summaryrefslogtreecommitdiff
path: root/mm/memory.c
AgeCommit message (Collapse)AuthorFilesLines
2022-05-10mm: support GUP-triggered unsharing of anonymous pagesDavid Hildenbrand1-33/+74
Whenever GUP currently ends up taking a R/O pin on an anonymous page that might be shared -- mapped R/O and !PageAnonExclusive() -- any write fault on the page table entry will end up replacing the mapped anonymous page due to COW, resulting in the GUP pin no longer being consistent with the page actually mapped into the page table. The possible ways to deal with this situation are: (1) Ignore and pin -- what we do right now. (2) Fail to pin -- which would be rather surprising to callers and could break user space. (3) Trigger unsharing and pin the now exclusive page -- reliable R/O pins. We want to implement 3) because it provides the clearest semantics and allows for checking in unpin_user_pages() and friends for possible BUGs: when trying to unpin a page that's no longer exclusive, clearly something went very wrong and might result in memory corruptions that might be hard to debug. So we better have a nice way to spot such issues. To implement 3), we need a way for GUP to trigger unsharing: FAULT_FLAG_UNSHARE. FAULT_FLAG_UNSHARE is only applicable to R/O mapped anonymous pages and resembles COW logic during a write fault. However, in contrast to a write fault, GUP-triggered unsharing will, for example, still maintain the write protection. Let's implement FAULT_FLAG_UNSHARE by hooking into the existing write fault handlers for all applicable anonymous page types: ordinary pages, THP and hugetlb. * If FAULT_FLAG_UNSHARE finds a R/O-mapped anonymous page that has been marked exclusive in the meantime by someone else, there is nothing to do. * If FAULT_FLAG_UNSHARE finds a R/O-mapped anonymous page that's not marked exclusive, it will try detecting if the process is the exclusive owner. If exclusive, it can be set exclusive similar to reuse logic during write faults via page_move_anon_rmap() and there is nothing else to do; otherwise, we either have to copy and map a fresh, anonymous exclusive page R/O (ordinary pages, hugetlb), or split the THP. This commit is heavily based on patches by Andrea. Link: https://lkml.kernel.org/r/20220428083441.37290-16-david@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Co-developed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm: remember exclusively mapped anonymous pages with PG_anon_exclusiveDavid Hildenbrand1-8/+25
Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as exclusive, and use that information to make GUP pins reliable and stay consistent with the page mapped into the page table even if the page table entry gets write-protected. With that information at hand, we can extend our COW logic to always reuse anonymous pages that are exclusive. For anonymous pages that might be shared, the existing logic applies. As already documented, PG_anon_exclusive is usually only expressive in combination with a page table entry. Especially PTE vs. PMD-mapped anonymous pages require more thought, some examples: due to mremap() we can easily have a single compound page PTE-mapped into multiple page tables exclusively in a single process -- multiple page table locks apply. Further, due to MADV_WIPEONFORK we might not necessarily write-protect all PTEs, and only some subpages might be pinned. Long story short: once PTE-mapped, we have to track information about exclusivity per sub-page, but until then, we can just track it for the compound page in the head page and not having to update a whole bunch of subpages all of the time for a simple PMD mapping of a THP. For simplicity, this commit mostly talks about "anonymous pages", while it's for THP actually "the part of an anonymous folio referenced via a page table entry". To not spill PG_anon_exclusive code all over the mm code-base, we let the anon rmap code to handle all PG_anon_exclusive logic it can easily handle. If a writable, present page table entry points at an anonymous (sub)page, that (sub)page must be PG_anon_exclusive. If GUP wants to take a reliably pin (FOLL_PIN) on an anonymous page references via a present page table entry, it must only pin if PG_anon_exclusive is set for the mapped (sub)page. This commit doesn't adjust GUP, so this is only implicitly handled for FOLL_WRITE, follow-up commits will teach GUP to also respect it for FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully reliable. Whenever an anonymous page is to be shared (fork(), KSM), or when temporarily unmapping an anonymous page (swap, migration), the relevant PG_anon_exclusive bit has to be cleared to mark the anonymous page possibly shared. Clearing will fail if there are GUP pins on the page: * For fork(), this means having to copy the page and not being able to share it. fork() protects against concurrent GUP using the PT lock and the src_mm->write_protect_seq. * For KSM, this means sharing will fail. For swap this means, unmapping will fail, For migration this means, migration will fail early. All three cases protect against concurrent GUP using the PT lock and a proper clear/invalidate+flush of the relevant page table entry. This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a pinned page gets mapped R/O and the successive write fault ends up replacing the page instead of reusing it. It improves the situation for O_DIRECT/vmsplice/... that still use FOLL_GET instead of FOLL_PIN, if fork() is *not* involved, however swapout and fork() are still problematic. Properly using FOLL_PIN instead of FOLL_GET for these GUP users will fix the issue for them. I. Details about basic handling I.1. Fresh anonymous pages page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the given page exclusive via __page_set_anon_rmap(exclusive=1). As that is the mechanism fresh anonymous pages come into life (besides migration code where we copy the page->mapping), all fresh anonymous pages will start out as exclusive. I.2. COW reuse handling of anonymous pages When a COW handler stumbles over a (sub)page that's marked exclusive, it simply reuses it. Otherwise, the handler tries harder under page lock to detect if the (sub)page is exclusive and can be reused. If exclusive, page_move_anon_rmap() will mark the given (sub)page exclusive. Note that hugetlb code does not yet check for PageAnonExclusive(), as it still uses the old COW logic that is prone to the COW security issue because hugetlb code cannot really tolerate unnecessary/wrong COW as huge pages are a scarce resource. I.3. Migration handling try_to_migrate() has to try marking an exclusive anonymous page shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. migrate_vma_collect_pmd() and __split_huge_pmd_locked() are handled similarly. Writable migration entries implicitly point at shared anonymous pages. For readable migration entries that information is stored via a new "readable-exclusive" migration entry, specific to anonymous pages. When restoring a migration entry in remove_migration_pte(), information about exlusivity is detected via the migration entry type, and RMAP_EXCLUSIVE is set accordingly for page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information. I.4. Swapout handling try_to_unmap() has to try marking the mapped page possibly shared via page_try_share_anon_rmap(). If it fails because there are GUP pins on the page, unmap fails. For now, information about exclusivity is lost. In the future, we might want to remember that information in the swap entry in some cases, however, it requires more thought, care, and a way to store that information in swap entries. I.5. Swapin handling do_swap_page() will never stumble over exclusive anonymous pages in the swap cache, as try_to_migrate() prohibits that. do_swap_page() always