000001 i5: fff800070c958de8 i6: fff8400700bc6b61 i7: 0000000000460dd0 I7: <gup_pud_range+0x170/0x1a0> Call Trace: [0000000000460dd0] gup_pud_range+0x170/0x1a0 [0000000000460e84] get_user_pages_fast+0x84/0x120 [00000000006f5a18] iov_iter_get_pages+0x98/0x240 [00000000005fa744] do_direct_IO+0xf64/0x1e00 [00000000005fbbc0] __blockdev_direct_IO+0x360/0x15a0 [00000000101f74fc] ext4_ind_direct_IO+0xdc/0x400 [ext4] [00000000101af690] ext4_ext_direct_IO+0x1d0/0x2c0 [ext4] [00000000101af86c] ext4_direct_IO+0xec/0x220 [ext4] [0000000000553bd4] generic_file_read_iter+0x114/0x140 [00000000005bdc2c] __vfs_read+0xac/0x100 [00000000005bf254] vfs_read+0x54/0x100 [00000000005bf368] SyS_pread64+0x68/0x80 Signed-off-by: Tom Hromatka <tom.hromatka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-08sparc64: kern_addr_valid regressionbob picco1-1/+1
[ Upstream commit adfae8a5d833fa2b46577a8081f350e408851f5b ] I encountered this bug when using /proc/kcore to examine the kernel. Plus a coworker inquired about debugging tools. We computed pa but did not use it during the maximum physical address bits test. Instead we used the identity mapped virtual address which will always fail this test. I believe the defect came in here: [bpicco@zareason linus.git]$ git describe --contains bb4e6e85daa52 v3.18-rc1~87^2~4 . Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-22sparc/ptrace: Preserve previous registers for short regset writeDave Martin1-1/+1
commit d3805c546b275c8cc7d40f759d029ae92c7175f2 upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill all the registers, the thread's old registers are preserved. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-10-06sparc32: fix copy_from_user()Al Viro1-1/+3
[ Upstream commit 917400cecb4b52b5cde5417348322bb9c8272fa6 ] Cc: stable@vger.kernel.org Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-08-01Revert "sparc64: Fix numa node distance initialization"Sasha Levin1-8/+0
This reverts commit 0396a871c4e3fbbaabb4f2632c1d388a04b68c84. Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
2016-07-12sparc64: Fix return from trap window fill crashes.David S. Miller5-52/+116
[ Upstream commit 7cafc0b8bf130f038b0ec2dcdd6a9de6dc59b65a ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc: Harden signal return frame checks.David S. Miller5-45/+92
[ Upstream commit d11c2a0de2824395656cf8ed15811580c9dd38aa ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Take ctx_alloc_lock properly in hugetlb_setup().David S. Miller1-3/+7
[ Upstream commit 9ea46abe22550e3366ff7cee2f8391b35b12f730 ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc/PCI: Fix for panic while enabling SR-IOVBabu Moger1-0/+17
[ Upstream commit d0c31e02005764dae0aab130a57e9794d06b824d ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix sparc64_set_context stack handling.David S. Miller1-1/+1
[ Upstream commit 397d1533b6cce0ccb5379542e2e6d079f6936c46 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix numa node distance initializationNitin Gupta1-0/+8
[ Upstream commit 36beca6571c941b28b0798667608239731f9bc3a ] Orabug: 22495713 Currently, NUMA node distance matrix is initialized only when a machine descriptor (MD) exists. However, sun4u machines (e.g. Sun Blade 2500) do not have an MD and thus distance values were left uninitialized. The initialization is now moved such that it happens on both sun4u and sun4v. Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc64: Fix bootup regressions on some Kconfig combinations.David S. Miller8-55/+34
[ Upstream commit 49fa5230462f9f2c4e97c81356473a6bdf06c422 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b95374f6 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-07-12sparc: Fix system call tracing register handling.Mike Frysinger2-0/+53
[ Upstream commit 1a40b95374f680625318ab61d81958e949e0afe3 ] A system call trace trigger on entry allows the tracing process to inspect and potentially change the traced process's registers. Account for that by reloading the %g1 (syscall number) and %i0-%i5 (syscall argument) values. We need to be careful to revalidate the range of %g1, and reload the system call table entry it corresponds to into %l7. Reported-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: David S. Miller <davem@davemloft.net> Tested-by: Mike Frysinger <vapier@gentoo.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-06-03mm: fix huge zero page accounting in smaps reportKirill A. Shutemov1-0/+7
[ Upstream commit c164e038eee805147e95789dddb88ae3b3aca11c ] As a small zero page, huge zero page should not be accounted in smaps report as normal page. For small pages we rely on vm_normal_page() to filter out zero page, but vm_normal_page() is not designed to handle pmds. We only get here due hackish cast pmd to pte in smaps_pte_range() -- pte and pmd format is not necessary compatible on each and every architecture. Let's add separate codepath to handle pmds. follow_trans_huge_pmd() will detect huge zero page for us. We would need pmd_dirty() helper to do this properly. The patch adds it to THP-enabled architectures which don't yet have one. [akpm@linux-foundation.org: use do_div to fix 32-bit build] Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengwei Yin <yfw.kernel@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-02-15net: filter: make JITs zero A for SKF_AD_ALU_XOR_XRabin Vincent1-15/+2
