summaryrefslogtreecommitdiff
path: root/arch/um/include/registers.h
AgeCommit message (Collapse)AuthorFilesLines
2008-02-24uml: fix FP register corruptionJeff Dike1-0/+2
Commit ee3d9bd4de1ed93d2a7ee41c331ed30a1c7b8acd ("uml: simplify SIGSEGV handling"), while greatly simplifying the kernel SIGSEGV handler that runs in the process address space, introduced a bug which corrupts FP state in the process. Previously, the SIGSEGV handler called the sigreturn system call by hand - it couldn't return through the restorer provided to it because that could try to call the libc restorer which likely wouldn't exist in the process address space. So, it blocked off some signals, including SIGUSR1, on entry to the SIGSEGV handler, queued a SIGUSR1 to itself, and invoked sigreturn. The SIGUSR1 was delivered, and was visible to the UML kernel after sigreturn finished. The commit eliminated the signal masking and the call to sigreturn. The handler simply hits itself with a SIGTRAP to let the UML kernel know that it is finished. UML then restores the process registers, which effectively longjmps the process out of the signal handler, skipping sigreturn's restoring of register state and the signal mask. The bug is that the host apparently sets used_fp to 0 when it saves the process FP state in the sigcontext on the process signal stack. Thus, when the process is longjmped out of the handler, its FP state is corrupt because it wasn't saved on the context switch to the UML kernel. This manifested itself as sleep hanging. For some reason, sleep uses floating point in order to calculate the sleep interval. When a page fault corrupts its FP state, it is faked into essentially sleeping forever. This patch saves the FP state before entering the SIGSEGV handler and restores it afterwards. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: kill processes instead of panicing kernelJeff Dike1-3/+3
UML was panicing in the case of failures of libc calls which shouldn't happen. This is an overreaction since a failure from libc doesn't normally mean that kernel data structures are in an unknown state. Instead, the current process should just be killed if there is no way to recover. The case that prompted this was a failure of PTRACE_SETREGS restoring the same state that was read by PTRACE_GETREGS. It appears that when a process tries to load a bogus value into a segment register, it segfaults (as expected) and the value is actually loaded and is seen by PTRACE_GETREGS (not expected). This case is fixed by forcing a fatal SIGSEGV on the process so that it immediately dies. fatal_sigsegv was added for this purpose. It was declared as noreturn, so in order to pursuade gcc that it actually does not return, I added a call to os_dump_core (and declared it noreturn) so that I get a core file if somehow the process survives. All other calls in arch/um/os-Linux/skas/process.c got the same treatment, with failures causing the process to die instead of a kernel panic, with some exceptions. userspace_tramp exits with status 1 if anything goes wrong there. That will cause start_userspace to return an error. copy_context_skas0 and map_stub_pages also now return errors instead of panicing. Callers of thes functions were changed to check for errors and do something appropriate. Usually that's to return an error to their callers. check_skas3_ptrace_faultinfo just exits since that's too early to do anything else. save_registers, restore_registers, and init_registers now return status instead of panicing on failure, with their callers doing something appropriate. There were also duplicate declarations of save_registers and restore_registers in os.h - these are gone. I noticed and fixed up some whitespace damage. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: use ptrace directly in libc codeJeff Dike1-1/+0
Some register accessor cleanups - userspace() was calling restore_registers and save_registers for no reason, since userspace() is on the libc side of the house, and these add no value over calling ptrace directly init_thread_registers and get_safe_registers were the same thing, so init_thread_registers is gone Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: floating point signal delivery fixesJeff Dike1-0/+2
Handle floating point state in across signals correctly. UML/i386 needs to know whether the host does PTRACE_[GS]ETFPXREGS, so an arch_init_registers hook is added, which on x86_64 does nothing. UML doesn't save and restore floating point registers on kernel entry and exit, so they need to be copied between the host process and the sigcontext. save_fpx_registers and restore_fpx_registers are added for this purpose. save_fp_registers and restore_fp_registers already exist. There was a bunch of floating point state conversion code in arch/um/sys-i386/ptrace.c which isn't needed there, but is needed in signal.c, so it is moved over. The i386 code now distinguishes between fp and fpx state and handles them correctly. The x86_64 code just needs to copy state as-is between the host process and the stack. There are also some fixes there to pass the correct address of the floating point state around. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: remove code made redundant by CHOOSE_MODE removalJeff Dike1-3/+3
