summaryrefslogtreecommitdiff
path: root/include/linux/bpf_verifier.h
AgeCommit message (Collapse)AuthorFilesLines
2022-12-11bpf: states_equal() must build idmap for all function framesEduard Zingerman1-2/+2
verifier.c:states_equal() must maintain register ID mapping across all function frames. Otherwise the following example might be erroneously marked as safe: main: fp[-24] = map_lookup_elem(...) ; frame[0].fp[-24].id == 1 fp[-32] = map_lookup_elem(...) ; frame[0].fp[-32].id == 2 r1 = &fp[-24] r2 = &fp[-32] call foo() r0 = 0 exit foo: 0: r9 = r1 1: r8 = r2 2: r7 = ktime_get_ns() 3: r6 = ktime_get_ns() 4: if (r6 > r7) goto skip_assign 5: r9 = r8 skip_assign: ; <--- checkpoint 6: r9 = *r9 ; (a) frame[1].r9.id == 2 ; (b) frame[1].r9.id == 1 7: if r9 == 0 goto exit: ; mark_ptr_or_null_regs() transfers != 0 info ; for all regs sharing ID: ; (a) r9 != 0 => &frame[0].fp[-32] != 0 ; (b) r9 != 0 => &frame[0].fp[-24] != 0 8: r8 = *r8 ; (a) r8 == &frame[0].fp[-32] ; (b) r8 == &frame[0].fp[-32] 9: r0 = *r8 ; (a) safe ; (b) unsafe exit: 10: exit While processing call to foo() verifier considers the following execution paths: (a) 0-10 (b) 0-4,6-10 (There is also path 0-7,10 but it is not interesting for the issue at hand. (a) is verified first.) Suppose that checkpoint is created at (6) when path (a) is verified, next path (b) is verified and (6) is reached. If states_equal() maintains separate 'idmap' for each frame the mapping at (6) for frame[1] would be empty and regsafe(r9)::check_ids() would add a pair 2->1 and return true, which is an error. If states_equal() maintains single 'idmap' for all frames the mapping at (6) would be { 1->1, 2->2 } and regsafe(r9)::check_ids() would return false when trying to add a pair 2->1. This issue was suggested in the following discussion: https://lore.kernel.org/bpf/CAEf4BzbFB5g4oUfyxk9rHy-PJSLQ3h8q9mV=rVoXfr_JVm8+1Q@mail.gmail.com/ Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com> Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20221209135733.28851-4-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-09bpf: Refactor ARG_PTR_TO_DYNPTR checks into process_dynptr_funcKumar Kartikeya Dwivedi1-5/+3
ARG_PTR_TO_DYNPTR is akin to ARG_PTR_TO_TIMER, ARG_PTR_TO_KPTR, where the underlying register type is subjected to more special checks to determine the type of object represented by the pointer and its state consistency. Move dynptr checks to their own 'process_dynptr_func' function so that is consistent and in-line with existing code. This also makes it easier to reuse this code for kfunc handling. Then, reuse this consolidated function in kfunc dynptr handling too. Note that for kfuncs, the arg_type constraint of DYNPTR_TYPE_LOCAL has been lifted. Acked-by: David Vernet <void@manifault.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221207204141.308952-2-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07bpf: decouple prune and jump pointsAndrii Nakryiko1-0/+1
BPF verifier marks some instructions as prune points. Currently these prune points serve two purposes. It's a point where verifier tries to find previously verified state and check current state's equivalence to short circuit verification for current code path. But also currently it's a point where jump history, used for precision backtracking, is updated. This is done so that non-linear flow of execution could be properly backtracked. Such coupling is coincidental and unnecessary. Some prune points are not part of some non-linear jump path, so don't need update of jump history. On the other hand, not all instructions which have to be recorded in jump history necessarily are good prune points. This patch splits prune and jump points into independent flags. Currently all prune points are marked as jump points to minimize amount of changes in this patch, but next patch will perform some optimization of prune vs jmp point placement. No functional changes are intended. Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20221206233345.438540-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-04bpf: Handle MEM_RCU type properlyYonghong Song1-1/+1
Commit 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()") introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED so that it can be passed into kfuncs or helpers as an argument. Martin raised a good question in [1] such that the rcu pointer, although being able to accessing the object, might have reference count of 0. This might cause a problem if the rcu pointer is passed to a kfunc which expects trusted arguments where ref count should be greater than 0. This patch makes the following changes related to MEM_RCU pointer: - MEM_RCU pointer might be NULL (PTR_MAYBE_NULL). - Introduce KF_RCU so MEM_RCU ptr can be acquired with a KF_RCU tagged kfunc which assumes ref count of rcu ptr could be zero. - For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and 'a' is tagged with __rcu as well. Let us mark 'b' as MEM_RCU | PTR_MAYBE_NULL. [1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/ Fixes: 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()") Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-01bpf: Tighten ptr_to_btf_id checks.Alexei Starovoitov1-1/+0
The networking programs typically don't require CAP_PERFMON, but through kfuncs like bpf_cast_to_kern_ctx() they can access memory through PTR_TO_BTF_ID. In such case enforce CAP_PERFMON. Also make sure that only GPL programs can access kernel data structures. All kfuncs require GPL already. Also remove allow_ptr_to_map_access. It's the same as allow_ptr_leaks and different name for the same check only causes confusion. Fixes: fd264ca02094 ("bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx") Fixes: 50c6b8a9aea2 ("selftests/bpf: Add a test for btf_type_tag "percpu"") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20221125220617.26846-1-alexei.starovoitov@gmail.com
2022-11-24bpf: Add kfunc bpf_rcu_read_lock/unlock()Yonghong Song1-1/+4
Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's can be used for all program types. The following is an example about how rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock(). struct task_struct { ... struct task_struct *last_wakee; struct task_struct __rcu *real_parent; ... }; Let us say prog does 'task = bpf_get_current_task_btf()' to get a 'task' pointer. The basic rules are: - 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock region. This is to simulate rcu_dereference() operation. The 'real_parent' is marked as MEM_RCU only if (1). task->real_parent is inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region. - 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock region since it tries to access rcu protected memory. - the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general it is not clear whether the object pointed by 'last_wakee' is valid or not even inside bpf_rcu_read_lock region. The verifier will reset all rcu pointer register states to untrusted at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer won't be trusted any more outside the bpf_rcu_read_lock() region. The current implementation does not support nested rcu read lock region in the prog. Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncsDavid Vernet1-0/+7
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal to the verifier that it should enforce that a BPF program passes it a "safe", trusted pointer. Currently, "safe" means that the pointer is either PTR_TO_CTX, or is refcounted. There may be cases, however, where the kernel passes a BPF program a safe / trusted pointer to an object that the BPF program wishes to use as a kptr, but because the object does not yet have a ref_obj_id from the perspective of the verifier, the program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS kfunc. The solution is to expand the set of pointers that are considered trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs with these pointers without getting rejected by the verifier. There is already a PTR_UNTRUSTED flag that is set in some scenarios, such as when a BPF program reads a kptr directly from a map without performing a bpf_kptr_xchg() call. These pointers of course can and should be rejected by the verifier. Unfortunately, however, PTR_UNTRUSTED does not cover all the cases for safety that need to be addressed to adequately protect kfuncs. Specifically, pointers obtained by a BPF program "walking" a struct are _not_ considered PTR_UNTRUSTED according to BPF. For example, say that we were to add a kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal that a task was unsafe to pass to a kfunc, the verifier would mistakenly allow the following unsafe BPF program to be loaded: SEC("tp_btf/task_newtask") int BPF_PROG(unsafe_acquire_task, struct task_struct *task, u64 clone_flags) { struct task_struct *acquired, *nested; nested = task->last_wakee; /* Would not be rejected by the verifier. */ acquired = bpf_task_acquire(nested); if (!acquired) return 0; bpf_task_release(acquired); return 0; } To address this, this patch defines a new type flag called PTR_TRUSTED which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are passed directly from the kernel as a tracepoint or struct_ops callback argument. Any nested pointer that is obtained from walking a PTR_TRUSTED pointer is no longer PTR_TRUSTED. From the example above, the struct task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer obtained from 'task->last_wakee' is not PTR_TRUSTED. A subsequent patch will add kfuncs for storing a task kfunc as a kptr, and then another patch will add selftests to validate. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20bpf: Allow multiple modifiers in reg_type_str() prefixDavid Vernet1-1/+1