[ Upstream commit 55795ef5469290f89f04e12e662ded604909e462 ] The SKF_AD_ALU_XOR_X ancillary is not like the other ancillary data instructions since it XORs A with X while all the others replace A with some loaded value. All the BPF JITs fail to clear A if this is used as the first instruction in a filter. This was found using american fuzzy lop. Add a helper to determine if A needs to be cleared given the first instruction in a filter, and use this in the JITs. Except for ARM, the rest have only been compile-tested. Fixes: 3480593131e0 ("net: filter: get rid of BPF_S_* enum") Signed-off-by: Rabin Vincent <rabin@rab.in> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2016-02-10sparc64: fix incorrect sign extension in sys_sparc64_personalityDmitry V. Levin1-1/+1
[ Upstream commit 525fd5a94e1be0776fa652df5c687697db508c91 ] The value returned by sys_personality has type "long int". It is saved to a variable of type "int", which is not a problem yet because the type of task_struct->pesonality is "unsigned int". The problem is the sign extension from "int" to "long int" that happens on return from sys_sparc64_personality. For example, a userspace call personality((unsigned) -EINVAL) will result to any subsequent personality call, including absolutely harmless read-only personality(0xffffffff) call, failing with errno set to EINVAL. Signed-off-by: Dmitry V. Levin <ldv@altlinux.org> Cc: <stable@vger.kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-11-13crypto: sparc - initialize blkcipher.ivsizeDave Kleikamp3-0/+5
[ Upstream commit a66d7f724a96d6fd279bfbd2ee488def6b081bea ] Some of the crypto algorithms write to the initialization vector, but no space has been allocated for it. This clobbers adjacent memory. Cc: stable@vger.kernel.org Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-08-22sparc64: Fix userspace FPU register corruptions.David S. Miller4-81/+11
[ Upstream commit 44922150d87cef616fd183220d43d8fde4d41390 ] If we have a series of events from userpsace, with %fprs=FPRS_FEF, like follows: ETRAP ETRAP VIS_ENTRY(fprs=0x4) VIS_EXIT RTRAP (kernel FPU restore with fpu_saved=0x4) RTRAP We will not restore the user registers that were clobbered by the FPU using kernel code in the inner-most trap. Traps allocate FPU save slots in the thread struct, and FPU using sequences save the "dirty" FPU registers only. This works at the initial trap level because all of the registers get recorded into the top-level FPU save area, and we'll return to userspace with the FPU disabled so that any FPU use by the user will take an FPU disabled trap wherein we'll load the registers back up properly. But this is not how trap returns from kernel to kernel operate. The simplest fix for this bug is to always save all FPU register state for anything other than the top-most FPU save area. Getting rid of the optimized inner-slot FPU saving code ends up making VISEntryHalf degenerate into plain VISEntry. Longer term we need to do something smarter to reinstate the partial save optimizations. Perhaps the fundament error is having trap entry and exit allocate FPU save slots and restore register state. Instead, the VISEntry et al. calls should be doing that work. This bug is about two decades old. Reported-by: James Y Knight <jyknight@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-07-05sparc: Use GFP_ATOMIC in ldc_alloc_exp_dring() as it can be called in ↵Sowmini Varadhan1-1/+1
softirq context [ Upstream commit 671d773297969bebb1732e1cdc1ec03aa53c6be2 ] Since it is possible for vnet_event_napi to end up doing vnet_control_pkt_engine -> ... -> vnet_send_attr -> vnet_port_alloc_tx_ring -> ldc_alloc_exp_dring -> kzalloc() (i.e., in softirq context), kzalloc() should be called with GFP_ATOMIC from ldc_alloc_exp_dring. Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-05-18mm/hugetlb: use pmd_page() in follow_huge_pmd()Naoya Horiguchi1-12/+0
[ Upstream commit 97534127012f0e396eddea4691f4c9b170aed74b ] Commit 61f77eda9bbf ("mm/hugetlb: reduce arch dependent code around follow_huge_*") broke follow_huge_pmd() on s390, where pmd and pte layout differ and using pte_page() on a huge pmd will return wrong results. Using pmd_page() instead fixes this. All architectures that were touched by that commit have pmd_page() defined, so this should not break anything on other architectures. Fixes: 61f77eda "mm/hugetlb: reduce arch dependent code around follow_huge_*" Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.cz>, Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc64: Fix several bugs in memmove().David S. Miller1-3/+32
[ Upstream commit 2077cef4d5c29cf886192ec32066f783d6a80db8 ] Firstly, handle zero length calls properly. Believe it or not there are a few of these happening during early boot. Next, we can't just drop to a memcpy() call in the forward copy case where dst <= src. The reason is that the cache initializing stores used in the Niagara memcpy() implementations can end up clearing out cache lines before we've sourced their original contents completely. For example, considering NG4memcpy, the main unrolled loop begins like this: load src + 0x00 load src + 0x08 load src + 0x10 load src + 0x18 load src + 0x20 store dst + 0x00 Assume dst is 64 byte aligned and let's say that dst is src - 8 for this memcpy() call. That store at the end there is the one to the first line in the cache line, thus clearing the whole line, which thus clobbers "src + 0x28" before it even gets loaded. To avoid this, just fall through to a simple copy only mildly optimized for the case where src and dst are 8 byte aligned and the length is a multiple of 8 as well. We could get fancy and call GENmemcpy() but this is good enough for how this thing is actually used. Reported-by: David Ahern <david.ahern@oracle.com> Reported-by: Bob Picco <bpicco@meloft.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc: Touch NMI watchdog when walking cpus and calling printkDavid Ahern1-0/+4
