summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/vdso
AgeCommit message (Collapse)AuthorFilesLines
2020-08-06vdso/treewide: Add vdso_data pointer argument to __arch_get_hw_counter()Thomas Gleixner1-1/+2
MIPS already uses and S390 will need the vdso data pointer in __arch_get_hw_counter(). This works nicely as long as the architecture does not support time namespaces in the VDSO. With time namespaces enabled the regular accessor to the vdso data pointer __arch_get_vdso_data() will return the namespace specific VDSO data page for tasks which are part of a non-root time namespace. This would cause the architectures which need the vdso data pointer in __arch_get_hw_counter() to access the wrong vdso data page. Add a vdso_data pointer argument to __arch_get_hw_counter() and hand it in from the call sites in the core code. For architectures which do not need the data pointer in their counter accessor function the compiler will just optimize it out. Fix up all existing architecture implementations and make MIPS utilize the pointer instead of invoking the accessor function. No functional change and no change in the resulting object code (except MIPS). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/draft-87wo2ekuzn.fsf@nanos.tec.linutronix.de
2020-06-09x86/vdso: Unbreak paravirt VDSO clocksThomas Gleixner1-0/+18
The conversion of x86 VDSO to the generic clock mode storage broke the paravirt and hyperv clocksource logic. These clock sources have their own internal sequence counter to validate the clocksource at the point of reading it. This is necessary because the hypervisor can invalidate the clocksource asynchronously so a check during the VDSO data update is not sufficient. If the internal check during read invalidates the clocksource the read return U64_MAX. The original code checked this efficiently by testing whether the result (casted to signed) is negative, i.e. bit 63 is set. This was done that way because an extra indicator for the validity had more overhead. The conversion broke this check because the check was replaced by a check for a valid VDSO clock mode. The wreckage manifests itself when the paravirt clock is installed as a valid VDSO clock and during runtime invalidated by the hypervisor, e.g. after a host suspend/resume cycle. After the invalidation the read function returns U64_MAX which is used as cycles and makes the clock jump by ~2200 seconds, and become stale until the 2200 seconds have elapsed where it starts to jump again. The period of this effect depends on the shift/mult pair of the clocksource and the jumps and staleness are an artifact of undefined but reproducible behaviour of math overflow. Implement an x86 version of the new vdso_cycles_ok() inline which adds this check back and a variant of vdso_clocksource_ok() which lets the compiler optimize it out to avoid the extra conditional. That's suboptimal when the system does not have a VDSO capable clocksource, but that's not the case which is optimized for. Fixes: 5d51bee725cc ("clocksource: Add common vdso clock mode storage") Reported-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Miklos Szeredi <mszeredi@redhat.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20200606221532.080560273@linutronix.de
2020-03-21x86/vdso: Enable x86 to use common headersVincenzo Frascino1-0/+23
Enable x86 to use only the common headers in the implementation of the vDSO library. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200320145351.32292-24-vincenzo.frascino@arm.com
2020-03-21x86: Introduce asm/vdso/clocksource.hVincenzo Frascino1-0/+10
The vDSO library should only include the necessary headers required for a userspace library (UAPI and a minimal set of kernel headers). To make this possible it is necessary to isolate from the kernel headers the common parts that are strictly necessary to build the library. Introduce asm/vdso/clocksource.h to contain all the arm64 specific functions that are suitable for vDSO inclusion. This header will be required by a future patch that will generalize vdso/clocksource.h. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20200320145351.32292-5-vincenzo.frascino@arm.com
2020-02-17x86/vdso: Use generic VDSO clock mode storageThomas Gleixner2-10/+3
Switch to the generic VDSO clock mode storage. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> (VDSO parts) Acked-by: Juergen Gross <jgross@suse.com> (Xen parts) Acked-by: Paolo Bonzini <pbonzini@redhat.com> (KVM parts) Link: https://lkml.kernel.org/r/20200207124403.152039903@linutronix.de
2020-02-17x86/vdso: Move VDSO clocksource state tracking to callbackThomas Gleixner1-9/+1
All architectures which use the generic VDSO code have their own storage for the VDSO clock mode. That's pointless and just requires duplicate code. X86 abuses the function which retrieves the architecture specific clock mode storage to mark the clocksource as used in the VDSO. That's silly because this is invoked on every tick when the VDSO data is updated. Move this functionality to the clocksource::enable() callback so it gets invoked once when the clocksource is installed. This allows to make the clock mode storage generic. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Michael Kelley <mikelley@microsoft.com> (Hyper-V parts) Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> (VDSO parts) Acked-by: Juergen Gross <jgross@suse.com> (Xen parts) Link: https://lkml.kernel.org/r/20200207124402.934519777@linutronix.de