has to detect manually if an anonymous page is exclusive and has to set RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly. I.6. THP handling __split_huge_pmd_locked() has to move the information about exclusivity from the PMD to the PTEs. a) In case we have a readable-exclusive PMD migration entry, simply insert readable-exclusive PTE migration entries. b) In case we have a present PMD entry and we don't want to freeze ("convert to migration entries"), simply forward PG_anon_exclusive to all sub-pages, no need to temporarily clear the bit. c) In case we have a present PMD entry and want to freeze, handle it similar to try_to_migrate(): try marking the page shared first. In case we fail, we ignore the "freeze" instruction and simply split ordinarily. try_to_migrate() will properly fail because the THP is still mapped via PTEs. When splitting a compound anonymous folio (THP), the information about exclusivity is implicitly handled via the migration entries: no need to replicate PG_anon_exclusive manually. I.7. fork() handling fork() handling is relatively easy, because PG_anon_exclusive is only expressive for some page table entry types. a) Present anonymous pages page_try_dup_anon_rmap() will mark the given subpage shared -- which will fail if the page is pinned. If it failed, we have to copy (or PTE-map a PMD to handle it on the PTE level). Note that device exclusive entries are just a pointer at a PageAnon() page. fork() will first convert a device exclusive entry to a present page table and handle it just like present anonymous pages. b) Device private entry Device private entries point at PageAnon() pages that cannot be mapped directly and, therefore, cannot get pinned. page_try_dup_anon_rmap() will mark the given subpage shared, which cannot fail because they cannot get pinned. c) HW poison entries PG_anon_exclusive will remain untouched and is stale -- the page table entry is just a placeholder after all. d) Migration entries Writable and readable-exclusive entries are converted to readable entries: possibly shared. I.8. mprotect() handling mprotect() only has to properly handle the new readable-exclusive migration entry: When write-protecting a migration entry that points at an anonymous page, remember the information about exclusivity via the "readable-exclusive" migration entry type. II. Migration and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a migration entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_migrate() places a migration entry after checking for GUP pins and marks the page possibly shared. 2. GUP-fast pins the page due to lack of synchronization 3. fork() converts the "writable/readable-exclusive" migration entry into a readable migration entry 4. Migration fails due to the GUP pin (failing to freeze the refcount) 5. Migration entries are restored. PG_anon_exclusive is lost -> We have a pinned page that is not marked exclusive anymore. Note that we move information about exclusivity from the page to the migration entry as it otherwise highly overcomplicates fork() and PTE-mapping a THP. III. Swapout and GUP-fast Whenever replacing a present page table entry that maps an exclusive anonymous page by a swap entry, we have to mark the page possibly shared and synchronize against GUP-fast by a proper clear/invalidate+flush to make the following scenario impossible: 1. try_to_unmap() places a swap entry after checking for GUP pins and clears exclusivity information on the page. 2. GUP-fast pins the page due to lack of synchronization. -> We have a pinned page that is not marked exclusive anymore. If we'd ever store information about exclusivity in the swap entry, similar to migration handling, the same considerations as in II would apply. This is future work. Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/page-flags: reuse PG_mappedtodisk as PG_anon_exclusive for PageAnon() pagesDavid Hildenbrand1-0/+11
The basic question we would like to have a reliable and efficient answer to is: is this anonymous page exclusive to a single process or might it be shared? We need that information for ordinary/single pages, hugetlb pages, and possibly each subpage of a THP. Introduce a way to mark an anonymous page as exclusive, with the ultimate goal of teaching our COW logic to not do "wrong COWs", whereby GUP pins lose consistency with the pages mapped into the page table, resulting in reported memory corruptions. Most pageflags already have semantics for anonymous pages, however, PG_mappedtodisk should never apply to pages in the swapcache, so let's reuse that flag. As PG_has_hwpoisoned also uses that flag on the second tail page of a compound page, convert it to PG_error instead, which is marked as PF_NO_TAIL, so never used for tail pages. Use custom page flag modification functions such that we can do additional sanity checks. The semantics we'll put into some kernel doc in the future are: " PG_anon_exclusive is *usually* only expressive in combination with a page table entry. Depending on the page table entry type it might store the following information: Is what's mapped via this page table entry exclusive to the single process and can be mapped writable without further checks? If not, it might be shared and we might have to COW. For now, we only expect PTE-mapped THPs to make use of PG_anon_exclusive in subpages. For other anonymous compound folios (i.e., hugetlb), only the head page is logically mapped and holds this information. For example, an exclusive, PMD-mapped THP only has PG_anon_exclusive set on the head page. When replacing the PMD by a page table full of PTEs, PG_anon_exclusive, if set on the head page, will be set on all tail pages accordingly. Note that converting from a PTE-mapping to a PMD mapping using the same compound page is currently not possible and consequently doesn't require care. If GUP wants to take a reliable pin (FOLL_PIN) on an anonymous page, it should only pin if the relevant PG_anon_exclusive is set. In that case, the pin will be fully reliable and stay consistent with the pages mapped into the page table, as the bit cannot get cleared (e.g., by fork(), KSM) while the page is pinned. For anonymous pages that are mapped R/W, PG_anon_exclusive can be assumed to always be set because such pages cannot possibly be shared. The page table lock protecting the page table entry is the primary synchronization mechanism for PG_anon_exclusive; GUP-fast that does not take the PT lock needs special care when trying to clear the flag. Page table entry types and PG_anon_exclusive: * Present: PG_anon_exclusive applies. * Swap: the information is lost. PG_anon_exclusive was cleared. * Migration: the entry holds this information instead. PG_anon_exclusive was cleared. * Device private: PG_anon_exclusive applies. * Device exclusive: PG_anon_exclusive applies. * HW Poison: PG_anon_exclusive is stale and not changed. If the page may be pinned (FOLL_PIN), clearing PG_anon_exclusive is not allowed and the flag will stick around until the page is freed and folio->mapping is cleared. " We won't be clearing PG_anon_exclusive on destructive unmapping (i.e., zapping) of page table entries, page freeing code will handle that when also invalidate page->mapping to not indicate PageAnon() anymore. Letting information about exclusivity stick around will be an important property when adding sanity checks to unpinning code. Note that we properly clear the flag in free_pages_prepare() via PAGE_FLAGS_CHECK_AT_PREP for each individual subpage of a compound page, so there is no need to manually clear the flag. Link: https://lkml.kernel.org/r/20220428083441.37290-12-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/rmap: use page_move_anon_rmap() when reusing a mapped PageAnon() page ↵David Hildenbrand1-0/+1