reg_type_str() in the verifier currently only allows a single register type modifier to be present in the 'prefix' string which is eventually stored in the env type_str_buf. This currently works fine because there are no overlapping type modifiers, but once PTR_TRUSTED is added, that will no longer be the case. This patch updates reg_type_str() to support having multiple modifiers in the prefix string, and updates the size of type_str_buf to be 128 bytes. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221120051004.3605026-2-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Add 'release on unlock' logic for bpf_list_push_{front,back}Kumar Kartikeya Dwivedi1-0/+5
This commit implements the delayed release logic for bpf_list_push_front and bpf_list_push_back. Once a node has been added to the list, it's pointer changes to PTR_UNTRUSTED. However, it is only released once the lock protecting the list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED set but an active ref_obj_id, it is still permitted to read them as long as the lock is held. Writing to them is not allowed. This allows having read access to push items we no longer own until we release the lock guarding the list, allowing a little more flexibility when working with these APIs. Note that enabling write support has fairly tricky interactions with what happens inside the critical section. Just as an example, currently, bpf_obj_drop is not permitted, but if it were, being able to write to the PTR_UNTRUSTED pointer while the object gets released back to the memory allocator would violate safety properties we wish to guarantee (i.e. not crashing the kernel). The memory could be reused for a different type in the BPF program or even in the kernel as it gets eventually kfree'd. Not enabling bpf_obj_drop inside the critical section would appear to prevent all of the above, but that is more of an artifical limitation right now. Since the write support is tangled with how we handle potential aliasing of nodes inside the critical section that may or may not be part of the list anymore, it has been deferred to a future patch. Acked-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Introduce bpf_obj_newKumar Kartikeya Dwivedi1-0/+2
Introduce type safe memory allocator bpf_obj_new for BPF programs. The kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments to kfuncs still requires having them in prototype, unlike BPF helpers which always take 5 arguments and have them checked using bpf_func_proto in verifier, ignoring unset argument types. Introduce __ign suffix to ignore a specific kfunc argument during type checks, then use this to introduce support for passing type metadata to the bpf_obj_new_impl kfunc. The user passes BTF ID of the type it wants to allocates in program BTF, the verifier then rewrites the first argument as the size of this type, after performing some sanity checks (to ensure it exists and it is a struct type). The second argument is also fixed up and passed by the verifier. This is the btf_struct_meta for the type being allocated. It would be needed mostly for the offset array which is required for zero initializing special fields while leaving the rest of storage in unitialized state. It would also be needed in the next patch to perform proper destruction of the object's special fields. Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free, using the any context BPF memory allocator introduced recently. To this end, a global instance of the BPF memory allocator is initialized on boot to be used for this purpose. This 'bpf_global_ma' serves all allocations for bpf_obj_new. In the future, bpf_obj_new variants will allow specifying a custom allocator. Note that now that bpf_obj_new can be used to allocate objects that can be linked to BPF linked list (when future linked list helpers are available), we need to also free the elements using bpf_mem_free. However, since the draining of elements is done outside the bpf_spin_lock, we need to do migrate_disable around the call since bpf_list_head_free can be called from map free path where migration is enabled. Otherwise, when called from BPF programs migration is already disabled. A convenience macro is included in the bpf_experimental.h header to hide over the ugly details of the implementation, leading to user code looking similar to a language level extension which allocates and constructs fields of a user type. struct bar { struct bpf_list_node node; }; struct foo { struct bpf_spin_lock lock; struct bpf_list_head head __contains(bar, node); }; void prog(void) { struct foo *f; f = bpf_obj_new(typeof(*f)); if (!f) return; ... } A key piece of this story is still missing, i.e. the free function, which will come in the next patch. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Rewrite kfunc argument handlingKumar Kartikeya Dwivedi1-2/+0
As we continue to add more features, argument types, kfunc flags, and different extensions to kfuncs, the code to verify the correctness of the kfunc prototype wrt the passed in registers has become ad-hoc and ugly to read. To make life easier, and make a very clear split between different stages of argument processing, move all the code into verifier.c and refactor into easier to read helpers and functions. This also makes sharing code within the verifier easier with kfunc argument processing. This will be more and more useful in later patches as we are now moving to implement very core BPF helpers as kfuncs, to keep them experimental before baking into UAPI. Remove all kfunc related bits now from btf_check_func_arg_match, as users have been converted away to refactored kfunc argument handling. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Allow locking bpf_spin_lock global variablesKumar Kartikeya Dwivedi1-1/+15
Global variables reside in maps accessible using direct_value_addr callbacks, so giving each load instruction's rewrite a unique reg->id disallows us from holding locks which are global. The reason for preserving reg->id as a unique value for registers that may point to spin lock is that two separate lookups are treated as two separate memory regions, and any possible aliasing is ignored for the purposes of spin lock correctness. This is not great especially for the global variable case, which are served from maps that have max_entries == 1, i.e. they always lead to map values pointing into the same map value. So refactor the active_spin_lock into a 'active_lock' structure which represents the lock identity, and instead of the reg->id, remember two fields, a pointer and the reg->id. The pointer will store reg->map_ptr or reg->btf. It's only necessary to distinguish for the id == 0 case of global variables, but always setting the pointer to a non-NULL value and using the pointer to check whether the lock is held simplifies code in the verifier. This is generic enough to allow it for global variables, map lookups, and allocated objects at the same time. Note that while whether a lock is held can be answered by just comparing active_lock.ptr to NULL, to determine whether the register is pointing to the same held lock requires comparing _both_ ptr and id. Finally, as a result of this refactoring, pseudo load instructions are not given a unique reg->id, as they are doing lookup for the same map value (max_entries is never greater than 1). Essentially, we consider that the tuple of (ptr, id) will always be unique for any kind of argument to bpf_spin_{lock,unlock}. Note that this can be extended in the future to also remember offset used for locking, so that we can introduce multiple bpf_spin_lock fields in the same allocation. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-10-26bpf: Remove prog->active check for bpf_lsm and bpf_iterMartin KaFai Lau1-1/+14
The commit 64696c40d03c ("bpf: Add __bpf_prog_{enter,exit}_struct_ops for struct_ops trampoline") removed prog->active check for struct_ops prog. The bpf_lsm and bpf_iter is also using trampoline. Like struct_ops, the bpf_lsm and bpf_iter have fixed hooks for the prog to attach. The kernel does not call the same hook in a recursive way. This patch also removes the prog->active check for bpf_lsm and bpf_iter. A later patch has a test to reproduce the recursion issue for a sleepable bpf_lsm program. This patch appends the '_recur' naming to the existing enter and exit functions that track the prog->active counter. New __bpf_prog_{enter,exit}[_sleepable] function are added to skip the prog->active tracking. The '_struct_ops' version is also removed. It also moves the decision on picking the enter and exit function to the new bpf_trampoline_{enter,exit}(). It returns the '_recur' ones for all tracing progs to use. For bpf_lsm, bpf_iter, struct_ops (no prog->active tracking after 64696c40d03c), and bpf_lsm_cgroup (no prog->active tracking after 69fd337a975c7), it will return the functions that don't track the prog->active. Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20221025184524.3526117-2-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-22btf: Allow dynamic pointer parameters in kfuncsRoberto Sassu1-0/+5
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as parameters in kfuncs. Also, ensure that dynamic pointers passed as argument are valid and initialized, are a pointer to the stack, and of the type local. More dynamic pointer types can be supported in the future. To properly detect whether a parameter is of the desired type, introduce the stringify_struct() macro to compare the returned structure name with the desired name. In addition, protect against structure renames, by halting the build with BUILD_BUG_ON(), so that developers have to revisit the code. To check if a dynamic pointer passed to the kfunc is valid and initialized, and if its type is local, export the existing functions is_dynptr_reg_valid_init() and is_dynptr_type_expected(). Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-11bpf: Add verifier support for custom callback return rangeDave Marchevsky1-0/+1