2020-02-17x86/vdso: Mark the TSC clocksource path likelyThomas Gleixner1-1/+1
Jumping out of line for the TSC clcoksource read is creating awful code. TSC is likely to be the clocksource at least on bare metal and the PV interfaces are sufficiently more work that the jump over the TSC read is just in the noise. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Link: https://lkml.kernel.org/r/20200207124402.328922847@linutronix.de
2020-01-14x86/vdso: Add time napespace pageDmitry Safonov1-0/+8
To support time namespaces in the VDSO with a minimal impact on regular non time namespace affected tasks, the namespace handling needs to be hidden in a slow path. The most obvious place is vdso_seq_begin(). If a task belongs to a time namespace then the VVAR page which contains the system wide VDSO data is replaced with a namespace specific page which has the same layout as the VVAR page. That page has vdso_data->seq set to 1 to enforce the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce the time namespace handling path. The extra check in the case that vdso_data->seq is odd, e.g. a concurrent update of the VDSO data is in progress, is not really affecting regular tasks which are not part of a time namespace as the task is spin waiting for the update to finish and vdso_data->seq to become even again. If a time namespace task hits that code path, it invokes the corresponding time getter function which retrieves the real VVAR page, reads host time and then adds the offset for the requested clock which is stored in the special VVAR page. Allocate the time namespace page among VVAR pages and place vdso_data on it. Provide __arch_get_timens_vdso_data() helper for VDSO code to get the code-relative position of VVARs on that special page. Co-developed-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20191112012724.250792-23-dima@arista.com
2020-01-14x86/vdso: Remove unused VDSO_HAS_32BIT_FALLBACKVincenzo Frascino1-2/+0
VDSO_HAS_32BIT_FALLBACK has been removed from the core since the architectures that support the generic vDSO library have been converted to support the 32 bit fallbacks. Remove unused VDSO_HAS_32BIT_FALLBACK from x86 vdso. Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20190830135902.20861-9-vincenzo.frascino@arm.com
2019-09-17Merge branch 'timers-core-for-linus' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core timer updates from Thomas Gleixner: "Timers and timekeeping updates: - A large overhaul of the posix CPU timer code which is a preparation for moving the CPU timer expiry out into task work so it can be properly accounted on the task/process. An update to the bogus permission checks will come later during the merge window as feedback was not complete before heading of for travel. - Switch the timerqueue code to use cached rbtrees and get rid of the homebrewn caching of the leftmost node. - Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a single function - Implement the separation of hrtimers to be forced to expire in hard interrupt context even when PREEMPT_RT is enabled and mark the affected timers accordingly. - Implement a mechanism for hrtimers and the timer wheel to protect RT against priority inversion and live lock issues when a (hr)timer which should be canceled is currently executing the callback. Instead of infinitely spinning, the task which tries to cancel the timer blocks on a per cpu base expiry lock which is held and released by the (hr)timer expiry code. - Enable the Hyper-V TSC page based sched_clock for Hyper-V guests resulting in faster access to timekeeping functions. - Updates to various clocksource/clockevent drivers and their device tree bindings. - The usual small improvements all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits) posix-cpu-timers: Fix permission check regression posix-cpu-timers: Always clear head pointer on dequeue hrtimer: Add a missing bracket and hide `migration_base' on !SMP posix-cpu-timers: Make expiry_active check actually work correctly posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build tick: Mark sched_timer to expire in hard interrupt context hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n posix-cpu-timers: Utilize timerqueue for storage posix-cpu-timers: Move state tracking to struct posix_cputimers posix-cpu-timers: Deduplicate rlimit handling posix-cpu-timers: Remove pointless comparisons posix-cpu-timers: Get rid of 64bit divisions posix-cpu-timers: Consolidate timer expiry further posix-cpu-timers: Get rid of zero checks rlimit: Rewrite non-sensical RLIMIT_CPU comment posix-cpu-timers: Respect INFINITY for hard RTTIME limit posix-cpu-timers: Switch thread group sampling to array posix-cpu-timers: Restructure expiry array posix-cpu-timers: Remove cputime_expires ...