exclusively We want to mark anonymous pages exclusive, and when using page_move_anon_rmap() we know that we are the exclusive user, as properly documented. This is a preparation for marking anonymous pages exclusive in page_move_anon_rmap(). In both instances, we're holding page lock and are sure that we're the exclusive owner (page_count() == 1). hugetlb already properly uses page_move_anon_rmap() in the write fault handler. Note that in case of a PTE-mapped THP, we'll only end up calling this function if the whole THP is only referenced by the single PTE mapping a single subpage (page_count() == 1); consequently, it's fine to modify the compound page mapping inside page_move_anon_rmap(). Link: https://lkml.kernel.org/r/20220428083441.37290-10-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/rmap: drop "compound" parameter from page_add_new_anon_rmap()David Hildenbrand1-5/+5
New anonymous pages are always mapped natively: only THP/khugepaged code maps a new compound anonymous page and passes "true". Otherwise, we're just dealing with simple, non-compound pages. Let's give the interface clearer semantics and document these. Remove the PageTransCompound() sanity check from page_add_new_anon_rmap(). Link: https://lkml.kernel.org/r/20220428083441.37290-9-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/rmap: remove do_page_add_anon_rmap()David Hildenbrand1-2/+2
... and instead convert page_add_anon_rmap() to accept flags. Passing flags instead of bools is usually nicer either way, and we want to more often also pass RMAP_EXCLUSIVE in follow up patches when detecting that an anonymous page is exclusive: for example, when restoring an anonymous page from a writable migration entry. This is a preparation for marking an anonymous page inside page_add_anon_rmap() as exclusive when RMAP_EXCLUSIVE is passed. Link: https://lkml.kernel.org/r/20220428083441.37290-7-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/rmap: convert RMAP flags to a proper distinct rmap_t typeDavid Hildenbrand1-3/+3
We want to pass the flags to more than one anon rmap function, getting rid of special "do_page_add_anon_rmap()". So let's pass around a distinct __bitwise type and refine documentation. Link: https://lkml.kernel.org/r/20220428083441.37290-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/rmap: split page_dup_rmap() into page_dup_file_rmap() and ↵David Hildenbrand1-5/+12
page_try_dup_anon_rmap() ... and move the special check for pinned pages into page_try_dup_anon_rmap() to prepare for tracking exclusive anonymous pages via a new pageflag, clearing it only after making sure that there are no GUP pins on the anonymous page. We really only care about pins on anonymous pages, because they are prone to getting replaced in the COW handler once mapped R/O. For !anon pages in cow-mappings (!VM_SHARED && VM_MAYWRITE) we shouldn't really care about that, at least not that I could come up with an example. Let's drop the is_cow_mapping() check from page_needs_cow_for_dma(), as we know we're dealing with anonymous pages. Also, drop the handling of pinned pages from copy_huge_pud() and add a comment if ever supporting anonymous pages on the PUD level. This is a preparation for tracking exclusivity of anonymous pages in the rmap code, and disallowing marking a page shared (-> failing to duplicate) if there are GUP pins on a page. Link: https://lkml.kernel.org/r/20220428083441.37290-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-10mm/memory: slightly simplify copy_present_pte()David Hildenbrand1-37/+16
Let's move the pinning check into the caller, to simplify return code logic and prepare for further changes: relocating the page_needs_cow_for_dma() into rmap handling code. While at it, remove the unused pte parameter and simplify the comments a bit. No functional change intended. Link: https://lkml.kernel.org/r/20220428083441.37290-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <namit@vmware.com> Cc: Oded Gabbay <oded.gabbay@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09mm,fs: Remove aops->readpageMatthew Wilcox (Oracle)1-2/+2
With all implementations of aops->readpage converted to aops->read_folio, we can stop checking whether it's set and remove the member from aops. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-04-29mm/vmstat: add events for ksm cowYang Yang1-0/+4
Users may use ksm by calling madvise(, , MADV_MERGEABLE) when they want to save memory, it's a tradeoff by suffering delay on ksm cow. Users can get to know how much memory ksm saved by reading /sys/kernel/mm/ksm/pages_sharing, but they don't know what's the costs of ksm cow, and this is important of some delay sensitive tasks. So add ksm cow events to help users evaluate whether or how to use ksm. Also update Documentation/admin-guide/mm/ksm.rst with new added events. Link: https://lkml.kernel.org/r/20220331035616.2390805-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: xu xin <xu.xin16@zte.com.cn> Reviewed-by: Ran Xiaokai <ran.xiaokai@zte.com.cn> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Saravanan D <saravanand@fb.com> Cc: Minchan Kim <minchan@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-29mm: simplify follow_invalidate_pte()Muchun Song1-58/+23
The only user (DAX) of range and pmdpp parameters of follow_invalidate_pte() is gone, it is safe to remove them and make it static to simlify the code. This is revertant of the following commits: 097963959594 ("mm: add follow_pte_pmd()") a4d1a8852513 ("dax: update to new mmu_notifier semantic") There is only one caller of the follow_invalidate_pte(). So just fold it into follow_pte() and remove it. Link: https://lkml.kernel.org/r/20220403053957.10770-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Alistair Popple <apopple@nvidia.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Ross Zwisler <zwisler@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-04-01mm,hwpoison: unmap poisoned page before invalidationRik van Riel1-4/+8
In some cases it appears the invalidation of a hwpoisoned page fails because the page is still mapped in another process. This can cause a program to be continuously restarted and die when it page faults on the page that was not invalidated. Avoid that problem by unmapping the hwpoisoned page when we find it. Another issue is that sometimes we end up oopsing in finish_fault, if the code tries to do something with the now-NULL vmf->page. I did not hit this error when submitting the previous patch because there are several opportunities for alloc_set_pte to bail out before accessing vmf->page, and that apparently happened on those systems, and most of the time on other systems, too. However, across several million systems that error does occur a handful of times a day. It can be avoided by returning VM_FAULT_NOPAGE which will cause do_read_fault to return before calling finish_fault. Link: https://lkml.kernel.org/r/20220325161428.5068d97e@imladris.surriel.com Fixes: e53ac7374e64 ("mm: invalidate hwpoison page cache page in fault path") Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Tested-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: unmap_mapping_range_tree() with i_mmap_rwsem sharedHugh Dickins1-4/+4