This patch makes a number of simplifications enabled by the removal of CHOOSE_MODE. There were lots of functions that looked like int foo(args){ foo_skas(args); } The bodies of foo_skas are now folded into foo, and their declarations (and sometimes entire header files) are deleted. In addition, the union uml_pt_regs, which was a union between the tt and skas register formats, is now a struct, with the tt-mode arm of the union being removed. It turns out that usr2_handler was unused, so it is gone. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: stop saving process FP stateJeff Dike1-1/+1
Throw out a lot of code dealing with saving and restoring floating-point state. In skas mode, where processes run in a restoring floating-point state on kernel entry and exit is pointless. This eliminates most of arch/um/os-Linux/sys-{i386,x86_64}/registers.c. Most of what remained is now arch-indpendent, and can be moved up to arch/um/os-Linux/registers.c. Both arches need the jmp_buf accessor get_thread_reg, and i386 needs {save,restore}_fp_regs because it cheats during sigreturn by getting the fp state using ptrace rather than copying it out of the process sigcontext. After this, it turns out that arch/um/include/skas/mode-skas.h is almost completely unneeded. The declarations in it are variables which either don't exist or which don't have global scope. The one exception is kill_off_processes_skas. If that's removed, this header can be deleted. This uncovered a bug in user.h, which wasn't correctly making sure that a size_t definition was available to both userspace and kernelspace files. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-09-26[PATCH] uml: stack usage reductionJeff Dike1-1/+2
The KSTK_* macros used an inordinate amount of stack. In order to overcome an impedance mismatch between their interface, which just returns a single register value, and the interface of get_thread_regs, which took a full pt_regs, the implementation created an on-stack pt_regs, filled it in, and returned one field. do_task_stat calls KSTK_* twice, resulting in two local pt_regs, blowing out the stack. This patch changes the interface (and name) of get_thread_regs to just return a single register from a jmp_buf. The include of archsetjmp.h" in registers.h to get the definition of jmp_buf exposed a bogus include of <setjmp.h> in start_up.c. <setjmp.h> shouldn't be used anywhere any more since UML uses the klibc setjmp/longjmp. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-08[PATCH] uml: initialize process FP registers properlyJeff Dike1-1/+1
We weren't making sure that we initialized the FP registers of new processes to sane values. This patch also moves some defines in the affected area closer to where they are used. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-05[PATCH] uml: Fix sysrq-r support for skas modeAllan Graves1-11/+1
The old code had the IP and SP coming from the registers in the thread struct, which are completely wrong since those are the userspace registers. This fixes that by pulling the correct values from the jmp_buf in which the kernel state of each thread is stored. Signed-off-by: Allan Graves <allan.graves@oracle.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-08[PATCH] uml: skas0 - separate kernel address space on stock hostsJeff Dike1-0/+1
UML has had two modes of operation - an insecure, slow mode (tt mode) in which the kernel is mapped into every process address space which requires no host kernel modifications, and a secure, faster mode (skas mode) in which the UML kernel is in a separate host address space, which requires a patch to the host kernel. This patch implements something very close to skas mode for hosts which don't support skas - I'm calling this skas0. It provides the security of the skas host patch, and some of the performance gains. The two main things that are provided by the skas patch, /proc/mm and PTRACE_FAULTINFO, are implemented in a way that require no host patch. For the remote address space changing stuff (mmap, munmap, and mprotect), we set aside two pages in the process above its stack, one of which contains a little bit of code which can call mmap et al. To update the address space, the system call information (system call number and arguments) are written to the stub page above the code. The %esp is set to the beginning of the data, the %eip is set the the start of the stub, and it repeatedly pops the information into its registers and makes the system call until it sees a system call number of zero. This is to amortize the cost of the context switch across multiple address space updates. When the updates are done, it SIGSTOPs itself, and the kernel process continues what it was doing. For a PTRACE_FAULTINFO replacement, we set up a SIGSEGV handler in the child, and let it handle segfaults rather than nullifying them. The handler is in the same page as the mmap stub. The second page is used as the stack. The handler reads cr2 and err from the sigcontext, sticks them at the base of the stack in a faultinfo struct, and SIGSTOPs itself. The kernel then reads the faultinfo and handles the fault. A complication on x86_64 is that this involves resetting the registers to the segfault values when the process is inside the kill system call. This breaks on x86_64 