2019-08-23clocksource/drivers/hyperv: Enable TSC page clocksource on 32bitVitaly Kuznetsov1-3/+3
There is no particular reason to not enable TSC page clocksource on 32-bit. mul_u64_u64_shr() is available and despite the increased computational complexity (compared to 64bit) TSC page is still a huge win compared to MSR-based clocksource. In-kernel reads: MSR based clocksource: 3361 cycles TSC page clocksource: 49 cycles Reads from userspace (utilizing vDSO in case of TSC page): MSR based clocksource: 5664 cycles TSC page clocksource: 131 cycles Enabling TSC page on 32bits allows to get rid of CONFIG_HYPERV_TSCPAGE as it is now not any different from CONFIG_HYPERV_TIMER. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Link: https://lkml.kernel.org/r/20190822083630.17059-1-vkuznets@redhat.com
2019-07-31x86/vdso/32: Use 32bit syscall fallbackThomas Gleixner1-0/+36
The generic VDSO implementation uses the Y2038 safe clock_gettime64() and clock_getres_time64() syscalls as fallback for 32bit VDSO. This breaks seccomp setups because these syscalls might be not (yet) allowed. Implement the 32bit variants which use the legacy syscalls and select the variant in the core library. The 64bit time variants are not removed because they are required for the time64 based vdso accessors. Fixes: 7ac870747988 ("x86/vdso: Switch to generic vDSO implementation") Reported-by: Sean Christopherson <sean.j.christopherson@intel.com> Reported-by: Paul Bolle <pebolle@tiscali.nl> Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/20190728131648.879156507@linutronix.de
2019-07-03clocksource/drivers: Continue making Hyper-V clocksource ISA agnosticMichael Kelley1-1/+1
Continue consolidating Hyper-V clock and timer code into an ISA independent Hyper-V clocksource driver. Move the existing clocksource code under drivers/hv and arch/x86 to the new clocksource driver while separating out the ISA dependencies. Update Hyper-V initialization to call initialization and cleanup routines since the Hyper-V synthetic clock is not independently enumerated in ACPI. Update Hyper-V clocksource users in KVM and VDSO to get definitions from the new include file. No behavior is changed and no new functionality is added. Suggested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: "bp@alien8.de" <bp@alien8.de> Cc: "will.deacon@arm.com" <will.deacon@arm.com> Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com> Cc: "mark.rutland@arm.com" <mark.rutland@arm.com> Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org> Cc: "olaf@aepfle.de" <olaf@aepfle.de> Cc: "apw@canonical.com" <apw@canonical.com> Cc: "jasowang@redhat.com" <jasowang@redhat.com> Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com> Cc: Sunil Muthuswamy <sunilmut@microsoft.com> Cc: KY Srinivasan <kys@microsoft.com> Cc: "sashal@kernel.org" <sashal@kernel.org> Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com> Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org> Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org> Cc: "arnd@arndb.de" <arnd@arndb.de> Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk> Cc: "ralf@linux-mips.org" <ralf@linux-mips.org> Cc: "paul.burton@mips.com" <paul.burton@mips.com> Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org> Cc: "salyzyn@android.com" <salyzyn@android.com> Cc: "pcc@google.com" <pcc@google.com> Cc: "shuah@kernel.org" <shuah@kernel.org> Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com> Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk> Cc: "huw@codeweavers.com" <huw@codeweavers.com> Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au> Cc: "pbonzini@redhat.com" <pbonzini@redhat.com> Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com> Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org> Link: https://lkml.kernel.org/r/1561955054-1838-3-git-send-email-mikelley@microsoft.com
2019-06-26lib/vdso: Make delta calculation work correctlyThomas Gleixner1-0/+27