Revert 48ec833b7851 ("Revert "mm/memory.c: share the i_mmap_rwsem"") to reinstate c8475d144abb ("mm/memory.c: share the i_mmap_rwsem"): the unmap_mapping_range family of functions do the unmapping of user pages (ultimately via zap_page_range_single) without modifying the interval tree itself, and unmapping races are necessarily guarded by page table lock, thus the i_mmap_rwsem should be shared in unmap_mapping_pages() and unmap_mapping_folio(). Commit 48ec833b7851 was intended as a short-term measure, allowing the other shared lock changes into 3.19 final, before investigating three trinity crashes, one of which had been bisected to commit c8475d144ab: [1] https://lkml.org/lkml/2014/11/14/342 https://lore.kernel.org/lkml/5466142C.60100@oracle.com/ [2] https://lkml.org/lkml/2014/12/22/213 https://lore.kernel.org/lkml/549832E2.8060609@oracle.com/ [3] https://lkml.org/lkml/2014/12/9/741 https://lore.kernel.org/lkml/5487ACC5.1010002@oracle.com/ Two of those were Bad page states: free_pages_prepare() found PG_mlocked still set - almost certain to have been fixed by 4.4 commit b87537d9e2fe ("mm: rmap use pte lock not mmap_sem to set PageMlocked"). The NULL deref on rwsem in [2]: unclear, only happened once, not bisected to c8475d144ab. No change to the i_mmap_lock_write() around __unmap_hugepage_range_final() in unmap_single_vma(): IIRC that's a special usage, helping to serialize hugetlbfs page table sharing, not to be dabbled with lightly. No change to other uses of i_mmap_lock_write() by hugetlbfs. I am not aware of any significant gains from the concurrency allowed by this commit: it is submitted more to resolve an ancient misunderstanding. Link: https://lkml.kernel.org/r/e4a5e356-6c87-47b2-3ce8-c2a95ae84e20@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Sasha Levin <sashal@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: streamline COW logic in do_swap_page()David Hildenbrand1-12/+43
Currently we have a different COW logic when: * triggering a read-fault to swapin first and then trigger a write-fault -> do_swap_page() + do_wp_page() * triggering a write-fault to swapin -> do_swap_page() + do_wp_page() only if we fail reuse in do_swap_page() The COW logic in do_swap_page() is different than our reuse logic in do_wp_page(). The COW logic in do_wp_page() -- page_count() == 1 -- makes currently sure that we certainly don't have a remaining reference, e.g., via GUP, on the target page we want to reuse: if there is any unexpected reference, we have to copy to avoid information leaks. As do_swap_page() behaves differently, in environments with swap enabled we can currently have an unintended information leak from the parent to the child, similar as known from CVE-2020-29374: 1. Parent writes to anonymous page -> Page is mapped writable and modified 2. Page is swapped out -> Page is unmapped and replaced by swap entry 3. fork() -> Swap entries are copied to child 4. Child pins page R/O -> Page is mapped R/O into child 5. Child unmaps page -> Child still holds GUP reference 6. Parent writes to page -> Page is reused in do_swap_page() -> Child can observe changes Exchanging 2. and 3. should have the same effect. Let's apply the same COW logic as in do_wp_page(), conditionally trying to remove the page from the swapcache after freeing the swap entry, however, before actually mapping our page. We can change the order now that we use try_to_free_swap(), which doesn't care about the mapcount, instead of reuse_swap_page(). To handle references from the LRU pagevecs, conditionally drain the local LRU pagevecs when required, however, don't consider the page_count() when deciding whether to drain to keep it simple for now. Link: https://lkml.kernel.org/r/20220131162940.210846-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: slightly clarify KSM logic in do_swap_page()David Hildenbrand1-15/+23
Let's make it clearer that KSM might only have to copy a page in case we have a page in the swapcache, not if we allocated a fresh page and bypassed the swapcache. While at it, add a comment why this is usually necessary and merge the two swapcache conditions. [akpm@linux-foundation.org: fix comment, per David] Link: https://lkml.kernel.org/r/20220131162940.210846-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: optimize do_wp_page() for fresh pages in local LRU pagevecsDavid Hildenbrand1-1/+9
For example, if a page just got swapped in via a read fault, the LRU pagevecs might still hold a reference to the page. If we trigger a write fault on such a page, the additional reference from the LRU pagevecs will prohibit reusing the page. Let's conditionally drain the local LRU pagevecs when we stumble over a !PageLRU() page. We cannot easily drain remote LRU pagevecs and it might not be desirable performance-wise. Consequently, this will only avoid copying in some cases. Add a simple "page_count(page) > 3" check first but keep the "page_count(page) > 1 + PageSwapCache(page)" check in place, as we want to minimize cases where we remove a page from the swapcache but won't be able to reuse it, for example, because another process has it mapped R/O, to not affect reclaim. We cannot easily handle the following cases and we will always have to copy: (1) The page is referenced in the LRU pagevecs of other CPUs. We really would have to drain the LRU pagevecs of all CPUs -- most probably copying is much cheaper. (2) The page is already PageLRU() but is getting moved between LRU lists, for example, for activation (e.g., mark_page_accessed()), deactivation (MADV_COLD), or lazyfree (MADV_FREE). We'd have to drain mostly unconditionally, which might be bad performance-wise. Most probably this won't happen too often in practice. Note that there are other reasons why an anon page might temporarily not be PageLRU(): for example, compaction and migration have to isolate LRU pages from the LRU lists first (isolate_lru_page()), moving them to temporary local lists and clearing PageLRU() and holding an additional reference on the page. In that case, we'll always copy. This change seems to be fairly effective with the reproducer [1] shared by Nadav, as long as writeback is done synchronously, for example, using zram. However, with asynchronous writeback, we'll usually fail to free the swapcache because the page is still under writeback: something we cannot easily optimize for, and maybe it's not really relevant in practice. [1] https://lkml.kernel.org/r/0480D692-D9B2-429A-9A88-9BBA1331AC3A@gmail.com Link: https://lkml.kernel.org/r/20220131162940.210846-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: David Rientjes <rientjes@google.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Liang Zhang <zhangliang5@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-25mm: optimize do_wp_page() for exclusive pages in the swapcacheDavid Hildenbrand1-6/+14
Patch series "mm: COW fixes part 1: fix the COW security issue for THP and swap", v3. This series attempts to optimize and streamline the COW logic for ordinary anon pages and THP anon pages, fixing two remaining instances of CVE-2020-29374 in do_swap_page() and do_huge_pmd_wp_page(): information can leak from a parent process to a child process via anonymous pages shared during fork(). This issue, including other related COW issues, has been summarized in [2]: "1. Observing Memory Modifications of Private Pages From A Child Process Long story short: process-private memory might not be as private as you think once you fork(): successive modifications of private memory regions in the parent process can still be observed by the child process, for example, by smart use of vmsplice()+munmap(). The core problem is that pinning pages readable in a child process, such as done via the vmsplice system call, can result in a child process observing memory modifications done in the parent process the child is not supposed to observe. [1] contains an excellent summary and [2] contains further details. This issue was assigned CVE-2020-29374 [9]. For this to trigger, it's required to use a fork() without subsequent exec(), for example, as used under Android zygote. Without further details about an application that forks less-privileged child processes, one cannot really say what's actually affected and what's not -- see the details section the end of this mail for a short sshd/openssh analysis. While