summaryrefslogtreecommitdiff
path: root/fs/btrfs/extent-tree.h
AgeCommit message (Collapse)AuthorFilesLines
2023-08-21btrfs: wait on uncached block groups on every allocation loopJosef Bacik1-9/+4
My initial fix for the generic/475 hangs was related to metadata, but our CI testing uncovered another case where we hang for similar reasons. We again have a task with a plug that is holding an outstanding request that is keeping the dm device from finishing it's suspend, and that task is stuck in the allocator. This time it is stuck trying to allocate data, but we do not have a block group that matches the size class. The larger loop in the allocator looks like this (simplified of course) find_free_extent for_each_block_group { ffe_ctl->cached == btrfs_block_group_cache_done(bg) if (!ffe_ctl->cached) ffe_ctl->have_caching_bg = true; do_allocation() btrfs_wait_block_group_cache_progress(); } if (loop == LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) go search again; In my earlier fix we were trying to allocate from the block group, but we weren't waiting for the progress because we were only waiting for the free space to be >= the amount of free space we wanted. My fix made it so we waited for forward progress to be made as well, so we would be sure to wait. This time however we did not have a block group that matched our size class, so what was happening was this find_free_extent for_each_block_group { ffe_ctl->cached == btrfs_block_group_cache_done(bg) if (!ffe_ctl->cached) ffe_ctl->have_caching_bg = true; if (size_class_doesn't_match()) goto loop; do_allocation() btrfs_wait_block_group_cache_progress(); loop: release_block_group(block_group); } if (loop == LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) go search again; The size_class_doesn't_match() part was true, so we'd just skip this block group and never wait for caching, and then because we found a caching block group we'd just go back and do the loop again. We never sleep and thus never flush the plug and we have the same deadlock. Fix the logic for waiting on the block group caching to instead do it unconditionally when we goto loop. This takes the logic out of the allocation step, so now the loop looks more like this find_free_extent for_each_block_group { ffe_ctl->cached == btrfs_block_group_cache_done(bg) if (!ffe_ctl->cached) ffe_ctl->have_caching_bg = true; if (size_class_doesn't_match()) goto loop; do_allocation() btrfs_wait_block_group_cache_progress(); loop: if (loop > LOOP_CACHING_NOWAIT && !ffe_ctl->retry_uncached && !ffe_ctl->cached) { ffe_ctl->retry_uncached = true; btrfs_wait_block_group_cache_progress(); } release_block_group(block_group); } if (loop == LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) go search again; This simplifies the logic a lot, and makes sure that if we're hitting uncached block groups we're always waiting on them at some point. I ran this through 100 iterations of generic/475, as this particular case was harder to hit than the previous one. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-21btrfs: move btrfs_free_excluded_extents() into block-group.cFilipe Manana1-1/+0
The function btrfs_free_excluded_extents() is only used by block-group.c, so move it into block-group.c and make it static. Also removed unnecessary variables that are used only once. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-21btrfs: open code trivial btrfs_add_excluded_extent()Filipe Manana1-2/+0
The code for btrfs_add_excluded_extent() is trivial, it's just a set_extent_bit() call. However it's defined in extent-tree.c but it is only used (twice) in block-group.c. So open code it in block-group.c, reducing the need to export a trivial function. Also since the only caller btrfs_add_excluded_extent() is prepared to deal with errors, stop ignoring errors from the set_extent_bit() call. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: remove level argument from btrfs_set_block_flagsJosef Bacik1-1/+1
We just pass in btrfs_header_level(eb) for the level, and we're passing in the eb already, so simply get the level from the eb inside of btrfs_set_block_flags. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: introduce size class to block group allocatorBoris Burkov1-0/+3