Verifier logic to confirm that a callback function returns 0 or 1 was added in commit 69c087ba6225b ("bpf: Add bpf_for_each_map_elem() helper"). At the time, callback return value was only used to continue or stop iteration. In order to support callbacks with a broader return value range, such as those added in rbtree series[0] and others, add a callback_ret_range to bpf_func_state. Verifier's helpers which set in_callback_fn will also set the new field, which the verifier will later use to check return value bounds. Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel value as the latter would prevent the valid range (0, U64_MAX) being used. Previous global default tnum_range(0, 1) is explicitly set for extant callback helpers. The change to global default was made after discussion around this patch in rbtree series [1], goal here is to make it more obvious that callback_ret_range should be explicitly set. [0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/ [1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Reviewed-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-08bpf: Add helper macro bpf_for_each_reg_in_vstateKumar Kartikeya Dwivedi1-0/+21
For a lot of use cases in future patches, we will want to modify the state of registers part of some same 'group' (e.g. same ref_obj_id). It won't just be limited to releasing reference state, but setting a type flag dynamically based on certain actions, etc. Hence, we need a way to easily pass a callback to the function that iterates over all registers in current bpf_verifier_state in all frames upto (and including) the curframe. While in C++ we would be able to easily use a lambda to pass state and the callback together, sadly we aren't using C++ in the kernel. The next best thing to avoid defining a function for each case seems like statement expressions in GNU C. The kernel already uses them heavily, hence they can passed to the macro in the style of a lambda. The statement expression will then be substituted in the for loop bodies. Variables __state and __reg are set to current bpf_func_state and reg for each invocation of the expression inside the passed in verifier state. Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers, release_reference, find_good_pkt_pointers, find_equal_scalars to use bpf_for_each_reg_in_vstate. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07bpf/verifier: allow kfunc to return an allocated memBenjamin Tissoires1-0/+2
For drivers (outside of network), the incoming data is not statically defined in a struct. Most of the time the data buffer is kzalloc-ed and thus we can not rely on eBPF and BTF to explore the data. This commit allows to return an arbitrary memory, previously allocated by the driver. An interesting extra point is that the kfunc can mark the exported memory region as read only or read/write. So, when a kfunc is not returning a pointer to a struct but to a plain type, we can consider it is a valid allocated memory assuming that: - one of the arguments is either called rdonly_buf_size or rdwr_buf_size - and this argument is a const from the caller point of view We can then use this parameter as the size of the allocated memory. The memory is either read-only or read-write based on the name of the size parameter. Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-25bpf: Fix reference state management for synchronous callbacksKumar Kartikeya Dwivedi1-0/+11
Currently, verifier verifies callback functions (sync and async) as if they will be executed once, (i.e. it explores execution state as if the function was being called once). The next insn to explore is set to start of subprog and the exit from nested frame is handled using curframe > 0 and prepare_func_exit. In case of async callback it uses a customized variant of push_stack simulating a kind of branch to set up custom state and execution context for the async callback. While this approach is simple and works when callback really will be executed only once, it is unsafe for all of our current helpers which are for_each style, i.e. they execute the callback multiple times. A callback releasing acquired references of the caller may do so multiple times, but currently verifier sees it as one call inside the frame, which then returns to caller. Hence, it thinks it released some reference that the cb e.g. got access through callback_ctx (register filled inside cb from spilled typed register on stack). Similarly, it may see that an acquire call is unpaired inside the callback, so the caller will copy the reference state of callback and then will have to release the register with new ref_obj_ids. But again, the callback may execute multiple times, but the verifier will only account for acquired references for a single symbolic execution of the callback, which will cause leaks. Note that for async callback case, things are different. While currently we have bpf_timer_set_callback which only executes it once, even for multiple executions it would be safe, as reference state is NULL and check_reference_leak would force program to release state before BPF_EXIT. The state is also unaffected by analysis for the caller frame. Hence async callback is safe. Since we want the reference state to be accessible, e.g. for pointers loaded from stack through callback_ctx's PTR_TO_STACK, we still have to copy caller's reference_state to callback's bpf_func_state, but we enforce that whatever references it adds to that reference_state has been released before it hits BPF_EXIT. This requires introducing a new callback_ref member in the reference state to distinguish between caller vs callee references. Hence, check_reference_leak now errors out if it sees we are in callback_fn and we have not released callback_ref refs. Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2 etc. we need to also distinguish between whether this particular ref belongs to this callback frame or parent, and only error for our own, so we store state->frameno (which is always non-zero for callbacks). In short, callbacks can read parent reference_state, but cannot mutate it, to be able to use pointers acquired by the caller. They must only undo their changes (by releasing their own acquired_refs before BPF_EXIT) on top of caller reference_state before returning (at which point the caller and callback state will match anyway, so no need to copy it back to caller). Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper") Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-12bpf: Fix 'dubious one-bit signed bitfield' warningsMatthieu Baerts1-4/+4
Our CI[1] reported these warnings when using Sparse: $ touch net/mptcp/bpf.c $ make C=1 net/mptcp/bpf.o net/mptcp/bpf.c: note: in included file: include/linux/bpf_verifier.h:348:26: error: dubious one-bit signed bitfield include/linux/bpf_verifier.h:349:29: error: dubious one-bit signed bitfield Set them as 'unsigned' to avoid warnings. [1] https://github.com/multipath-tcp/mptcp_net-next/actions/runs/2643588487 Fixes: 1ade23711971 ("bpf: Inline calls to bpf_loop when callback is known") Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20220711081200.2081262-1-matthieu.baerts@tessares.net
2022-06-21bpf: Inline calls to bpf_loop when callback is knownEduard Zingerman1-0/+12
Calls to `bpf_loop` are replaced with direct loops to avoid indirection. E.g. the following: bpf_loop(10, foo, NULL, 0); Is replaced by equivalent of the following: for (int i = 0; i < 10; ++i) foo(i, NULL); This transformation could be applied when: - callback is known and does not change during program execution; - flags passed to `bpf_loop` are always zero. Inlining logic works as follows: - During execution simulation function `update_loop_inline_state` tracks the following information for each `bpf_loop` call instruction: - is callback known and constant? - are flags constant and zero? - Function `optimize_bpf_loop` increases stack depth for functions where `bpf_loop` calls can be inlined and invokes `inline_bpf_loop` to apply the inlining. The additional stack space is used to spill registers R6, R7 and R8. These registers are used as loop counter, loop maximal bound and callback context parameter; Measurements using `benchs/run_bench_bpf_loop.sh` inside QEMU / KVM on i7-4710HQ CPU show a drop in latency from 14 ns/op to 2 ns/op. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/r/20220620235344.569325-4-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-14bpf: Fix spelling in bpf_verifier.hHongyi Lu1-1/+1
Minor spelling fix spotted in bpf_verifier.h. Spelling is no big deal, but it is still an improvement when reading through the code. Signed-off-by: Hongyi Lu <jwnhy0@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20220613211633.58647-1-jwnhy0@gmail.com
2022-05-24bpf: Dynptr support for ring buffersJoanne Koong1-0/+2
Currently, our only way of writing dynamically-sized data into a ring buffer is through bpf_ringbuf_output but this incurs an extra memcpy cost. bpf_ringbuf_reserve + bpf_ringbuf_commit avoids this extra memcpy, but it can only safely support reservation sizes that are statically known since the verifier cannot guarantee that the bpf program won’t access memory outside the reserved space. The bpf_dynptr abstraction allows for dynamically-sized ring buffer reservations without the extra memcpy. There are 3 new APIs: long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr); void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags); void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags); These closely follow the functionalities of the original ringbuf APIs. For example, all ringbuffer dynptrs that have been reserved must be either submitted or discarded before the program exits. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20220523210712.3641569-4-joannelkoong@gmail.com