commit 17839856fd58 ("gup: document and work around "COW can break either way" issue") fixed this issue and resulted in other problems (e.g., ptrace on pmem), commit 09854ba94c6a ("mm: do_wp_page() simplification") re-introduced part of the problem unfortunately. The original reproducer can be modified quite easily to use THP [3] and make the issue appear again on upstream kernels. I modified it to use hugetlb [4] and it triggers as well. The problem is certainly less severe with hugetlb than with THP; it merely highlights that we still have plenty of open holes we should be closing/fixing. Regarding vmsplice(), the only known workaround is to disallow the vmsplice() system call ... or disable THP and hugetlb. But who knows what else is affected (RDMA? O_DIRECT?) to achieve the same goal -- in the end, it's a more generic issue" This security issue was first reported by Jann Horn on 27 May 2020 and it currently affects anonymous pages during swapin, anonymous THP and hugetlb. This series tackles anonymous pages during swapin and anonymous THP: - do_swap_page() for handling COW on PTEs during swapin directly - do_huge_pmd_wp_page() for handling COW on PMD-mapped THP during write faults With this series, we'll apply the same COW logic we have in do_wp_page() to all swappable anon pages: don't reuse (map writable) the page in case there are additional references (page_count() != 1). All users of reuse_swap_page() are remove, and consequently reuse_swap_page() is removed. In general, we're struggling with the following COW-related issues: (1) "missed COW": we miss to copy on write and reuse the page (map it writable) although we must copy because there are pending references from another process to this page. The result is a security issue. (2) "wrong COW": we copy on write although we wouldn't have to and shouldn't: if there are valid GUP references, they will become out of sync with the pages mapped into the page table. We fail to detect that such a page can be reused safely, especially if never more than a single process mapped the page. The result is an intra process memory corruption. (3) "unnecessary COW": we copy on write although we wouldn't have to: performance degradation and temporary increases swap+memory consumption can be the result. While this series fixes (1) for swappable anon pages, it tries to reduce reported cases of (3) first as good and easy as possible to limit the impact when streamlining. The individual patches try to describe in which cases we will run into (3). This series certainly makes (2) worse for THP, because a THP will now get PTE-mapped on write faults if there are additional references, even if there was only ever a single process involved: once PTE-mapped, we'll copy each and every subpage and won't reuse any subpage as long as the underlying compound page wasn't split. I'm working on an approach to fix (2) and improve (3): PageAnonExclusive to mark anon pages that are exclusive to a single process, allow GUP pins only on such exclusive pages, and allow turning exclusive pages shared (clearing PageAnonExclusive) only if there are no GUP pins. Anon pages with PageAnonExclusive set never have to be copied during write faults, but eventually during fork() if they cannot be turned shared. The improved reuse logic in this series will essentially also be the logic to reset PageAnonExclusive. This work will certainly take a while, but I'm planning on sharing details before having code fully ready. #1-#5 can be applied independently of the rest. #6-#9 are mostly only cleanups related to reuse_swap_page(). Notes: * For now, I'll leave hugetlb code untouched: "unnecessary COW" might easily break existing setups because hugetlb pages are a scarce resource and we could just end up having to crash the application when we run out of hugetlb pages. We have to be very careful and the security aspect with hugetlb is most certainly less relevant than for unprivileged anon pages. * Instead of lru_add_drain() we might actually just drain the lru_add list or even just remove the single page of interest from the lru_add list. This would require a new helper function, and could be added if the conditional lru_add_drain() turn out to be a problem. * I extended the test case already included in [1] to also test for the newly found do_swap_page() case. I'll send that out separately once/if this part was merged. [1] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com [2] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com This patch (of 9): Liang Zhang reported [1] that the current COW logic in do_wp_page() is sub-optimal when it comes to swap+read fault+write fault of anonymous pages that have a single user, visible via a performance degradation in the redis benchmark. Something similar was previously reported [2] by Nadav with a simple reproducer. After we put an anon page into the swapcache and unmapped it from a single process, that process might read that page again and refault it read-only. If that process then writes to that page, the process is actually the exclusive user of the page, however, the COW logic in do_co_page() won't be able to reuse it due to the additional reference from the swapcache. Let's optimize for pages that have been added to the swapcache but only have an exclusive user. Try removing the swapcache reference if there is hope that we're the exclusive user. We will fail removing the swapcache reference in two scenarios: (1) There are additional swap entries referencing the page: copying instead of reusing is the right thing to do. (2) The page is under writeback: theoretically we might be able to reuse in some cases, however, we cannot remove the additional reference and will have to copy. Note that we'll only try removing the page from the swapcache when it's highly likely that we'll be the exclusive owner after removing the page from the swapache. As we're about to map that page writable and redirty it, that should not affect reclaim but is rather the right thing to do. Further, we might have additional references from the LRU pagevecs, which will force us to copy instead of being able to reuse. We'll try handling such references for some scenarios next. Concurrent writeback cannot be handled easily and we'll always have to copy. While at it, remove the superfluous page_mapcount() check: it's implicitly covered by the page_count() for ordinary anon pages. [1] https://lkml.kernel.org/r/20220113140318.11117-1-zhangliang5@huawei.com [2] https://lkml.kernel.org/r/0480D692-D9B2-429A-9A88-9BBA1331AC3A@gmail.com Link: https://lkml.kernel.org/r/20220131162940.210846-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: Liang Zhang <zhangliang5@huawei.com> Reported-by: Nadav Amit <nadav.amit@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jann Horn <jannh@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Don Dutile <ddutile@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-24Merge tag 'asm-generic-5.18' of ↵Linus Torvalds1-8/+0