The aim of this patch is to reduce the fragmentation of block groups under certain unhappy workloads. It is particularly effective when the size of extents correlates with their lifetime, which is something we have observed causing fragmentation in the fleet at Meta. This patch categorizes extents into size classes: - x < 128KiB: "small" - 128KiB < x < 8MiB: "medium" - x > 8MiB: "large" and as much as possible reduces allocations of extents into block groups that don't match the size class. This takes advantage of any (possible) correlation between size and lifetime and also leaves behind predictable re-usable gaps when extents are freed; small writes don't gum up bigger holes. Size classes are implemented in the following way: - Mark each new block group with a size class of the first allocation that goes into it. - Add two new passes to ffe: "unset size class" and "wrong size class". First, try only matching block groups, then try unset ones, then allow allocation of new ones, and finally allow mismatched block groups. - Filtering is done just by skipping inappropriate ones, there is no special size class indexing. Other solutions I considered were: - A best fit allocator with an rb-tree. This worked well, as small writes didn't leak big holes from large freed extents, but led to regressions in ffe and write performance due to lock contention on the rb-tree with every allocation possibly updating it in parallel. Perhaps something clever could be done to do the updates in the background while being "right enough". - A fixed size "working set". This prevents freeing an extent drastically changing where writes currently land, and seems like a good option too. Doesn't take advantage of size in any way. - The same size class idea, but implemented with xarray marks. This turned out to be slower than looping the linked list and skipping wrong block groups, and is also less flexible since we must have only 3 size classes (max #marks). With the current approach we can have as many as we like. Performance testing was done via: https://github.com/josefbacik/fsperf Of particular relevance are the new fragmentation specific tests. A brief summary of the testing results: - Neutral results on existing tests. There are some minor regressions and improvements here and there, but nothing that truly stands out as notable. - Improvement on new tests where size class and extent lifetime are correlated. Fragmentation in these cases is completely eliminated and write performance is generally a little better. There is also significant improvement where extent sizes are just a bit larger than the size class boundaries. - Regression on one new tests: where the allocations are sized intentionally a hair under the borders of the size classes. Results are neutral on the test that intentionally attacks this new scheme by mixing extent size and lifetime. The full dump of the performance results can be found here: https://bur.io/fsperf/size-class-2022-11-15.txt (there are ANSI escape codes, so best to curl and view in terminal) Here is a snippet from the full results for a new test which mixes buffered writes appending to a long lived set of files and large short lived fallocates: bufferedappendvsfallocate results metric baseline current stdev diff ====================================================================================== avg_commit_ms 31.13 29.20 2.67 -6.22% bg_count 14 15.60 0 11.43% commits 11.10 12.20 0.32 9.91% elapsed 27.30 26.40 2.98 -3.30% end_state_mount_ns 11122551.90 10635118.90 851143.04 -4.38% end_state_umount_ns 1.36e+09 1.35e+09 12248056.65 -1.07% find_free_extent_calls 116244.30 114354.30 964.56 -1.63% find_free_extent_ns_max 599507.20 1047168.20 103337.08 74.67% find_free_extent_ns_mean 3607.19 3672.11 101.20 1.80% find_free_extent_ns_min 500 512 6.67 2.40% find_free_extent_ns_p50 2848 2876 37.65 0.98% find_free_extent_ns_p95 4916 5000 75.45 1.71% find_free_extent_ns_p99 20734.49 20920.48 1670.93 0.90% frag_pct_max 61.67 0 8.05 -100.00% frag_pct_mean 43.59 0 6.10 -100.00% frag_pct_min 25.91 0 16.60 -100.00% frag_pct_p50 42.53 0 7.25 -100.00% frag_pct_p95 61.67 0 8.05 -100.00% frag_pct_p99 61.67 0 8.05 -100.00% fragmented_bg_count 