[ Upstream commit 31aaa98c248da766ece922bbbe8cc78cfd0bc920 ] With the increase in number of CPUs calls to functions that dump output to console (e.g., arch_trigger_all_cpu_backtrace) can take a long time to complete. If IRQs are disabled eventually the NMI watchdog kicks in and creates more havoc. Avoid by telling the NMI watchdog everything is ok. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc: perf: Make counting mode actually workDavid Ahern1-8/+3
[ Upstream commit d51291cb8f32bfae6b331e1838651f3ddefa73a5 ] Currently perf-stat (aka, counting mode) does not work: $ perf stat ls ... Performance counter stats for 'ls': 1.585665 task-clock (msec) # 0.580 CPUs utilized 24 context-switches # 0.015 M/sec 0 cpu-migrations # 0.000 K/sec 86 page-faults # 0.054 M/sec <not supported> cycles <not supported> stalled-cycles-frontend <not supported> stalled-cycles-backend <not supported> instructions <not supported> branches <not supported> branch-misses 0.002735100 seconds time elapsed The reason is that state is never reset (stays with PERF_HES_UPTODATE set). Add a call to sparc_pmu_enable_event during the added_event handling. Clean up the encoding since pmu_start calls sparc_pmu_enable_event which does the same. Passing PERF_EF_RELOAD to sparc_pmu_start means the call to sparc_perf_event_set_period can be removed as well. With this patch: $ perf stat ls ... Performance counter stats for 'ls': 1.552890 task-clock (msec) # 0.552 CPUs utilized 24 context-switches # 0.015 M/sec 0 cpu-migrations # 0.000 K/sec 86 page-faults # 0.055 M/sec 5,748,997 cycles # 3.702 GHz <not supported> stalled-cycles-frontend:HG <not supported> stalled-cycles-backend:HG 1,684,362 instructions:HG # 0.29 insns per cycle 295,133 branches:HG # 190.054 M/sec 28,007 branch-misses:HG # 9.49% of all branches 0.002815665 seconds time elapsed Signed-off-by: David Ahern <david.ahern@oracle.com> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc: perf: Remove redundant perf_pmu_{en|dis}able callsDavid Ahern1-4/+0
[ Upstream commit 5b0d4b5514bbcce69b516d0742f2cfc84ebd6db3 ] perf_pmu_disable is called by core perf code before pmu->del and the enable function is called by core perf code afterwards. No need to call again within sparc_pmu_del. Ditto for pmu->add and sparc_pmu_add. Signed-off-by: David Ahern <david.ahern@oracle.com> Acked-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc: semtimedop() unreachable due to comparison errorRob Gardner1-1/+1
[ Upstream commit 53eb2516972b8c4628651dfcb926cb9ef8b2864a ] A bug was reported that the semtimedop() system call was always failing eith ENOSYS. Since SEMCTL is defined as 3, and SEMTIMEDOP is defined as 4, the comparison "call <= SEMCTL" will always prevent SEMTIMEDOP from getting through to the semaphore ops switch statement. This is corrected by changing the comparison to "call <= SEMTIMEDOP". Orabug: 20633375 Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-03-24sparc32: destroy_context() and switch_mm() needs to disable interrupts.Andreas Larsson1-4/+7
[ Upstream commit 66d0f7ec9f1038452178b1993fc07fd96d30fd38 ] Load balancing can be triggered in the critical sections protected by srmmu_context_spinlock in destroy_context() and switch_mm() and can hang the cpu waiting for the rq lock of another cpu that in turn has called switch_mm hangning on srmmu_context_spinlock leading to deadlock. So, disable interrupt while taking srmmu_context_spinlock in destroy_context() and switch_mm() so we don't deadlock. See also commit 77b838fa1ef0 ("[SPARC64]: destroy_context() needs to disable interrupts.") Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
2015-02-06vm: add VM_FAULT_SIGSEGV handling supportLinus Torvalds2-0/+4
commit 33692f27597fcab536d7cbbcc8f52905133e4aa7 upstream. The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-01-30crypto: prefix module autoloading with "crypto-"Kees Cook8-10/+10
commit 5d26a105b5a73e5635eae0629b42fa0a90e07b7b upstream. This prefixes all crypto module loading with "crypto-" so we never run the risk of exposing module auto-loading to userspace via a crypto API, as demonstrated by Mathias Krause: https://lkml.org/lkml/2013/3/4/70 Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-27sparc: Add NOP dma_cache_sync() implementation.David S. Miller1-0/+8
This can be a NOP because we forward dma_{alloc,free}_noncoherent to dma_{alloc,free}_coherent. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-17sparc64: Fix constraints on swab helpers.David S. Miller1-6/+6
We are reading the memory location, so we have to have a memory constraint in there purely for the sake of showing the data flow to the compiler. Reported-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-07sparc32: Implement xchg and atomic_xchg using ATOMIC_HASH locksAndreas Larsson3-11/+30
Atomicity between xchg and cmpxchg cannot be guaranteed when xchg is implemented with a swap and cmpxchg is implemented with locks. Without this, e.g. mcs_spin_lock and mcs_spin_unlock are broken. Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-07sparc64: Do irq_{enter,exit}() around generic_smp_call_function*().David S. Miller1-0/+4