The x86 vdso implementation on which the generic vdso library is based on has subtle (unfortunately undocumented) twists: 1) The code assumes that the clocksource mask is U64_MAX which means that no bits are masked. Which is true for any valid x86 VDSO clocksource. Stupidly it still did the mask operation for no reason and at the wrong place right after reading the clocksource. 2) It contains a sanity check to catch the case where slightly unsynchronized TSC values can be observed which would cause the delta calculation to make a huge jump. It therefore checks whether the current TSC value is larger than the value on which the current conversion is based on. If it's not larger the base value is used to prevent time jumps. #1 Is not only stupid for the X86 case because it does the masking for no reason it is also completely wrong for clocksources with a smaller mask which can legitimately wrap around during a conversion period. The core timekeeping code does it correct by applying the mask after the delta calculation: (now - base) & mask #2 is equally broken for clocksources which have smaller masks and can wrap around during a conversion period because there the now > base check is just wrong and causes stale time stamps and time going backwards issues. Unbreak it by: 1) Removing the mask operation from the clocksource read which makes the fallback detection work for all clocksources 2) Replacing the conditional delta calculation with a overrideable inline function. #2 could reuse clocksource_delta() from the timekeeping code but that results in a significant performance hit for the x86 VSDO. The timekeeping core code must have the non optimized version as it has to operate correctly with clocksources which have smaller masks as well to handle the case where TSC is discarded as timekeeper clocksource and replaced by HPET or pmtimer. For the VDSO there is no replacement clocksource. If TSC is unusable the syscall is enforced which does the right thing. To accommodate to the needs of various architectures provide an override-able inline function which defaults to the regular delta calculation with masking: (now - base) & mask Override it for x86 with the non-masking and checking version. This unbreaks the ARM64 syscall fallback operation, allows to use clocksources with arbitrary width and preserves the performance optimization for x86. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: linux-arch@vger.kernel.org Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: catalin.marinas@arm.com Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux@armlinux.org.uk Cc: Ralf Baechle <ralf@linux-mips.org> Cc: paul.burton@mips.com Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: salyzyn@android.com Cc: pcc@google.com Cc: shuah@kernel.org Cc: 0x7f454c46@gmail.com Cc: linux@rasmusvillemoes.dk Cc: huw@codeweavers.com Cc: sthotton@marvell.com Cc: andre.przywara@arm.com Cc: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906261159230.32342@nanos.tec.linutronix.de
2019-06-24x86/vdso: Give the [ph]vclock_page declarations real typesAndy Lutomirski1-12/+24
Clean up the vDSO code a bit by giving pvclock_page and hvclock_page their actual types instead of u8[PAGE_SIZE]. This shouldn't materially affect the generated code. Heavily based on a patch from Linus. [ tglx: Adapted to the unified VDSO code ] Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/6920c5188f8658001af1fc56fd35b815706d300c.1561241273.git.luto@kernel.org
2019-06-22x86/vdso: Add clock_getres() entry pointVincenzo Frascino1-0/+31
The generic vDSO library provides an implementation of clock_getres() that can be leveraged by each architecture. Add the clock_getres() VDSO entry point on x86. [ tglx: Massaged changelog and cleaned up the function signature formatting ] Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Huw Davies <huw@codeweavers.com> Cc: Shijith Thotton <sthotton@marvell.com> Cc: Andre Przywara <andre.przywara@arm.com> Link: https://lkml.kernel.org/r/20190621095252.32307-24-vincenzo.frascino@arm.com
2019-06-22x86/vdso: Switch to generic vDSO implementationVincenzo Frascino2-0/+235
The x86 vDSO library requires some adaptations to take advantage of the newly introduced generic vDSO library. Introduce the following changes: - Modification of vdso.c to be compliant with the common vdso datapage - Use of lib/vdso for gettimeofday [ tglx: Massaged changelog and cleaned up the function signature formatting ] Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Huw Davies <huw@codeweavers.com> Cc: Shijith Thotton <sthotton@marvell.com> Cc: Andre Przywara <andre.przywara@arm.com> Link: https://lkml.kernel.org/r/20190621095252.32307-23-vincenzo.frascino@arm.com