because %rcx will contain %rip because you tell SYSRET where to return to by putting the value in %rcx. So, this corrupts $rcx on return from the segfault. To work around this, I added an arch_finish_segv, which on x86 does nothing, but which on x86_64 ptraces the child back through the sigreturn. This causes %rcx to be restored by sigreturn and avoids the corruption. Ultimately, I think I will replace this with the trick of having it send itself a blocked signal which will be unblocked by the sigreturn. This will allow it to be stopped just after the sigreturn, and PTRACE_SYSCALLed without all the back-and-forth of PTRACE_SYSCALLing it through sigreturn. This runs on a stock host, so theoretically (and hopefully), tt mode isn't needed any more. We need to make sure that this is better in every way than tt mode, though. I'm concerned about the speed of address space updates and page fault handling, since they involve extra round-trips to the child. We can amortize the round-trip cost for large address space updates by writing all of the operations to the data page and having the child execute them all at the same time. This will help fork and exec, but not page faults, since they involve only one page. I can't think of any way to help page faults, except to add something like PTRACE_FAULTINFO to the host. There is PTRACE_SIGINFO, but UML doesn't use siginfo for SIGSEGV (or anything else) because there isn't enough information in the siginfo struct to handle page faults (the faulting operation type is missing). Adding that would make PTRACE_SIGINFO a usable equivalent to PTRACE_FAULTINFO. As for the code itself: - The system call stub is in arch/um/kernel/sys-$(SUBARCH)/stub.S. It is put in its own section of the binary along with stub_segv_handler in arch/um/kernel/skas/process.c. This is manipulated with run_syscall_stub in arch/um/kernel/skas/mem_user.c. syscall_stub will execute any system call at all, but it's only used for mmap, munmap, and mprotect. - The x86_64 stub calls sigreturn by hand rather than allowing the normal sigreturn to happen, because the normal sigreturn is a SA_RESTORER in UML's address space provided by libc. Needless to say, this is not available in the child's address space. Also, it does a couple of odd pops before that which restore the stack to the state it was in at the time the signal handler was called. - There is a new field in the arch mmu_context, which is now a union. This is the pid to be manipulated rather than the /proc/mm file descriptor. Code which deals with this now checks proc_mm to see whether it should use the usual skas code or the new code. - userspace_tramp is now used to create a new host process for every UML process, rather than one per UML processor. It checks proc_mm and ptrace_faultinfo to decide whether to map in the pages above its stack. - start_userspace now makes CLONE_VM conditional on proc_mm since we need separate address spaces now. - switch_mm_skas now just sets userspace_pid[0] to the new pid rather than PTRACE_SWITCH_MM. There is an addition to userspace which updates its idea of the pid being manipulated each time around the loop. This is important on exec, when the pid will change underneath userspace(). - The stub page has a pte, but it can't be mapped in using tlb_flush because it is part of tlb_flush. This is why it's required for it to be mapped in by userspace_tramp. Other random things: - The stub section in uml.lds.S is page aligned. This page is written out to the backing vm file in setup_physmem because it is mapped from there into user processes. - There's some confusion with TASK_SIZE now that there are a couple of extra pages that the process can't use. TASK_SIZE is considered by the elf code to be the usable process memory, which is reasonable, so it is decreased by two pages. This confuses the definition of USER_PGDS_IN_LAST_PML4, making it too small because of the rounding down of the uneven division. So we round it to the nearest PGDIR_SIZE rather than the lower one. - I added a missing PT_SYSCALL_ARG6_OFFSET macro. - um_mmu.h was made into a userspace-usable file. - proc_mm and ptrace_faultinfo are globals which say whether the host supports these features. - There is a bad interaction between the mm.nr_ptes check at the end of exit_mmap, stack randomization, and skas0. exit_mmap will stop freeing pages at the PGDIR_SIZE boundary after the last vma. If the stack isn't on the last page table page, the last pte page won't be freed, as it should be since the stub ptes are there, and exit_mmap will BUG because there is an unfreed page. To get around this, TASK_SIZE is set to the next lowest PGDIR_SIZE boundary and mm->nr_ptes is decremented after the calls to init_stub_pte. This ensures that we know the process stack (and all other process mappings) will be below the top page table page, and thus we know that mm->nr_ptes will be one too many, and can be decremented. Things that need fixing: - We may need better assurrences that the stub code is PIC. - The stub pte is set up in init_new_context_skas. - alloc_pgdir is probably the right place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-17Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds1-0/+29
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!