Otherwise rcu_irq_{enter,exit}() do not happen and we get dumps like: ==================== [ 188.275021] =============================== [ 188.309351] [ INFO: suspicious RCU usage. ] [ 188.343737] 3.18.0-rc3-00068-g20f3963-dirty #54 Not tainted [ 188.394786] ------------------------------- [ 188.429170] include/linux/rcupdate.h:883 rcu_read_lock() used illegally while idle! [ 188.505235] other info that might help us debug this: [ 188.554230] RCU used illegally from idle CPU! rcu_scheduler_active = 1, debug_locks = 0 [ 188.637587] RCU used illegally from extended quiescent state! [ 188.690684] 3 locks held by swapper/7/0: [ 188.721932] #0: (&x->wait#11){......}, at: [<0000000000495de8>] complete+0x8/0x60 [ 188.797994] #1: (&p->pi_lock){-.-.-.}, at: [<000000000048510c>] try_to_wake_up+0xc/0x400 [ 188.881343] #2: (rcu_read_lock){......}, at: [<000000000048a910>] select_task_rq_fair+0x90/0xb40 [ 188.973043]stack backtrace: [ 188.993879] CPU: 7 PID: 0 Comm: swapper/7 Not tainted 3.18.0-rc3-00068-g20f3963-dirty #54 [ 189.076187] Call Trace: [ 189.089719] [0000000000499360] lockdep_rcu_suspicious+0xe0/0x100 [ 189.147035] [000000000048a99c] select_task_rq_fair+0x11c/0xb40 [ 189.202253] [00000000004852d8] try_to_wake_up+0x1d8/0x400 [ 189.252258] [000000000048554c] default_wake_function+0xc/0x20 [ 189.306435] [0000000000495554] __wake_up_common+0x34/0x80 [ 189.356448] [00000000004955b4] __wake_up_locked+0x14/0x40 [ 189.406456] [0000000000495e08] complete+0x28/0x60 [ 189.448142] [0000000000636e28] blk_end_sync_rq+0x8/0x20 [ 189.496057] [0000000000639898] __blk_mq_end_request+0x18/0x60 [ 189.550249] [00000000006ee014] scsi_end_request+0x94/0x180 [ 189.601286] [00000000006ee334] scsi_io_completion+0x1d4/0x600 [ 189.655463] [00000000006e51c4] scsi_finish_command+0xc4/0xe0 [ 189.708598] [00000000006ed958] scsi_softirq_done+0x118/0x140 [ 189.761735] [00000000006398ec] __blk_mq_complete_request_remote+0xc/0x20 [ 189.827383] [00000000004c75d0] generic_smp_call_function_single_interrupt+0x150/0x1c0 [ 189.906581] [000000000043e514] smp_call_function_single_client+0x14/0x40 ==================== Based almost entirely upon a patch by Paul E. McKenney. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-11-01sparc64: Fix crashes in schizo_pcierr_intr_other().David S. Miller1-3/+3
Meelis Roos reports crashes during bootup on a V480 that look like this: ==================== [ 61.300577] PCI: Scanning PBM /pci@9,600000 [ 61.304867] schizo f009b070: PCI host bridge to bus 0003:00 [ 61.310385] pci_bus 0003:00: root bus resource [io 0x7ffe9000000-0x7ffe9ffffff] (bus address [0x0000-0xffffff]) [ 61.320515] pci_bus 0003:00: root bus resource [mem 0x7fb00000000-0x7fbffffffff] (bus address [0x00000000-0xffffffff]) [ 61.331173] pci_bus 0003:00: root bus resource [bus 00] [ 61.385344] Unable to handle kernel NULL pointer dereference [ 61.390970] tsk->{mm,active_mm}->context = 0000000000000000 [ 61.396515] tsk->{mm,active_mm}->pgd = fff000b000002000 [ 61.401716] \|/ ____ \|/ [ 61.401716] "@'/ .. \`@" [ 61.401716] /_| \__/ |_\ [ 61.401716] \__U_/ [ 61.416362] swapper/0(0): Oops [#1] [ 61.419837] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.18.0-rc1-00422-g2cc9188-dirty #24 [ 61.427975] task: fff000b0fd8e9c40 ti: fff000b0fd928000 task.ti: fff000b0fd928000 [ 61.435426] TSTATE: 0000004480e01602 TPC: 00000000004455e4 TNPC: 00000000004455e8 Y: 00000000 Not tainted [ 61.445230] TPC: <schizo_pcierr_intr+0x104/0x560> [ 61.449897] g0: 0000000000000000 g1: 0000000000000000 g2: 0000000000a10f78 g3: 000000000000000a [ 61.458563] g4: fff000b0fd8e9c40 g5: fff000b0fdd82000 g6: fff000b0fd928000 g7: 000000000000000a [ 61.467229] o0: 000000000000003d o1: 0000000000000000 o2: 0000000000000006 o3: fff000b0ffa5fc7e [ 61.475894] o4: 0000000000060000 o5: c000000000000000 sp: fff000b0ffa5f3c1 ret_pc: 00000000004455cc [ 61.484909] RPC: <schizo_pcierr_intr+0xec/0x560> [ 61.489500] l0: fff000b0fd8e9c40 l1: 0000000000a20800 l2: 0000000000000000 l3: 000000000119a430 [ 61.498164] l4: 0000000001742400 l5: 00000000011cfbe0 l6: 00000000011319c0 l7: fff000b0fd8ea348 [ 61.506830] i0: 0000000000000000 i1: fff000b0fdb34000 i2: 0000000320000000 i3: 0000000000000000 [ 61.515497] i4: 00060002010b003f i5: 0000040004e02000 i6: fff000b0ffa5f481 i7: 00000000004a9920 [ 61.524175] I7: <handle_irq_event_percpu+0x40/0x140> [ 61.529099] Call Trace: [ 61.531531] [00000000004a9920] handle_irq_event_percpu+0x40/0x140 [ 61.537681] [00000000004a9a58] handle_irq_event+0x38/0x80 [ 61.543145] [00000000004ac77c] handle_fasteoi_irq+0xbc/0x200 [ 61.548860] [00000000004a9084] generic_handle_irq+0x24/0x40 [ 61.554500] [000000000042be0c] handler_irq+0xac/0x100 ==================== The problem is that pbm->pci_bus->self is NULL. This code is trying to go through the standard PCI config space interfaces to read the PCI controller's PCI_STATUS register. This doesn't work, because we more often than not do not enumerate the PCI controller as a bonafide PCI device during the OF device node scan. Therefore bus->self remains NULL. Existing common code for PSYCHO and PSYCHO-like PCI controllers handles this properly, by doing the config space access directly. Do the same here, pbm->pci_ops->{read,write}(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-28sparc: Hook up bpf system call.David S. Miller3-4/+5
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-24Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparcLinus Torvalds11-62/+70
Pull two sparc fixes from David Miller: 1) Fix boots with gcc-4.9 compiled sparc64 kernels. 2) Add missing __get_user_pages_fast() on sparc64 to fix hangs on futexes used in transparent hugepage areas. It's really idiotic to have a weak symbolled fallback that just returns zero, and causes this kind of bug. There should be no backup implementation and the link should fail if the architecture fails to provide __get_user_pages_fast() and supports transparent hugepages. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc: sparc64: Implement __get_user_pages_fast(). sparc64: Fix register corruption in top-most kernel stack frame during boot.