6.10 0 1.45 -100.00% max_commit_ms 49.80 46 5.37 -7.63% sys_cpu 2.59 2.62 0.29 1.39% write_bw_bytes 1.62e+08 1.68e+08 17975843.50 3.23% write_clat_ns_mean 57426.39 54475.95 2292.72 -5.14% write_clat_ns_p50 46950.40 42905.60 2101.35 -8.62% write_clat_ns_p99 148070.40 143769.60 2115.17 -2.90% write_io_kbytes 4194304 4194304 0 0.00% write_iops 2476.15 2556.10 274.29 3.23% write_lat_ns_max 2101667.60 2251129.50 370556.59 7.11% write_lat_ns_mean 59374.91 55682.00 2523.09 -6.22% write_lat_ns_min 17353.10 16250 1646.08 -6.36% There are some mixed improvements/regressions in most metrics along with an elimination of fragmentation in this workload. On the balance, the drastic 1->0 improvement in the happy cases seems worth the mix of regressions and improvements we do observe. Some considerations for future work: - Experimenting with more size classes - More hinting/search ordering work to approximate a best-fit allocator Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: add more find_free_extent tracepointsBoris Burkov1-0/+3
find_free_extent is a complicated function. It consists (at least) of: - a hint that jumps into the middle of a for loop macro - a middle loop trying every raid level - an outer loop ascending through ffe loop levels - complicated logic for skipping some of those ffe loop levels - multiple underlying in-bg allocators (zoned, cluster, no cluster) Which is all to say that more tracing is helpful for debugging its behavior. Add two new tracepoints: at the entrance to the block_groups loop (hit for every raid level and every ffe_ctl loop) and at the point we seriously consider a block_group for allocation. This way we can see the whole path through the algorithm, including hints, multiple loops, etc. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-02-13btrfs: pass find_free_extent_ctl to allocator tracepointsBoris Burkov1-0/+75
The allocator tracepoints currently have a pile of values from ffe_ctl. In modifying the allocator and adding more tracepoints, I found myself adding to the already long argument list of the tracepoints. It makes it a lot simpler to just send in the ffe_ctl itself. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move the snapshot drop related prototypes to extent-tree.hJosef Bacik1-0/+6
These belong in extent-tree.h, they were missed because they were not grouped with the other extent-tree.c prototypes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move extent-tree helpers into their own header fileJosef Bacik1-0/+72
Move all the extent tree related prototypes to extent-tree.h out of ctree.h, and then go include it everywhere needed so everything compiles. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07btrfs: better packing of btrfs_delayed_extent_opDavid Sterba1-0/+0
btrfs_delayed_extent_op can be packed in a better way, it's 40 bytes now and has 8 unused bytes. Reducing the level type to u8 makes it possible to squeeze it to the padding byte after key. The bitfields were switched to bool as there's space to store the full byte without increasing the whole structure, besides that the generated assembly is smaller. struct btrfs_delayed_extent_op { struct btrfs_disk_key key; /* 0 17 */ u8 level; /* 17 1 */ bool update_key; /* 18 1 */ bool update_flags; /* 19 1 */ bool is_data; /* 20 1 */ /* XXX 3 bytes hole, try to pack */ u64 flags_to_set; /* 24 8 */ /* size: 32, cachelines: 1, members: 6 */ /* sum members: 29, holes: 1, sum holes: 3 */ /* last cacheline: 32 bytes */ }; The final size is 32 bytes which gives +26 object per slab page. text data bss dec hex filename 938811 43670 23144 1005625 f5839 fs/btrfs/btrfs.ko.before 938747 43670 23144 1005561 f57f9 fs/btrfs/btrfs.ko.after Signed-off-by: David Sterba <dsterba@suse.com>
2015-06-10btrfs: qgroup: Add new qgroup calculation functionQu Wenruo1-0/+0
btrfs_qgroup_account_extents(). The new btrfs_qgroup_account_extents() function should be called in btrfs_commit_transaction() and it will update all the qgroup according to delayed_ref_root->dirty_extent_root. The new function can handle both normal operation during commit_transaction() or in rescan in a unified method with clearer logic. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>