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic updates from Arnd Bergmann: "There are three sets of updates for 5.18 in the asm-generic tree: - The set_fs()/get_fs() infrastructure gets removed for good. This was already gone from all major architectures, but now we can finally remove it everywhere, which loses some particularly tricky and error-prone code. There is a small merge conflict against a parisc cleanup, the solution is to use their new version. - The nds32 architecture ends its tenure in the Linux kernel. The hardware is still used and the code is in reasonable shape, but the mainline port is not actively maintained any more, as all remaining users are thought to run vendor kernels that would never be updated to a future release. - A series from Masahiro Yamada cleans up some of the uapi header files to pass the compile-time checks" * tag 'asm-generic-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (27 commits) nds32: Remove the architecture uaccess: remove CONFIG_SET_FS ia64: remove CONFIG_SET_FS support sh: remove CONFIG_SET_FS support sparc64: remove CONFIG_SET_FS support lib/test_lockup: fix kernel pointer check for separate address spaces uaccess: generalize access_ok() uaccess: fix type mismatch warnings from access_ok() arm64: simplify access_ok() m68k: fix access_ok for coldfire MIPS: use simpler access_ok() MIPS: Handle address errors for accesses above CPU max virtual user address uaccess: add generic __{get,put}_kernel_nofault nios2: drop access_ok() check from __put_user() x86: use more conventional access_ok() definition x86: remove __range_not_ok() sparc64: add __{get,put}_kernel_nofault() nds32: fix access_ok() checks in get/put_user uaccess: fix nios2 and microblaze get_user_8() sparc64: fix building assembly files ...
2022-03-23Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds1-28/+15
Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ...
2022-03-23userfaultfd: provide unmasked address on page-faultNadav Amit1-0/+1
Userfaultfd is supposed to provide the full address (i.e., unmasked) of the faulting access back to userspace. However, that is not the case for quite some time. Even running "userfaultfd_demo" from the userfaultfd man page provides the wrong output (and contradicts the man page). Notice that "UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and not the first read address (0x7fc5e30b300f). Address returned by mmap() = 0x7fc5e30b3000 fault_handler_thread(): poll() returns: nready = 1; POLLIN = 1; POLLERR = 0 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000 (uffdio_copy.copy returned 4096) Read address 0x7fc5e30b300f in main(): A Read address 0x7fc5e30b340f in main(): A Read address 0x7fc5e30b380f in main(): A Read address 0x7fc5e30b3c0f in main(): A The exact address is useful for various reasons and specifically for prefetching decisions. If it is known that the memory is populated by certain objects whose size is not page-aligned, then based on the faulting address, the uffd-monitor can decide whether to prefetch and prefault the adjacent page. This bug has been for quite some time in the kernel: since commit 1a29d85eb0f1 ("mm: use vmf->address instead of of vmf->virtual_address") vmf->virtual_address"), which dates back to 2016. A concern has been raised that existing userspace application might rely on the old/wrong behavior in which the address is masked. Therefore, it was suggested to provide the masked address unless the user explicitly asks for the exact address. Add a new userfaultfd feature UFFD_FEATURE_EXACT_ADDRESS to direct userfaultfd to provide the exact address. Add a new "real_address" field to vmf to hold the unmasked address. Provide the address to userspace accordingly. Initialize real_address in various code-paths to be consistent with address, even when it is not used, to be on the safe side. [namit@vmware.com: initialize real_address on all code paths, per Jan] Link: https://lkml.kernel.org/r/20220226022655.350562-1-namit@vmware.com [akpm@linux-foundation.org: fix typo in comment, per Jan] Link: https://lkml.kernel.org/r/20220218041003.3508-1-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: invalidate hwpoison page cache page in fault pathRik van Riel1-2/+7
Sometimes the page offlining code can leave behind a hwpoisoned clean page cache page. This can lead to programs being killed over and over and over again as they fault in the hwpoisoned page, get killed, and then get re-spawned by whatever wanted to run them. This is particularly embarrassing when the page was offlined due to having too many corrected memory errors. Now we are killing tasks due to them trying to access memory that probably isn't even corrupted. This problem can be avoided by invalidating the page from the page fault handler, which already has a branch for dealing with these kinds of pages. With this patch we simply pretend the page fault was successful if the page was invalidated, return to userspace, incur another page fault, read in the file from disk (to a new memory page), and then everything works again. Link: https://lkml.kernel.org/r/20220212213740.423efcea@imladris.surriel.com Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm/memory.c: use helper macro min and max in unmap_mapping_range_tree()Miaohe Lin1-6/+2
Use helper macro min and max to help simplify the code logic. Minor readability improvement. Link: https://lkml.kernel.org/r/20220224121134.35068-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm/memory.c: use helper function range_in_vma()Miaohe Lin1-1/+1
Use helper function range_in_vma() to check if address, address + size are within the vma range. Minor readability improvement. Link: https://lkml.kernel.org/r/20220219021441.29173-1-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: rework swap handling of zap_pte_rangePeter Xu1-15/+6
Clean the code up by merging the device private/exclusive swap entry handling with the rest, then we merge the pte clear operation too. struct* page is defined in multiple places in the function, move it upward. free_swap_and_cache() is only useful for !non_swap_entry() case, put it into the condition. No functional change intended. Link: https://lkml.kernel.org/r/20220216094810.60572-5-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: change zap_details.zap_mapping into even_cowsPeter Xu1-9/+7
Currently we have a zap_mapping pointer maintained in zap_details, when it is specified we only want to zap the pages that has the same mapping with what the caller has specified. But what we want to do is actually simpler: we want to skip zapping private (COW-ed) pages in some cases. We can refer to unmap_mapping_pages() callers where we could have passed in different even_cows values. The other user is unmap_mapping_folio() where we always want to skip private pages. According to Hugh, we used a mapping pointer for historical reason, as explained here: https://lore.kernel.org/lkml/391aa58d-ce84-9d4-d68d-d98a9c533255@google.com/ Quoting partly from Hugh: Which raises the question again of why I did not just use a boolean flag there originally: aah, I think I've found why. In those days there was a horrible "optimization", for better performance on some benchmark I guess, which when you read from /dev/zero into a private mapping, would map the zero page there (look up read_zero_pagealigned() and zeromap_page_range() if you dare). So there was another category of page to be skipped along with the anon COWs, and I didn't want multiple tests in the zap loop, so checking check_mapping against page->mapping did both. I think nowadays you could do it by checking for PageAnon page (or genuine swap entry) instead. This patch replaces the zap_details.zap_mapping pointer into the even_cows boolean, then we check it against PageAnon. Link: https://lkml.kernel.org/r/20220216094810.60572-4-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: Hugh Dickins <hughd@google.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: rename zap_skip_check_mapping() to should_zap_page()Peter Xu1-9/+8
The previous name is against the natural way people think. Invert the meaning and also the return value. No functional change intended. Link: https://lkml.kernel.org/r/20220216094810.60572-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Hugh Dickins <hughd@google.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: don't skip swap entry even if zap_details specifiedPeter Xu1-9/+31