2014-10-24sparc64: Implement __get_user_pages_fast().David S. Miller1-0/+30
It is not sufficient to only implement get_user_pages_fast(), you must also implement the atomic version __get_user_pages_fast() otherwise you end up using the weak symbol fallback implementation which simply returns zero. This is dangerous, because it causes the futex code to loop forever if transparent hugepages are supported (see get_futex_key()). Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-24sparc64: Fix register corruption in top-most kernel stack frame during boot.David S. Miller10-62/+40
Meelis Roos reported that kernels built with gcc-4.9 do not boot, we eventually narrowed this down to only impacting machines using UltraSPARC-III and derivitive cpus. The crash happens right when the first user process is spawned: [ 54.451346] Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004 [ 54.451346] [ 54.571516] CPU: 1 PID: 1 Comm: init Not tainted 3.16.0-rc2-00211-gd7933ab #96 [ 54.666431] Call Trace: [ 54.698453] [0000000000762f8c] panic+0xb0/0x224 [ 54.759071] [000000000045cf68] do_exit+0x948/0x960 [ 54.823123] [000000000042cbc0] fault_in_user_windows+0xe0/0x100 [ 54.902036] [0000000000404ad0] __handle_user_windows+0x0/0x10 [ 54.978662] Press Stop-A (L1-A) to return to the boot prom [ 55.050713] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004 Further investigation showed that compiling only per_cpu_patch() with an older compiler fixes the boot. Detailed analysis showed that the function is not being miscompiled by gcc-4.9, but it is using a different register allocation ordering. With the gcc-4.9 compiled function, something during the code patching causes some of the %i* input registers to get corrupted. Perhaps we have a TLB miss path into the firmware that is deep enough to cause a register window spill and subsequent restore when we get back from the TLB miss trap. Let's plug this up by doing two things: 1) Stop using the firmware stack for client interface calls into the firmware. Just use the kernel's stack. 2) As soon as we can, call into a new function "start_early_boot()" to put a one-register-window buffer between the firmware's deepest stack frame and the top-most initial kernel one. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-20Merge git://git.infradead.org/users/eparis/auditLinus Torvalds4-7/+13
Pull audit updates from Eric Paris: "So this change across a whole bunch of arches really solves one basic problem. We want to audit when seccomp is killing a process. seccomp hooks in before the audit syscall entry code. audit_syscall_entry took as an argument the arch of the given syscall. Since the arch is part of what makes a syscall number meaningful it's an important part of the record, but it isn't available when seccomp shoots the syscall... For most arch's we have a better way to get the arch (syscall_get_arch) So the solution was two fold: Implement syscall_get_arch() everywhere there is audit which didn't have it. Use syscall_get_arch() in the seccomp audit code. Having syscall_get_arch() everywhere meant it was a useless flag on the stack and we could get rid of it for the typical syscall entry. The other changes inside the audit system aren't grand, fixed some records that had invalid spaces. Better locking around the task comm field. Removing some dead functions and structs. Make some things static. Really minor stuff" * git://git.infradead.org/users/eparis/audit: (31 commits) audit: rename audit_log_remove_rule to disambiguate for trees audit: cull redundancy in audit_rule_change audit: WARN if audit_rule_change called illegally audit: put rule existence check in canonical order next: openrisc: Fix build audit: get comm using lock to avoid race in string printing audit: remove open_arg() function that is never used audit: correct AUDIT_GET_FEATURE return message type audit: set nlmsg_len for multicast messages. audit: use union for audit_field values since they are mutually exclusive audit: invalid op= values for rules audit: use atomic_t to simplify audit_serial() kernel/audit.c: use ARRAY_SIZE instead of sizeof/sizeof[0] audit: reduce scope of audit_log_fcaps audit: reduce scope of audit_net_id audit: arm64: Remove the audit arch argument to audit_syscall_entry arm64: audit: Add audit hook in syscall_trace_enter/exit() audit: x86: drop arch from __audit_syscall_entry() interface sparc: implement is_32bit_task sparc: properly conditionalize use of TIF_32BIT ...