2022-05-24bpf: Add verifier support for dynptrsJoanne Koong1-0/+18
This patch adds the bulk of the verifier work for supporting dynamic pointers (dynptrs) in bpf. A bpf_dynptr is opaque to the bpf program. It is a 16-byte structure defined internally as: struct bpf_dynptr_kern { void *data; u32 size; u32 offset; } __aligned(8); The upper 8 bits of *size* is reserved (it contains extra metadata about read-only status and dynptr type). Consequently, a dynptr only supports memory less than 16 MB. There are different types of dynptrs (eg malloc, ringbuf, ...). In this patchset, the most basic one, dynptrs to a bpf program's local memory, is added. For now only local memory that is of reg type PTR_TO_MAP_VALUE is supported. In the verifier, dynptr state information will be tracked in stack slots. When the program passes in an uninitialized dynptr (ARG_PTR_TO_DYNPTR | MEM_UNINIT), the stack slots corresponding to the frame pointer where the dynptr resides at are marked STACK_DYNPTR. For helper functions that take in initialized dynptrs (eg bpf_dynptr_read + bpf_dynptr_write which are added later in this patchset), the verifier enforces that the dynptr has been initialized properly by checking that their corresponding stack slots have been marked as STACK_DYNPTR. The 6th patch in this patchset adds test cases that the verifier should successfully reject, such as for example attempting to use a dynptr after doing a direct write into it inside the bpf program. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20220523210712.3641569-2-joannelkoong@gmail.com
2022-04-26bpf: Tag argument to be released in bpf_func_protoKumar Kartikeya Dwivedi1-2/+1
Add a new type flag for bpf_arg_type that when set tells verifier that for a release function, that argument's register will be the one for which meta.ref_obj_id will be set, and which will then be released using release_reference. To capture the regno, introduce a new field release_regno in bpf_call_arg_meta. This would be required in the next patch, where we may either pass NULL or a refcounted pointer as an argument to the release function bpf_kptr_xchg. Just releasing only when meta.ref_obj_id is set is not enough, as there is a case where the type of argument needed matches, but the ref_obj_id is set to 0. Hence, we must enforce that whenever meta.ref_obj_id is zero, the register that is to be released can only be NULL for a release function. Since we now indicate whether an argument is to be released in bpf_func_proto itself, is_release_function helper has lost its utitlity, hence refactor code to work without it, and just rely on meta.release_regno to know when to release state for a ref_obj_id. Still, the restriction of one release argument and only one ref_obj_id passed to BPF helper or kfunc remains. This may be lifted in the future. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220424214901.2743946-3-memxor@gmail.com
2022-03-31bpf: Resolve to prog->aux->dst_prog->type only for BPF_PROG_TYPE_EXTMartin KaFai Lau1-1/+3
The commit 7e40781cc8b7 ("bpf: verifier: Use target program's type for access verifications") fixes the verifier checking for BPF_PROG_TYPE_EXT (extension) prog such that the verifier looks for things based on the target prog type that it is extending instead of the BPF_PROG_TYPE_EXT itself. The current resolve_prog_type() returns the target prog type. It checks for nullness on prog->aux->dst_prog. However, when loading a BPF_PROG_TYPE_TRACING prog and it is tracing another bpf prog instead of a kernel function, prog->aux->dst_prog is not NULL also. In this case, the verifier should still verify as the BPF_PROG_TYPE_TRACING type instead of the traced prog type in prog->aux->dst_prog->type. An oops has been reported when tracing a struct_ops prog. A NULL dereference happened in check_return_code() when accessing the prog->aux->attach_func_proto->type and prog->aux->attach_func_proto is NULL here because the traced struct_ops prog has the "unreliable" set. This patch is to change the resolve_prog_type() to only return the target prog type if the prog being verified is BPF_PROG_TYPE_EXT. Fixes: 7e40781cc8b7 ("bpf: verifier: Use target program's type for access verifications") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20220330011456.2984509-1-kafai@fb.com
2022-03-06bpf: Harden register offset checks for release helpers and kfuncsKumar Kartikeya Dwivedi1-1/+2
Let's ensure that the PTR_TO_BTF_ID reg being passed in to release BPF helpers and kfuncs always has its offset set to 0. While not a real problem now, there's a very real possibility this will become a problem when more and more kfuncs are exposed, and more BPF helpers are added which can release PTR_TO_BTF_ID. Previous commits already protected against non-zero var_off. One of the case we are concerned about now is when we have a type that can be returned by e.g. an acquire kfunc: struct foo { int a; int b; struct bar b; }; ... and struct bar is also a type that can be returned by another acquire kfunc. Then, doing the following sequence: struct foo *f = bpf_get_foo(); // acquire kfunc if (!f) return 0; bpf_put_bar(&f->b); // release kfunc ... would work with the current code, since the btf_struct_ids_match takes reg->off into account for matching pointer type with release kfunc argument type, but would obviously be incorrect, and most likely lead to a kernel crash. A test has been included later to prevent regressions in this area. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220304224645.3677453-5-memxor@gmail.com
2022-03-06bpf: Add check_func_arg_reg_off functionKumar Kartikeya Dwivedi1-0/+3
Lift the list of register types allowed for having fixed and variable offsets when passed as helper function arguments into a common helper, so that they can be reused for kfunc checks in later commits. Keeping a common helper aids maintainability and allows us to follow the same consistent rules across helpers and kfuncs. Also, convert check_func_arg to use this function. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220304224645.3677453-2-memxor@gmail.com
2022-01-25Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextJakub Kicinski1-0/+7
Daniel Borkmann says: ==================== pull-request: bpf-next 2022-01-24 We've added 80 non-merge commits during the last 14 day(s) which contain a total of 128 files changed, 4990 insertions(+), 895 deletions(-). The main changes are: 1) Add XDP multi-buffer support and implement it for the mvneta driver, from Lorenzo Bianconi, Eelco Chaudron and Toke Høiland-Jørgensen. 2) Add unstable conntrack lookup helpers for BPF by using the BPF kfunc infra, from Kumar Kartikeya Dwivedi. 3) Extend BPF cgroup programs to export custom ret value to userspace via two helpers bpf_get_retval() and bpf_set_retval(), from YiFei Zhu. 4) Add support for AF_UNIX iterator batching, from Kuniyuki Iwashima. 5) Complete missing UAPI BPF helper description and change bpf_doc.py script to enforce consistent & complete helper documentation, from Usama Arif. 6) Deprecate libbpf's legacy BPF map definitions and streamline XDP APIs to follow tc-based APIs, from Andrii Nakryiko. 7) Support BPF_PROG_QUERY for BPF programs attached to sockmap, from Di Zhu. 8) Deprecate libbpf's bpf_map__def() API and replace users with proper getters and setters, from Christy Lee. 9) Extend libbpf's btf__add_btf() with an additional hashmap for strings to reduce overhead, from Kui-Feng Lee. 10) Fix bpftool and libbpf error handling related to libbpf's hashmap__new() utility function, from Mauricio Vásquez. 11) Add support to BTF program names in bpftool's program dump, from Raman Shukhau. 12) Fix resolve_btfids build to pick up host flags, from Connor O'Brien. * https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (80 commits) selftests, bpf: Do not yet switch to new libbpf XDP APIs selftests, xsk: Fix rx_full stats test bpf: Fix flexible_array.cocci warnings xdp: disable XDP_REDIRECT for xdp frags bpf: selftests: add CPUMAP/DEVMAP selftests for xdp frags bpf: selftests: introduce bpf_xdp_{load,store}_bytes selftest net: xdp: introduce bpf_xdp_pointer utility routine bpf: generalise tail call map compatibility check libbpf: Add SEC name for xdp frags programs bpf: selftests: update xdp_adjust_tail selftest to include xdp frags bpf: test_run: add xdp_shared_info pointer in bpf_test_finish signature bpf: introduce frags support to bpf_prog_test_run_xdp() bpf: move user_size out of bpf_test_init bpf: add frags support to xdp copy helpers bpf: add frags support to the bpf_xdp_adjust_tail() API bpf: introduce bpf_xdp_get_buff_len helper net: mvneta: enable jumbo frames if the loaded XDP program support frags bpf: introduce BPF_F_XDP_HAS_FRAGS flag in prog_flags loading the ebpf program net: mvneta: add frags support to XDP_TX xdp: add frags support to xdp_return_{buff/frame} ... ==================== Link: https://lore.kernel.org/r/20220124221235.18993-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-01-19bpf: Generalize check_ctx_reg for reuse with other typesDaniel Borkmann1-2/+2
Generalize the check_ctx_reg() helper function into a more generic named one so that it can be reused for other register types as well to check whether their offset is non-zero. No functional change. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2022-01-19bpf: Add reference tracking support to kfuncKumar Kartikeya Dwivedi1-0/+5