Patch series "mm: Rework zap ptes on swap entries", v5. Patch 1 should fix a long standing bug for zap_pte_range() on zap_details usage. The risk is we could have some swap entries skipped while we should have zapped them. Migration entries are not the major concern because file backed memory always zap in the pattern that "first time without page lock, then re-zap with page lock" hence the 2nd zap will always make sure all migration entries are already recovered. However there can be issues with real swap entries got skipped errornoously. There's a reproducer provided in commit message of patch 1 for that. Patch 2-4 are cleanups that are based on patch 1. After the whole patchset applied, we should have a very clean view of zap_pte_range(). Only patch 1 needs to be backported to stable if necessary. This patch (of 4): The "details" pointer shouldn't be the token to decide whether we should skip swap entries. For example, when the callers specified details->zap_mapping==NULL, it means the user wants to zap all the pages (including COWed pages), then we need to look into swap entries because there can be private COWed pages that was swapped out. Skipping some swap entries when details is non-NULL may lead to wrongly leaving some of the swap entries while we should have zapped them. A reproducer of the problem: ===8<=== #define _GNU_SOURCE /* See feature_test_macros(7) */ #include <stdio.h> #include <assert.h> #include <unistd.h> #include <sys/mman.h> #include <sys/types.h> int page_size; int shmem_fd; char *buffer; void main(void) { int ret; char val; page_size = getpagesize(); shmem_fd = memfd_create("test", 0); assert(shmem_fd >= 0); ret = ftruncate(shmem_fd, page_size * 2); assert(ret == 0); buffer = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE, MAP_PRIVATE, shmem_fd, 0); assert(buffer != MAP_FAILED); /* Write private page, swap it out */ buffer[page_size] = 1; madvise(buffer, page_size * 2, MADV_PAGEOUT); /* This should drop private buffer[page_size] already */ ret = ftruncate(shmem_fd, page_size); assert(ret == 0); /* Recover the size */ ret = ftruncate(shmem_fd, page_size * 2); assert(ret == 0); /* Re-read the data, it should be all zero */ val = buffer[page_size]; if (val == 0) printf("Good\n"); else printf("BUG\n"); } ===8<=== We don't need to touch up the pmd path, because pmd never had a issue with swap entries. For example, shmem pmd migration will always be split into pte level, and same to swapping on anonymous. Add another helper should_zap_cows() so that we can also check whether we should zap private mappings when there's no page pointer specified. This patch drops that trick, so we handle swap ptes coherently. Meanwhile we should do the same check upon migration entry, hwpoison entry and genuine swap entries too. To be explicit, we should still remember to keep the private entries if even_cows==false, and always zap them when even_cows==true. The issue seems to exist starting from the initial commit of git. [peterx@redhat.com: comment tweaks] Link: https://lkml.kernel.org/r/20220217060746.71256-2-peterx@redhat.com Link: https://lkml.kernel.org/r/20220217060746.71256-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20220216094810.60572-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20220216094810.60572-2-peterx@redhat.com Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23mm: hugetlb: fix missing cache flush in copy_huge_page_from_user()Muchun Song1-0/+2
userfaultfd calls copy_huge_page_from_user() which does not do any cache flushing for the target page. Then the target page will be mapped to the user space with a different address (user address), which might have an alias issue with the kernel address used to copy the data from the user to. Fix this issue by flushing dcache in copy_huge_page_from_user(). Link: https://lkml.kernel.org/r/20220210123058.79206-4-songmuchun@bytedance.com Fixes: fa4d75c1de13 ("userfaultfd: hugetlbfs: add copy_huge_page_from_user for hugetlb userfaultfd support") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lars Persson <lars.persson@axis.com> Cc: Peter Xu <peterx@redhat.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-25uaccess: remove CONFIG_SET_FSArnd Bergmann1-8/+0
There are no remaining callers of set_fs(), so CONFIG_SET_FS can be removed globally, along with the thread_info field and any references to it. This turns access_ok() into a cheaper check against TASK_SIZE_MAX. As CONFIG_SET_FS is now gone, drop all remaining references to set_fs()/get_fs(), mm_segment_t, user_addr_max() and uaccess_kernel(). Acked-by: Sam Ravnborg <sam@ravnborg.org> # for sparc32 changes Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Tested-by: Sergey Matyukevich <sergey.matyukevich@synopsys.com> # for arc changes Acked-by: Stafford Horne <shorne@gmail.com> # [openrisc, asm-generic] Acked-by: Dinh Nguyen <dinguyen@kernel.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2022-02-17mm/munlock: rmap call mlock_vma_page() munlock_vma_page()Hugh Dickins1-30/+15
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them inline functions which check (vma->vm_flags & VM_LOCKED) before calling mlock_page() and munlock_page() in mm/mlock.c. Add bool compound to mlock_vma_page() and munlock_vma_page(): this is because we have understandable difficulty in accounting pte maps of THPs, and if passed a PageHead page, mlock_page() and munlock_page() cannot tell whether it's a pmd map to be counted or a pte map to be ignored. Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the others, and use that to call mlock_vma_page() at the end of the page adds, and munlock_vma_page() at the end of page_remove_rmap() (end or beginning? unimportant, but end was easier for assertions in testing). No page lock is required (although almost all adds happen to hold it): delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s. Certainly page lock did serialize with page migration, but I'm having difficulty explaining why that was ever important. Mlock accounting on THPs has been hard to define, differed between anon and file, involved PageDoubleMap in some places and not others, required clear_page_mlock() at some points. Keep it simple now: just count the pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks. page_add_new_anon_rmap() callers unchanged: they have long been calling lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED handling (it also checks for not VM_SPECIAL: I think that's overcautious, and inconsistent with other checks, that mmap_region() already prevents VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-01-20Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-4/+0
Merge more updates from Andrew Morton: "55 patches. Subsystems affected by this patch series: percpu, procfs, sysctl, misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2, hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits) lib: remove redundant assignment to variable ret ubsan: remove CONFIG_UBSAN_OBJECT_SIZE kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB btrfs: use generic Kconfig option for 256kB page size limit arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB configs: introduce debug.config for CI-like setup delayacct: track delays from memory compact Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact delayacct: cleanup flags in struct task_delay_info and functions use it delayacct: fix incomplete disable operation when switch enable to disable delayacct: support swapin delay accounting for swapping without blkio panic: remove oops_id panic: use error_report_end tracepoint on warnings fs/adfs: remove unneeded variable make code cleaner FAT: use io_schedule_timeout() instead of congestion_wait() hfsplus: use struct_group_attr() for memcpy() region nilfs2: remove redundant pointer sbufs fs/binfmt_elf: use PT_LOAD p_align values for static PIE const_structs.checkpatch: add frequently used ops structs ...