2014-10-19sparc64: Do not define thread fpregs save area as zero-length array.David S. Miller1-1/+2
This breaks the stack end corruption detection facility. What that facility does it write a magic value to "end_of_stack()" and checking to see if it gets overwritten. "end_of_stack()" is "task_thread_info(p) + 1", which for sparc64 is the beginning of the FPU register save area. So once the user uses the FPU, the magic value is overwritten and the debug checks trigger. Fix this by making the size explicit. Due to the size we use for the fpsaved[], gsr[], and xfsr[] arrays we are limited to 7 levels of FPU state saves. So each FPU register set is 256 bytes, allocate 256 * 7 for the fpregs area. Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-19sparc64: Fix corrupted thread fault code.David S. Miller2-6/+6
Every path that ends up at do_sparc64_fault() must install a valid FAULT_CODE_* bitmask in the per-thread fault code byte. Two paths leading to the label winfix_trampoline (which expects the FAULT_CODE_* mask in register %g4) were not doing so: 1) For pre-hypervisor TLB protection violation traps, if we took the 'winfix_trampoline' path we wouldn't have %g4 initialized with the FAULT_CODE_* value yet. Resulting in using the TLB_TAG_ACCESS register address value instead. 2) In the TSB miss path, when we notice that we are going to use a hugepage mapping, but we haven't allocated the hugepage TSB yet, we still have to take the window fixup case into consideration and in that particular path we leave %g4 not setup properly. Errors on this sort were largely invisible previously, but after commit 4ccb9272892c33ef1c19a783cfa87103b30c2784 ("sparc64: sun4v TLB error power off events") we now have a fault_code mask bit (FAULT_CODE_BAD_RA) that triggers due to this bug. FAULT_CODE_BAD_RA triggers because this bit is set in TLB_TAG_ACCESS (see #1 above) and thus we get seemingly random bus errors triggered for user processes. Fixes: 4ccb9272892c ("sparc64: sun4v TLB error power off events") Reported-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-18Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparcLinus Torvalds2-1/+21
Pull Sparc bugfix from David Miller: "Sparc64 AES ctr mode bug fix" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc: sparc64: Fix FPU register corruption with AES crypto offload.
2014-10-15Merge branch 'for-3.18-consistent-ops' of ↵Linus Torvalds10-35/+35
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu Pull percpu consistent-ops changes from Tejun Heo: "Way back, before the current percpu allocator was implemented, static and dynamic percpu memory areas were allocated and handled separately and had their own accessors. The distinction has been gone for many years now; however, the now duplicate two sets of accessors remained with the pointer based ones - this_cpu_*() - evolving various other operations over time. During the process, we also accumulated other inconsistent operations. This pull request contains Christoph's patches to clean up the duplicate accessor situation. __get_cpu_var() uses are replaced with with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr(). Unfortunately, the former sometimes is tricky thanks to C being a bit messy with the distinction between lvalues and pointers, which led to a rather ugly solution for cpumask_var_t involving the introduction of this_cpu_cpumask_var_ptr(). This converts most of the uses but not all. Christoph will follow up with the remaining conversions in this merge window and hopefully remove the obsolete accessors" * 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits) irqchip: Properly fetch the per cpu offset percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write. percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t Revert "powerpc: Replace __get_cpu_var uses" percpu: Remove __this_cpu_ptr clocksource: Replace __this_cpu_ptr with raw_cpu_ptr sparc: Replace __get_cpu_var uses avr32: Replace __get_cpu_var with __this_cpu_write blackfin: Replace __get_cpu_var uses tile: Use this_cpu_ptr() for hardware counters tile: Replace __get_cpu_var uses powerpc: Replace __get_cpu_var uses alpha: Replace __get_cpu_var ia64: Replace __get_cpu_var uses s390: cio driver &__get_cpu_var replacements s390: Replace __get_cpu_var uses mips: Replace __get_cpu_var uses MIPS: Replace __get_cpu_var uses in FPU emulator. arm: Replace __this_cpu_ptr with raw_cpu_ptr ...
2014-10-15sparc64: Fix FPU register corruption with AES crypto offload.David S. Miller2-1/+21
The AES loops in arch/sparc/crypto/aes_glue.c use a scheme where the key material is preloaded into the FPU registers, and then we loop over and over doing the crypt operation, reusing those pre-cooked key registers. There are intervening blkcipher*() calls between the crypt operation calls. And those might perform memcpy() and thus also try to use the FPU. The sparc64 kernel FPU usage mechanism is designed to allow such recursive uses, but with a catch. There has to be a trap between the two FPU using threads of control. The mechanism works by, when the FPU is already in use by the kernel, allocating a slot for FPU saving at trap time. Then if, within the trap handler, we try to use the FPU registers, the pre-trap FPU register state is saved into the slot. Then at trap return time we notice this and restore the pre-trap FPU state. Over the long term there are various more involved ways we can make this work, but for a quick fix let's take advantage of the fact that the situation where this happens is very limited. All sparc64 chips that support the crypto instructiosn also are using the Niagara4 memcpy routine, and that routine only uses the FPU for large copies where we can't get the source aligned properly to a multiple of 8 bytes. We look to see if the FPU is already in use in this context, and if so we use the non-large copy path which only uses integer registers. Furthermore, we also limit this special logic to when we are doing kernel copy, rather than a user copy. Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-13Merge branch 'locking-arch-for-linus' of ↵Linus Torvalds6-151/+136
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull arch atomic cleanups from Ingo Molnar: "This is a series kept separate from the main locking tree, which cleans up and improves various details in the atomics type handling: - Remove the unused atomic_or_long() method - Consolidate and compress atomic ops implementations between architectures, to reduce linecount and to make it easier to add new ops. - Rewrite generic atomic support to only require cmpxchg() from an architecture - generate all other methods from that" * 'locking-arch-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) locking,arch: Use ACCESS_ONCE() instead of cast to volatile in atomic_read() locking, mips: Fix atomics locking, sparc64: Fix atomics locking,arch: Rewrite generic atomic support locking,arch,xtensa: Fold atomic_ops locking,arch,sparc: Fold atomic_ops locking,arch,sh: Fold atomic_ops locking,arch,powerpc: Fold atomic_ops locking,arch,parisc: Fold atomic_ops locking,arch,mn10300: Fold atomic_ops locking,arch,mips: Fold atomic_ops locking,arch,metag: Fold atomic_ops locking,arch,m68k: Fold atomic_ops locking,arch,m32r: Fold atomic_ops locking,arch,ia64: Fold atomic_ops locking,arch,hexagon: Fold atomic_ops locking,arch,cris: Fold atomic_ops locking,arch,avr32: Fold atomic_ops locking,arch,arm64: Fold atomic_ops locking,arch,arm: Fold atomic_ops ...