This patch adds verifier support for PTR_TO_BTF_ID return type of kfunc to be a reference, by reusing acquire_reference_state/release_reference support for existing in-kernel bpf helpers. We make use of the three kfunc types: - BTF_KFUNC_TYPE_ACQUIRE Return true if kfunc_btf_id is an acquire kfunc. This will acquire_reference_state for the returned PTR_TO_BTF_ID (this is the only allow return value). Note that acquire kfunc must always return a PTR_TO_BTF_ID{_OR_NULL}, otherwise the program is rejected. - BTF_KFUNC_TYPE_RELEASE Return true if kfunc_btf_id is a release kfunc. This will release the reference to the passed in PTR_TO_BTF_ID which has a reference state (from earlier acquire kfunc). The btf_check_func_arg_match returns the regno (of argument register, hence > 0) if the kfunc is a release kfunc, and a proper referenced PTR_TO_BTF_ID is being passed to it. This is similar to how helper call check uses bpf_call_arg_meta to store the ref_obj_id that is later used to release the reference. Similar to in-kernel helper, we only allow passing one referenced PTR_TO_BTF_ID as an argument. It can also be passed in to normal kfunc, but in case of release kfunc there must always be one PTR_TO_BTF_ID argument that is referenced. - BTF_KFUNC_TYPE_RET_NULL For kfunc returning PTR_TO_BTF_ID, tells if it can be NULL, hence force caller to mark the pointer not null (using check) before accessing it. Note that taking into account the case fixed by commit 93c230e3f5bd ("bpf: Enforce id generation for all may-be-null register type") we assign a non-zero id for mark_ptr_or_null_reg logic. Later, if more return types are supported by kfunc, which have a _OR_NULL variant, it might be better to move this id generation under a common reg_type_may_be_null check, similar to the case in the commit. Referenced PTR_TO_BTF_ID is currently only limited to kfunc, but can be extended in the future to other BPF helpers as well. For now, we can rely on the btf_struct_ids_match check to ensure we get the pointer to the expected struct type. In the future, care needs to be taken to avoid ambiguity for reference PTR_TO_BTF_ID passed to release function, in case multiple candidates can release same BTF ID. e.g. there might be two release kfuncs (or kfunc and helper): foo(struct abc *p); bar(struct abc *p); ... such that both release a PTR_TO_BTF_ID with btf_id of struct abc. In this case we would need to track the acquire function corresponding to the release function to avoid type confusion, and store this information in the register state so that an incorrect program can be rejected. This is not a problem right now, hence it is left as an exercise for the future patch introducing such a case in the kernel. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220114163953.1455836-6-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-01-19bpf: Introduce mem, size argument pair support for kfuncKumar Kartikeya Dwivedi1-0/+2
BPF helpers can associate two adjacent arguments together to pass memory of certain size, using ARG_PTR_TO_MEM and ARG_CONST_SIZE arguments. Since we don't use bpf_func_proto for kfunc, we need to leverage BTF to implement similar support. The ARG_CONST_SIZE processing for helpers is refactored into a common check_mem_size_reg helper that is shared with kfunc as well. kfunc ptr_to_mem support follows logic similar to global functions, where verification is done as if pointer is not null, even when it may be null. This leads to a simple to follow rule for writing kfunc: always check the argument pointer for NULL, except when it is PTR_TO_CTX. Also, the PTR_TO_CTX case is also only safe when the helper expecting pointer to program ctx is not exposed to other programs where same struct is not ctx type. In that case, the type check will fall through to other cases and would permit passing other types of pointers, possibly NULL at runtime. Currently, we require the size argument to be suffixed with "__sz" in the parameter name. This information is then recorded in kernel BTF and verified during function argument checking. In the future we can use BTF tagging instead, and modify the kernel function definitions. This will be a purely kernel-side change. This allows us to have some form of backwards compatibility for structures that are passed in to the kernel function with their size, and allow variable length structures to be passed in if they are accompanied by a size parameter. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220114163953.1455836-5-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2021-12-19bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULLHao Luo1-0/+4
We have introduced a new type to make bpf_reg composable, by allocating bits in the type to represent flags. One of the flags is PTR_MAYBE_NULL which indicates a pointer may be NULL. This patch switches the qualified reg_types to use this flag. The reg_types changed in this patch include: 1. PTR_TO_MAP_VALUE_OR_NULL 2. PTR_TO_SOCKET_OR_NULL 3. PTR_TO_SOCK_COMMON_OR_NULL 4. PTR_TO_TCP_SOCK_OR_NULL 5. PTR_TO_BTF_ID_OR_NULL 6. PTR_TO_MEM_OR_NULL 7. PTR_TO_RDONLY_BUF_OR_NULL 8. PTR_TO_RDWR_BUF_OR_NULL Signed-off-by: Hao Luo <haoluo@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20211217003152.48334-5-haoluo@google.com
2021-12-18bpf: Introduce composable reg, ret and arg types.Hao Luo1-0/+13
There are some common properties shared between bpf reg, ret and arg values. For instance, a value may be a NULL pointer, or a pointer to a read-only memory. Previously, to express these properties, enumeration was used. For example, in order to test whether a reg value can be NULL, reg_type_may_be_null() simply enumerates all types that are possibly NULL. The problem of this approach is that it's not scalable and causes a lot of duplication. These properties can be combined, for example, a type could be either MAYBE_NULL or RDONLY, or both. This patch series rewrites the layout of reg_type, arg_type and ret_type, so that common properties can be extracted and represented as composable flag. For example, one can write ARG_PTR_TO_MEM | PTR_MAYBE_NULL which is equivalent to the previous ARG_PTR_TO_MEM_OR_NULL The type ARG_PTR_TO_MEM are called "base type" in this patch. Base types can be extended with flags. A flag occupies the higher bits while base types sits in the lower bits. This patch in particular sets up a set of macro for this purpose. The following patches will rewrite arg_types, ret_types and reg_types respectively. Signed-off-by: Hao Luo <haoluo@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211217003152.48334-2-haoluo@google.com
2021-12-17bpf: Right align verifier states in verifier logs.Christy Lee1-0/+3
Make the verifier logs more readable, print the verifier states on the corresponding instruction line. If the previous line was not a bpf instruction, then print the verifier states on its own line. Before: Validating test_pkt_access_subprog3() func#3... 86: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R10=fp0 ; int test_pkt_access_subprog3(int val, struct __sk_buff *skb) 86: (bf) r6 = r2 87: R2=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0) 87: (bc) w7 = w1 88: R1=invP(id=0) R7_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123)); 88: (bf) r1 = r6 89: R1_w=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0) 89: (85) call pc+9 Func#4 is global and valid. Skipping. 90: R0_w=invP(id=0) 90: (bc) w8 = w0 91: R0_w=invP(id=0) R8_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123)); 91: (b7) r1 = 123 92: R1_w=invP123 92: (85) call pc+65 Func#5 is global and valid. Skipping. 93: R0=invP(id=0) After: 86: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R10=fp0 ; int test_pkt_access_subprog3(int val, struct __sk_buff *skb) 86: (bf) r6 = r2 ; R2=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0) 87: (bc) w7 = w1 ; R1=invP(id=0) R7_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123)); 88: (bf) r1 = r6 ; R1_w=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0) 89: (85) call pc+9 Func#4 is global and valid. Skipping. 90: R0_w=invP(id=0) 90: (bc) w8 = w0 ; R0_w=invP(id=0) R8_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123)); 91: (b7) r1 = 123 ; R1_w=invP123 92: (85) call pc+65 Func#5 is global and valid. Skipping. 93: R0=invP(id=0) Signed-off-by: Christy Lee <christylee@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2021-12-17bpf: Only print scratched registers and stack slots to verifier logs.Christy Lee1-0/+7
When printing verifier state for any log level, print full verifier state only on function calls or on errors. Otherwise, only print the registers and stack slots that were accessed. Log size differences: verif_scale_loop6 before: 234566564 verif_scale_loop6 after: 72143943 69% size reduction kfree_skb before: 166406 kfree_skb after: 55386 69% size reduction Before: 156: (61) r0 = *(u32 *)(r1 +0) 157: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=ctx(id=0,off=0,imm=0) R2_w=invP0 R10=fp0 fp-8_w=00000000 fp-16_w=00\ 000000 fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 fp-56_w=00000000 fp-64_w=00000000 fp-72_w=00000000 fp-80_w=00000\ 000 fp-88_w=00000000 fp-96_w=00000000 fp-104_w=00000000 fp-112_w=00000000 fp-120_w=00000000 fp-128_w=00000000 fp-136_w=00000000 fp-144_w=00\ 000000 fp-152_w=00000000 fp-160_w=00000000 fp-168_w=00000000 fp-176_w=00000000 fp-184_w=00000000 fp-192_w=00000000 fp-200_w=00000000 fp-208\ _w=00000000 fp-216_w=00000000 fp-224_w=00000000 fp-232_w=00000000 fp-240_w=00000000 fp-248_w=00000000 fp-256_w=00000000 fp-264_w=00000000 f\ p-272_w=00000000 fp-280_w=00000000 fp-288_w=00000000 fp-296_w=00000000 fp-304_w=00000000 fp-312_w=00000000 fp-320_w=00000000 fp-328_w=00000\ 000 fp-336_w=00000000 fp-344_w=00000000 fp-352_w=00000000 fp-360_w=00000000 fp-368_w=00000000 fp-376_w=00000000 fp-384_w=00000000 fp-392_w=\ 00000000 fp-400_w=00000000 fp-408_w=00000000 fp-416_w=00000000 fp-424_w=00000000 fp-432_w=00000000 fp-440_w=00000000 fp-448_w=00000000 ; return skb->len; 157: (95) exit Func#4 is safe for any args that match its prototype Validating get_constant() func#5... 