2014-10-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparcLinus Torvalds39-754/+1117
Pull sparc updates from David Miller: 1) Move to 4-level page tables on sparc64 and support up to 53-bits of physical addressing. Kernel static image BSS size reduced by several megabytes. 2) M6/M7 cpu support, from Allan Pais. 3) Move to sparse IRQs, handle hypervisor TLB call errors more gracefully, and add T5 perf_event support. From Bob Picco. 4) Recognize cdroms and compute geometry from capacity in virtual disk driver, also from Allan Pais. 5) Fix memset() return value on sparc32, from Andreas Larsson. 6) Respect gfp flags in dma_alloc_coherent on sparc32, from Daniel Hellstrom. 7) Fix handling of compound pages in virtual disk driver, from Dwight Engen. 8) Fix lockdep warnings in LDC layer by moving IRQ requesting to ldc_alloc() from ldc_bind(). 9) Increase boot string length to 1024 bytes, from Dave Kleikamp. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc: (31 commits) sparc64: Fix lockdep warnings on reboot on Ultra-5 sparc64: Increase size of boot string to 1024 bytes sparc64: Kill unnecessary tables and increase MAX_BANKS. sparc64: sparse irq sparc64: Adjust vmalloc region size based upon available virtual address bits. sparc64: Increase MAX_PHYS_ADDRESS_BITS to 53. sparc64: Use kernel page tables for vmemmap. sparc64: Fix physical memory management regressions with large max_phys_bits. sparc64: Adjust KTSB assembler to support larger physical addresses. sparc64: Define VA hole at run time, rather than at compile time. sparc64: Switch to 4-level page tables. sparc64: Fix reversed start/end in flush_tlb_kernel_range() sparc64: Add vio_set_intr() to enable/disable Rx interrupts vio: fix reuse of vio_dring slot sunvdc: limit each sg segment to a page sunvdc: compute vdisk geometry from capacity sunvdc: add cdrom and v1.1 protocol support sparc: VIO protocol version 1.6 sparc64: Fix hibernation code refrence to PAGE_OFFSET. sparc64: Move request_irq() from ldc_bind() to ldc_alloc() ...
2014-10-10sparc64: Fix lockdep warnings on reboot on Ultra-5David S. Miller1-3/+4
Inconsistently, the raw_* IRQ routines do not interact with and update the irqflags tracing and lockdep state, whereas the raw_* spinlock interfaces do. This causes problems in p1275_cmd_direct() because we disable hardirqs by hand using raw_local_irq_restore() and then do a raw_spin_lock() which triggers a lockdep trace because the CPU's hw IRQ state doesn't match IRQ tracing's internal software copy of that state. The CPU's irqs are disabled, yet current->hardirqs_enabled is true. ==================== reboot: Restarting system ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at kernel/locking/lockdep.c:3536 check_flags+0x7c/0x240() DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) Modules linked in: openpromfs CPU: 0 PID: 1 Comm: systemd-shutdow Tainted: G W 3.17.0-dirty #145 Call Trace: [000000000045919c] warn_slowpath_common+0x5c/0xa0 [0000000000459210] warn_slowpath_fmt+0x30/0x40 [000000000048f41c] check_flags+0x7c/0x240 [0000000000493280] lock_acquire+0x20/0x1c0 [0000000000832b70] _raw_spin_lock+0x30/0x60 [000000000068f2fc] p1275_cmd_direct+0x1c/0x60 [000000000068ed28] prom_reboot+0x28/0x40 [000000000043610c] machine_restart+0x4c/0x80 [000000000047d2d4] kernel_restart+0x54/0x80 [000000000047d618] SyS_reboot+0x138/0x200 [00000000004060b4] linux_sparc_syscall32+0x34/0x60 ---[ end trace 5c439fe81c05a100 ]--- possible reason: unannotated irqs-off. irq event stamp: 2010267 hardirqs last enabled at (2010267): [<000000000049a358>] vprintk_emit+0x4b8/0x580 hardirqs last disabled at (2010266): [<0000000000499f08>] vprintk_emit+0x68/0x580 softirqs last enabled at (2010046): [<000000000045d278>] __do_softirq+0x378/0x4a0 softirqs last disabled at (2010039): [<000000000042bf08>] do_softirq_own_stack+0x28/0x40 Resetting ... ==================== Use local_* variables of the hw IRQ interfaces so that IRQ tracing sees all of our changes. Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-10nosave: consolidate __nosave_{begin,end} in <asm/sections.h>Geert Uytterhoeven1-3/+1
The different architectures used their own (and different) declarations: extern __visible const void __nosave_begin, __nosave_end; extern const void __nosave_begin, __nosave_end; extern long __nosave_begin, __nosave_end; Consolidate them using the first variant in <asm/sections.h>. Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09Merge branch 'timers-nohz-for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer fixes from Ingo Molnar: "Main changes: - Fix the deadlock reported by Dave Jones et al - Clean up and fix nohz_full interaction with arch abilities - nohz init code consolidation/cleanup" * 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: nohz: nohz full depends on irq work self IPI support nohz: Consolidate nohz full init code arm64: Tell irq work about self IPI support arm: Tell irq work about self IPI support x86: Tell irq work about self IPI support irq_work: Force raised irq work to run on irq work interrupt irq_work: Introduce arch_irq_work_has_interrupt() nohz: Move nohz full init call to tick init
2014-10-09Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds4-15/+66