158: R1=invP(id=0) R10=fp0 ; int get_constant(long val) 158: (bf) r0 = r1 159: R0_w=invP(id=1) R1=invP(id=1) R10=fp0 ; return val - 122; 159: (04) w0 += -122 160: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=invP(id=1) R10=fp0 ; return val - 122; 160: (95) exit Func#5 is safe for any args that match its prototype Validating get_skb_ifindex() func#6... 161: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0 ; int get_skb_ifindex(int val, struct __sk_buff *skb, int var) 161: (bc) w0 = w3 162: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0 After: 156: (61) r0 = *(u32 *)(r1 +0) 157: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=ctx(id=0,off=0,imm=0) ; return skb->len; 157: (95) exit Func#4 is safe for any args that match its prototype Validating get_constant() func#5... 158: R1=invP(id=0) R10=fp0 ; int get_constant(long val) 158: (bf) r0 = r1 159: R0_w=invP(id=1) R1=invP(id=1) ; return val - 122; 159: (04) w0 += -122 160: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ; return val - 122; 160: (95) exit Func#5 is safe for any args that match its prototype Validating get_skb_ifindex() func#6... 161: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0 ; int get_skb_ifindex(int val, struct __sk_buff *skb, int var) 161: (bc) w0 = w3 162: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R3=invP(id=0) Signed-off-by: Christy Lee <christylee@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20211216213358.3374427-2-christylee@fb.com
2021-12-04bpf: Disallow BPF_LOG_KERNEL log level for bpf(BPF_BTF_LOAD)Hou Tao1-0/+7
BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load() to set log level as BPF_LOG_KERNEL. The same checking has already been done in bpf_check(), so factor out a helper to check the validity of log attributes and use it in both places. Fixes: 8580ac9404f6 ("bpf: Process in-kernel BTF") Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20211203053001.740945-1-houtao1@huawei.com
2021-10-06bpf: Introduce BPF support for kernel module function callsKumar Kartikeya Dwivedi1-0/+2
This change adds support on the kernel side to allow for BPF programs to call kernel module functions. Userspace will prepare an array of module BTF fds that is passed in during BPF_PROG_LOAD using fd_array parameter. In the kernel, the module BTFs are placed in the auxilliary struct for bpf_prog, and loaded as needed. The verifier then uses insn->off to index into the fd_array. insn->off 0 is reserved for vmlinux BTF (for backwards compat), so userspace must use an fd_array index > 0 for module kfunc support. kfunc_btf_tab is sorted based on offset in an array, and each offset corresponds to one descriptor, with a max limit up to 256 such module BTFs. We also change existing kfunc_tab to distinguish each element based on imm, off pair as each such call will now be distinct. Another change is to check_kfunc_call callback, which now include a struct module * pointer, this is to be used in later patch such that the kfunc_id and module pointer are matched for dynamically registered BTF sets from loadable modules, so that same kfunc_id in two modules doesn't lead to check_kfunc_call succeeding. For the duration of the check_kfunc_call, the reference to struct module exists, as it returns the pointer stored in kfunc_btf_tab. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211002011757.311265-2-memxor@gmail.com
2021-07-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski1-1/+2
Conflicting commits, all resolutions pretty trivial: drivers/bus/mhi/pci_generic.c 5c2c85315948 ("bus: mhi: pci-generic: configurable network interface MRU") 56f6f4c4eb2a ("bus: mhi: pci_generic: Apply no-op for wake using sideband wake boolean") drivers/nfc/s3fwrn5/firmware.c a0302ff5906a ("nfc: s3fwrn5: remove unnecessary label") 46573e3ab08f ("nfc: s3fwrn5: fix undefined parameter values in dev_err()") 801e541c79bb ("nfc: s3fwrn5: fix undefined parameter values in dev_err()") MAINTAINERS 7d901a1e878a ("net: phy: add Maxlinear GPY115/21x/24x driver") 8a7b46fa7902 ("MAINTAINERS: add Yasushi SHOJI as reviewer for the Microchip CAN BUS Analyzer Tool driver") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-07-29bpf: Fix leakage due to insufficient speculative store bypass mitigationDaniel Borkmann1-1/+1
Spectre v4 gadgets make use of memory disambiguation, which is a set of techniques that execute memory access instructions, that is, loads and stores, out of program order; Intel's optimization manual, section 2.4.4.5: A load instruction micro-op may depend on a preceding store. Many microarchitectures block loads until all preceding store addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores. When the disambiguator predicts that a load does not have such a dependency, the load takes its data from the L1 data cache. Eventually, the prediction is verified. If an actual conflict is detected, the load and all succeeding instructions are re-executed. af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate this attack by sanitizing the memory locations through preemptive "fast" (low latency) stores of zero prior to the actual "slow" (high latency) store of a pointer value such that upon dependency misprediction the CPU then speculatively executes the load of the pointer value and retrieves the zero value instead of the attacker controlled scalar value previously stored at that location, meaning, subsequent access in the speculative domain is then redirected to the "zero page". The sanitized preemptive store of zero prior to the actual "slow" store is done through a simple ST instruction based on r10 (frame pointer) with relative offset to the stack location that the verifier has been tracking on the original used register for STX, which does not have to be r10. Thus, there are no memory dependencies for this store, since it's only using r10 and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency operation. However, a recent attack demonstrated that this mitigation is not sufficient since the preemptive store of zero could also be turned into a "slow" store and is thus bypassed as well: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value 31: (7b) *(u64 *)(r10 -16) = r2 // r9 will remain "fast" register, r10 will become "slow" register below 32: (bf) r9 = r10 // JIT maps BPF reg to x86 reg: // r9 -> r15 (callee saved) // r10 -> rbp // train store forward prediction to break dependency link between both r9 // and r10 by evicting them from the predictor's LRU table. 33: (61) r0 = *(u32 *)(r7 +24576) 34: (63) *(u32 *)(r7 +29696) = r0 35: (61) r0 = *(u32 *)(r7 +24580) 36: (63) *(u32 *)(r7 +29700) = r0 37: (61) r0 = *(u32 *)(r7 +24584) 38: (63) *(u32 *)(r7 +29704) = r0 39: (61) r0 = *(u32 *)(r7 +24588) 40: (63) *(u32 *)(r7 +29708) = r0 [...] 543: (61) r0 = *(u32 *)(r7 +25596) 544: (63) *(u32 *)(r7 +30716) = r0 // prepare call to bpf_ringbuf_output() helper. the latter will cause rbp // to spill to stack memory while r13/r14/r15 (all callee saved regs) remain // in hardware registers. rbp becomes slow due to push/pop latency. below is // disasm of bpf_ringbuf_output() helper for better visual context: // // ffffffff8117ee20: 41 54 push r12 // ffffffff8117ee22: 55 push rbp // ffffffff8117ee23: 53 push rbx // ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc // ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken // [...] // ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea // ffffffff8117eee7: 5b pop rbx // ffffffff8117eee8: 5d pop rbp // ffffffff8117eee9: 4c 89 e0 mov rax,r12 // ffffffff8117eeec: 41 5c pop r12 // ffffffff8117eeee: c3 ret 545: (18) r1 = map[id:4] 547: (bf) r2 = r7 548: (b7) r3 = 0 549: (b7) r4 = 4 550: (85) call bpf_ringbuf_output#194288 // instruction 551 inserted by verifier \ 551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here // storing map value pointer r7 at fp-16 | since value of r10 is "slow". 552: (7b) *(u64 *)(r10 -16) = r7 / // following "fast" read to the same memory location, but due to dependency // misprediction it will speculatively execute before insn 551/552 completes. 553: (79) r2 = *(u64 *)(r9 -16) // in speculative domain contains attacker controlled r2. in non-speculative // domain this contains r7, and thus accesses r7 +0 below. 554: (71) r3 = *(u8 *)(r2 +0) // leak r3 As can be seen, the current speculative store bypass mitigation which the verifier inserts at line 551 is insufficient since /both/, the write of the zero sanitation as well as the map value pointer are a high latency instruction due to prior memory access via push/pop of r10 (rbp) in contrast to the low latency read in line 553 as r9 (r15) which stays in hardware registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally, fp-16 can still be r2. Initial thoughts to address this issue was to track spilled pointer loads from stack and enforce their load via LDX through r10 as well so that /both/ the preemptive store of zero /as well as/ the load use the /same/ register such that a dependency is created between the store and load. However, this option is not sufficient either since it can be bypassed as well under speculation. An updated attack with pointer spill/fills now _all_ based on r10 would look as follows: [...] // r2 = oob address (e.g. scalar) // r7 = pointer to map value [...] // longer store forward prediction training sequence than before. 2062: (61) r0 = *(u32 *)(r7 +25588) 2063: (63) *(u32 *)(r7 +30708) = r0 2064: (61) r0 = *(u32 *)(r7 +25592) 2065: (63) *(u32 *)(r7 +30712) = r0 2066: (61) r0 = *(u32 *)(r7 +25596) 2067: (63) *(u32 *)(r7 +30716) = r0 // store the speculative load address (scalar) this time after the store // forward prediction training. 2068: (7b) *(u64 *)(r10 -16) = r2 // preoccupy the CPU store port by running sequence of dummy stores. 