Pull networking updates from David Miller: "Most notable changes in here: 1) By far the biggest accomplishment, thanks to a large range of contributors, is the addition of multi-send for transmit. This is the result of discussions back in Chicago, and the hard work of several individuals. Now, when the ->ndo_start_xmit() method of a driver sees skb->xmit_more as true, it can choose to defer the doorbell telling the driver to start processing the new TX queue entires. skb->xmit_more means that the generic networking is guaranteed to call the driver immediately with another SKB to send. There is logic added to the qdisc layer to dequeue multiple packets at a time, and the handling mis-predicted offloads in software is now done with no locks held. Finally, pktgen is extended to have a "burst" parameter that can be used to test a multi-send implementation. Several drivers have xmit_more support: i40e, igb, ixgbe, mlx4, virtio_net Adding support is almost trivial, so export more drivers to support this optimization soon. I want to thank, in no particular or implied order, Jesper Dangaard Brouer, Eric Dumazet, Alexander Duyck, Tom Herbert, Jamal Hadi Salim, John Fastabend, Florian Westphal, Daniel Borkmann, David Tat, Hannes Frederic Sowa, and Rusty Russell. 2) PTP and timestamping support in bnx2x, from Michal Kalderon. 3) Allow adjusting the rx_copybreak threshold for a driver via ethtool, and add rx_copybreak support to enic driver. From Govindarajulu Varadarajan. 4) Significant enhancements to the generic PHY layer and the bcm7xxx driver in particular (EEE support, auto power down, etc.) from Florian Fainelli. 5) Allow raw buffers to be used for flow dissection, allowing drivers to determine the optimal "linear pull" size for devices that DMA into pools of pages. The objective is to get exactly the necessary amount of headers into the linear SKB area pre-pulled, but no more. The new interface drivers use is eth_get_headlen(). From WANG Cong, with driver conversions (several had their own by-hand duplicated implementations) by Alexander Duyck and Eric Dumazet. 6) Support checksumming more smoothly and efficiently for encapsulations, and add "foo over UDP" facility. From Tom Herbert. 7) Add Broadcom SF2 switch driver to DSA layer, from Florian Fainelli. 8) eBPF now can load programs via a system call and has an extensive testsuite. Alexei Starovoitov and Daniel Borkmann. 9) Major overhaul of the packet scheduler to use RCU in several major areas such as the classifiers and rate estimators. From John Fastabend. 10) Add driver for Intel FM10000 Ethernet Switch, from Alexander Duyck. 11) Rearrange TCP_SKB_CB() to reduce cache line misses, from Eric Dumazet. 12) Add Datacenter TCP congestion control algorithm support, From Florian Westphal. 13) Reorganize sk_buff so that __copy_skb_header() is significantly faster. From Eric Dumazet" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1558 commits) netlabel: directly return netlbl_unlabel_genl_init() net: add netdev_txq_bql_{enqueue, complete}_prefetchw() helpers net: description of dma_cookie cause make xmldocs warning cxgb4: clean up a type issue cxgb4: potential shift wrapping bug i40e: skb->xmit_more support net: fs_enet: Add NAPI TX net: fs_enet: Remove non NAPI RX r8169:add support for RTL8168EP net_sched: copy exts->type in tcf_exts_change() wimax: convert printk to pr_foo() af_unix: remove 0 assignment on static ipv6: Do not warn for informational ICMP messages, regardless of type. Update Intel Ethernet Driver maintainers list bridge: Save frag_max_size between PRE_ROUTING and POST_ROUTING tipc: fix bug in multicast congestion handling net: better IFF_XMIT_DST_RELEASE support net/mlx4_en: remove NETDEV_TX_BUSY 3c59x: fix bad split of cpu_to_le32(pci_map_single()) net: bcmgenet: fix Tx ring priority programming ...
2014-10-08Merge tag 'tty-3.18-rc1' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty Pull tty/serial driver updates from Greg KH: "Here's the big tty/serial driver patchset for 3.18-rc1. Lots of little things in here, some good work from Peter Hurley on the tty core, and in lots of drivers. There are also lots of other driver updates in here as well, full details in the changelogs. All have been in the linux-next tree for a while" * tag 'tty-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (99 commits) Revert "serial/core: Initialize the console pm state" tty: serial: 8250: use 32bit variable for rpm_tx_active tty: serial: msm: Add earlycon support serial/core: Initialize the console pm state serial: asc: Conditionally use readl_relaxed (COMPILE_TEST) serial: of-serial: add PM suspend/resume support m68k: AMIGA_BUILTIN_SERIAL should depend on TTY asm/uapi: Add definition of TIOC[SG]RS485 tty/metag_da: Add console_poll module parameter serial: 8250_pci: remove rts_n override from Baytrail quirk serial: cadence: Add generic earlycon support serial: imx: change the wait even to interruptiable serial: imx: terminate the RX DMA when the UART is suspending serial: imx: fix throttle/unthrottle callbacks for hardware assisted flow control serial: 8250: Add Quark X1000 to 8250_pci.c tty: omap-serial: pull out calculation from baud_is_mode16 tty: omap-serial: fix division by zero xen_hvc: no reason to write the type key on xenstore tty: serial: 8250_core: remove UART_IER_RDI in serial8250_stop_rx() tty: serial: 8250_core: use the ->line argument as a hint in serial8250_find_match_or_unused() ...