2069: (63) *(u32 *)(r7 +29696) = r0 2070: (63) *(u32 *)(r7 +29700) = r0 2071: (63) *(u32 *)(r7 +29704) = r0 2072: (63) *(u32 *)(r7 +29708) = r0 2073: (63) *(u32 *)(r7 +29712) = r0 2074: (63) *(u32 *)(r7 +29716) = r0 2075: (63) *(u32 *)(r7 +29720) = r0 2076: (63) *(u32 *)(r7 +29724) = r0 2077: (63) *(u32 *)(r7 +29728) = r0 2078: (63) *(u32 *)(r7 +29732) = r0 2079: (63) *(u32 *)(r7 +29736) = r0 2080: (63) *(u32 *)(r7 +29740) = r0 2081: (63) *(u32 *)(r7 +29744) = r0 2082: (63) *(u32 *)(r7 +29748) = r0 2083: (63) *(u32 *)(r7 +29752) = r0 2084: (63) *(u32 *)(r7 +29756) = r0 2085: (63) *(u32 *)(r7 +29760) = r0 2086: (63) *(u32 *)(r7 +29764) = r0 2087: (63) *(u32 *)(r7 +29768) = r0 2088: (63) *(u32 *)(r7 +29772) = r0 2089: (63) *(u32 *)(r7 +29776) = r0 2090: (63) *(u32 *)(r7 +29780) = r0 2091: (63) *(u32 *)(r7 +29784) = r0 2092: (63) *(u32 *)(r7 +29788) = r0 2093: (63) *(u32 *)(r7 +29792) = r0 2094: (63) *(u32 *)(r7 +29796) = r0 2095: (63) *(u32 *)(r7 +29800) = r0 2096: (63) *(u32 *)(r7 +29804) = r0 2097: (63) *(u32 *)(r7 +29808) = r0 2098: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; same as before, also including the // sanitation store with 0 from the current mitigation by the verifier. 2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here 2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy. // load from stack intended to bypass stores. 2101: (79) r2 = *(u64 *)(r10 -16) 2102: (71) r3 = *(u8 *)(r2 +0) // leak r3 [...] Looking at the CPU microarchitecture, the scheduler might issue loads (such as seen in line 2101) before stores (line 2099,2100) because the load execution units become available while the store execution unit is still busy with the sequence of dummy stores (line 2069-2098). And so the load may use the prior stored scalar from r2 at address r10 -16 for speculation. The updated attack may work less reliable on CPU microarchitectures where loads and stores share execution resources. This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf: Prevent memory disambiguation attack") is insufficient. Moreover, the detection of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been written to a given stack slot where a pointer value is now to be stored does not have sufficient coverage as precondition for the mitigation either; for several reasons outlined as follows: 1) Stack content from prior program runs could still be preserved and is therefore not "random", best example is to split a speculative store bypass attack between tail calls, program A would prepare and store the oob address at a given stack slot and then tail call into program B which does the "slow" store of a pointer to the stack with subsequent "fast" read. From program B PoV such stack slot type is STACK_INVALID, and therefore also must be subject to mitigation. 2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr) condition, for example, the previous content of that memory location could also be a pointer to map or map value. Without the fix, a speculative store bypass is not mitigated in such precondition and can then lead to a type confusion in the speculative domain leaking kernel memory near these pointer types. While brainstorming on various alternative mitigation possibilities, we also stumbled upon a retrospective from Chrome developers [0]: [...] For variant 4, we implemented a mitigation to zero the unused memory of the heap prior to allocation, which cost about 1% when done concurrently and 4% for scavenging. Variant 4 defeats everything we could think of. We explored more mitigations for variant 4 but the threat proved to be more pervasive and dangerous than we anticipated. For example, stack slots used by the register allocator in the optimizing compiler could be subject to type confusion, leading to pointer crafting. Mitigating type confusion for stack slots alone would have required a complete redesign of the backend of the optimizing compiler, perhaps man years of work, without a guarantee of completeness. [...] From BPF side, the problem space is reduced, however, options are rather limited. One idea that has been explored was to xor-obfuscate pointer spills to the BPF stack: [...] // preoccupy the CPU store port by running sequence of dummy stores. [...] 2106: (63) *(u32 *)(r7 +29796) = r0 2107: (63) *(u32 *)(r7 +29800) = r0 2108: (63) *(u32 *)(r7 +29804) = r0 2109: (63) *(u32 *)(r7 +29808) = r0 2110: (63) *(u32 *)(r7 +29812) = r0 // overwrite scalar with dummy pointer; xored with random 'secret' value // of 943576462 before store ... 2111: (b4) w11 = 943576462 2112: (af) r11 ^= r7 2113: (7b) *(u64 *)(r10 -16) = r11 2114: (79) r11 = *(u64 *)(r10 -16) 2115: (b4) w2 = 943576462 2116: (af) r2 ^= r11 // ... and restored with the same 'secret' value with the help of AX reg. 2117: (71) r3 = *(u8 *)(r2 +0) [...] While the above would not prevent speculation, it would make data leakage infeasible by directing it to random locations. In order to be effective and prevent type confusion under speculation, such random secret would have to be regenerated for each store. The additional complexity involved for a tracking mechanism that prevents jumps such that restoring spilled pointers would not get corrupted is not worth the gain for unprivileged. Hence, the fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC instruction which the x86 JIT translates into a lfence opcode. Inserting the latter in between the store and load instruction is one of the mitigations options [1]. The x86 instruction manual notes: [...] An LFENCE that follows an instruction that stores to memory might complete before the data being stored have become globally visible. [...] The latter meaning that the preceding store instruction finished execution and the store is at minimum guaranteed to be in the CPU's store queue, but it's not guaranteed to be in that CPU's L1 cache at that point (globally visible). The latter would only be guaranteed via sfence. So the load which is guaranteed to execute after the lfence for that local CPU would have to rely on store-to-load forwarding. [2], in section 2.3 on store buffers says: [...] For every store operation that is added to the ROB, an entry is allocated in the store buffer. This entry requires both the virtual and physical address of the target. Only if there is no free entry in the store buffer, the frontend stalls until there is an empty slot available in the store buffer again. Otherwise, the CPU can immediately continue adding subsequent instructions to the ROB and execute them out of order. On Intel CPUs, the store buffer has up to 56 entries. [...] One small upside on the fix is that it lifts constraints from af86ca4e3088 where the sanitize_stack_off relative to r10 must be the same when coming from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX or BPF_ST instruction. This happens either when we store a pointer or data value to the BPF stack for the first time, or upon later pointer spills. The former needs to be enforced since otherwise stale stack data could be leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST | BPF_NOSPEC mapping is currently optimized away, but others could emit a speculation barrier as well if necessary. For real-world unprivileged programs e.g. generated by LLVM, pointer spill/fill is only generated upon register pressure and LLVM only tries to do that for pointers which are not used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC sanitation for the STACK_INVALID case when the first write to a stack slot occurs e.g. upon map lookup. In future we might refine ways to mitigate the latter cost. [0] https://arxiv.org/pdf/1902.05178.pdf [1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/ [2] https://arxiv.org/pdf/1905.05725.pdf Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack") Fixes: f7cf25b2026d ("bpf: track spill/fill of constants") Co-developed-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16bpf: Fix pointer arithmetic mask tightening under state pruningDaniel Borkmann1-0/+1
In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-15bpf: Teach stack depth check about async callbacks.Alexei Starovoitov1-0/+1
Teach max stack depth checking algorithm about async callbacks that don't increase bpf program stack size. Also add sanity check that bpf_tail_call didn't sneak into async cb. It's impossible, since PTR_TO_CTX is not available in async cb, hence the program cannot contain bpf_tail_call(ctx,...); Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com
2021-07-15bpf: Implement verifier support for validation of async callbacks.Alexei Starovoitov1-1/+8
bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on PTR_TO_FUNC infra in the verifier to validate addresses to subprograms and pass them into the helpers as function callbacks. In case of bpf_for_each_map_elem() the callback is invoked synchronously and the verifier treats it as a normal subprogram call by adding another bpf_func_state and new frame in __check_func_call(). bpf_timer_set_callback() doesn't invoke the callback directly. The subprogram will be called asynchronously from bpf_timer_cb(). Teach the verifier to validate such async callbacks as special kind of jump by pushing verifier state into stack and let pop_stack() process it. Special care needs to be taken during state pruning. The call insn doing bpf_timer_set_callback has to be a prune_point. Otherwise short timer callbacks might not have prune points in front of bpf_timer_set_callback() which means is_state_visited() will be called after this call insn is processed in __check_func_call(). Which means that another async_cb state will be pushed to be walked later and the verifier will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit. Since push_async_cb() looks like another push_stack() branch the infinite loop detection will trigger false positive. To recognize this case mark such states as in_async_callback_fn. To distinguish infinite loop in async callback vs the same callback called with different arguments for different map and timer add async_entry_cnt to bpf_func_state. Enforce return zero from async callbacks. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com
2021-07-15bpf: Prevent pointer mismatch in bpf_timer_init.Alexei Starovoitov1-1/+8
bpf_timer_init() arguments are: 1. pointer to a timer (which is embedded in map element). 2. pointer to a map. Make sure that pointer to a timer actually belongs to that map. Use map_uid (which is unique id of inner map) to reject: inner_map1 = bpf_map_lookup_elem(outer_map, key1) inner_map2 = bpf_map_lookup_elem(outer_map, key2) if (inner_map1 && inner_map2) { timer = bpf_map_lookup_elem(inner_map1); if (timer) // mismatch would have been allowed bpf_timer_init(timer, inner_map2); } Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com
2021-05-19bpf: Introduce fd_idxAlexei Starovoitov1-0/+1
Typical program loading sequence involves creating bpf maps and applying map FDs into bpf instructions in various places in the bpf program. This job is done by libbpf that is using compiler generated ELF relocations to patch certain instruction after maps are created and BTFs are loaded. The goal of fd_idx is to allow bpf instructions to stay immutable after compilation. At load time the libbpf would still create maps as usual, but it wouldn't need to patch instructions. It would store map_fds into __u32 fd_array[] and would pass that pointer to sys_bpf(BPF_PROG_LOAD). Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210514003623.28033-9-alexei.starovoitov@gmail.com
2021-05-11bpf: verifier: Allocate idmap scratch in verifier envLorenz Bauer1-0/+8
func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
2021-05-03bpf: Fix leakage of uninitialized bpf stack under speculationDaniel Borkmann1-2/+3
The current implemented mechanisms to mitigate data disclosure under speculation mainly address stack and map value oob access from the speculative domain. However, Piotr discovered that uninitialized BPF stack is not protected yet, and thus old data from the kernel stack, potentially including addresses of kernel structures, could still be extracted from that 512 bytes large window. The BPF stack is special compared to map values since it's not zero initialized for every program invocation, whereas map values /are/ zero initialized upon their initial allocation and thus cannot leak any prior data in either domain. In the non-speculative domain, the verifier ensures that every stack slot read must have a prior stack slot write by the BPF program to avoid such data leaking issue. However, this is not enough: for example, when the pointer arithmetic operation moves the stack pointer from the last valid stack offset to the first valid offset, the sanitation logic allows for any intermediate offsets during speculative execution, which could then be used to extract any restricted stack content via side-channel. Given for unprivileged stack pointer arithmetic the use of unknown but bounded scalars is generally forbidden, we can simply turn the register-based arithmetic operation into an immediate-based arithmetic operation without the need for masking. This also gives the benefit of reducing the needed instructions for the operation. Given after the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask"), the aux->alu_limit already holds the final immediate value for the offset register with the known scalar. Thus, a simple mov of the immediate to AX register with using AX as the source for the original instruction is sufficient and possible now in this case. Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-14bpf: Return target info when a tracing bpf_link is queriedToke Høiland-Jørgensen1-0/+9
There is currently no way to discover the target of a tracing program attachment after the fact. Add this information to bpf_link_info and return it when querying the bpf_link fd. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210413091607.58945-1-toke@redhat.com
2021-02-27bpf: Add bpf_for_each_map_elem() helperYonghong Song1-0/+3
The bpf_for_each_map_elem() helper is introduced which iterates all map elements with a callback function. The helper signature looks like long bpf_for_each_map_elem(map, callback_fn, callback_ctx, flags) and for each map element, the callback_fn will be called. For example, like hashmap, the callback signature may look like long callback_fn(map, key, val, callback_ctx) There are two known use cases for this. One is from upstream ([1]) where a for_each_map_elem helper may help implement a timeout mechanism in a more generic way. Another is from our internal discussion for a firewall use case where a map contains all the rules. The packet data can be compared to all these rules to decide allow or deny the packet. For array maps, users can already use a bounded loop to traverse elements. Using this helper can avoid using bounded loop. For other type of maps (e.g., hash maps) where bounded loop is hard or impossible to use, this helper provides a convenient way to operate on all elements. For callback_fn, besides map and map element, a callback_ctx, allocated on caller stack, is also passed to the callback function. This callback_ctx argument can provide additional input and allow to write to caller stack for output. If the callback_fn returns 0, the helper will iterate through next element if available. If the callback_fn returns 1, the helper will stop iterating and returns to the bpf program. Other return values are not used for now. Currently, this helper is only available with jit. It is possible to make it work with interpreter with so effort but I leave it as the future work. [1]: https://lore.kernel.org/bpf/20210122205415.113822-1-xiyou.wangcong@gmail.com/ Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204925.3884923-1-yhs@fb.com
2021-02-13bpf: Support pointers in global func argsDmitrii Banshchikov1-0/+2
Add an ability to pass a pointer to a type with known size in arguments of a global function. Such pointers may be used to overcome the limit on the maximum number of arguments, avoid expensive and tricky workarounds and to have multiple output arguments. A referenced type may contain pointers but indirect access through them isn't supported. The implementation consists of two parts. If a global function has an argument that is a pointer to a type with known size then: 1) In btf_check_func_arg_match(): check that the corresponding register points to NULL or to a valid memory region that is large enough to contain the expected argument's type. 2) In btf_prepare_func_args(): set the corresponding register type to PTR_TO_MEM_OR_NULL and its size to the size of the expected type. Only global functions are supported because allowance of pointers for static functions might break validation. Consider the following scenario. A static function has a pointer argument. A caller passes pointer to its stack memory. Because the callee can change referenced memory verifier cannot longer assume any particular slot type of the caller's stack memory hence the slot type is changed to SLOT_MISC. If there is an operation that relies on slot type other than SLOT_MISC then verifier won't be able to infer safety of the operation. When verifier sees a static function that has a pointer argument different from PTR_TO_CTX then it skips arguments check and continues with "inline" validation with more information available. The operation that relies on the particular slot type now succeeds. Because global functions were not allowed to have pointer arguments different from PTR_TO_CTX it's not possible to break existing and valid code. Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru
2021-02-10bpf: Allow variable-offset stack accessAndrei Matei1-1/+2
Before this patch, variable offset access to the stack was dissalowed for regular instructions, but was allowed for "indirect" accesses (i.e. helpers). This patch removes the restriction, allowing reading and writing to the stack through stack pointers with variable offsets. This makes stack-allocated buffers more usable in programs, and brings stack pointers closer to other types of pointers. The motivation is being able to use stack-allocated buffers for data manipulation. When the stack size limit is sufficient, allocating buffers on the stack is simpler than per-cpu arrays, or other alternatives. In unpriviledged programs, variable-offset reads and writes are disallowed (they were already disallowed for the indirect access case) because the speculative execution checking code doesn't support them. Additionally, when writing through a variable-offset stack pointer, if any pointers are in the accessible range, there's possilibities of later leaking pointers because the write cannot be tracked precisely. Writes with variable offset mark the whole range as initialized, even though we don't know which stack slots are actually written. This is in order to not reject future reads to these slots. Note that this doesn't affect writes done through helpers; like before, helpers need the whole stack range to be initialized to begin with. All the stack slots are in range are considered scalars after the write; variable-offset register spills are not tracked. For reads, all the stack slots in the variable range needs to be initialized (but see above about what writes do), otherwise the read is rejected. All register spilled in stack slots that might be read are marked as having been read, however reads through such pointers don't do register filling; the target register will always be either a scalar or a constant zero. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com