2022-01-20delayacct: support swapin delay accounting for swapping without blkioYang Yang1-4/+0
Currently delayacct accounts swapin delay only for swapping that cause blkio. If we use zram for swapping, tools/accounting/getdelays can't get any SWAP delay. It's useful to get zram swapin delay information, for example to adjust compress algorithm or /proc/sys/vm/swappiness. Reference to PSI, it accounts any kind of swapping by doing its work in swap_readpage(), no matter whether swapping causes blkio. Let delayacct do the similar work. Link: https://lkml.kernel.org/r/20211112083813.8559-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Reported-by: Zeal Robot <zealci@zte.com.cn> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-5/+7
Merge misc updates from Andrew Morton: "146 patches. Subsystems affected by this patch series: kthread, ia64, scripts, ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak, dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap, memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb, userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp, ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits) mm/damon: hide kernel pointer from tracepoint event mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging mm/damon/dbgfs: remove an unnecessary variable mm/damon: move the implementation of damon_insert_region to damon.h mm/damon: add access checking for hugetlb pages Docs/admin-guide/mm/damon/usage: update for schemes statistics mm/damon/dbgfs: support all DAMOS stats Docs/admin-guide/mm/damon/reclaim: document statistics parameters mm/damon/reclaim: provide reclamation statistics mm/damon/schemes: account how many times quota limit has exceeded mm/damon/schemes: account scheme actions that successfully applied mm/damon: remove a mistakenly added comment for a future feature Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning Docs/admin-guide/mm/damon/usage: remove redundant information Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks mm/damon: convert macro functions to static inline functions mm/damon: modify damon_rand() macro to static inline function mm/damon: move damon_rand() definition into damon.h ...
2022-01-15mm: remove last argument of reuse_swap_page()Matthew Wilcox (Oracle)1-1/+1
None of the callers care about the total_map_swapcount() any more. Link: https://lkml.kernel.org/r/20211220205943.456187-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: change page type prior to adding page table entryPasha Tatashin1-4/+5
Patch series "page table check", v3. Ensure that some memory corruptions are prevented by checking at the time of insertion of entries into user page tables that there is no illegal sharing. We have recently found a problem [1] that existed in kernel since 4.14. The problem was caused by broken page ref count and led to memory leaking from one process into another. The problem was accidentally detected by studying a dump of one process and noticing that one page contains memory that should not belong to this process. There are some other page->_refcount related problems that were recently fixed: [2], [3] which potentially could also lead to illegal sharing. In addition to hardening refcount [4] itself, this work is an attempt to prevent this class of memory corruption issues. It uses a simple state machine that is independent from regular MM logic to check for illegal sharing at time pages are inserted and removed from page tables. [1] https://lore.kernel.org/all/xr9335nxwc5y.fsf@gthelen2.svl.corp.google.com [2] https://lore.kernel.org/all/1582661774-30925-2-git-send-email-akaher@vmware.com [3] https://lore.kernel.org/all/20210622021423.154662-3-mike.kravetz@oracle.com [4] https://lore.kernel.org/all/20211221150140.988298-1-pasha.tatashin@soleen.com This patch (of 4): There are a few places where we first update the entry in the user page table, and later change the struct page to indicate that this is anonymous or file page. In most places, however, we first configure the page metadata and then insert entries into the page table. Page table check, will use the information from struct page to verify the type of entry is inserted. Change the order in all places to first update struct page, and later to update page table. This means that we first do calls that may change the type of page (anon or file): page_move_anon_rmap page_add_anon_rmap do_page_add_anon_rmap page_add_new_anon_rmap page_add_file_rmap hugepage_add_anon_rmap hugepage_add_new_anon_rmap And after that do calls that add entries to the page table: set_huge_pte_at set_pte_at Link: https://lkml.kernel.org/r/20211221154650.1047963-1-pasha.tatashin@soleen.com Link: https://lkml.kernel.org/r/20211221154650.1047963-2-pasha.tatashin@soleen.com Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Turner <pjt@google.com> Cc: Wei Xu <weixugc@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Will Deacon <will@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Masahiro Yamada <masahiroy@kernel.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Jiri Slaby <jirislaby@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: move tlb_flush_pending inline helpers to mm_inline.hArnd Bergmann1-0/+1
linux/mm_types.h should only define structure definitions, to make it cheap to include elsewhere. The atomic_t helper function definitions are particularly large, so it's better to move the helpers using those into the existing linux/mm_inline.h and only include that where needed. As a follow-up, we may want to go through all the indirect includes in mm_types.h and reduce them as much as possible. Link: https://lkml.kernel.org/r/20211207125710.2503446-2-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Colin Cross <ccross@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-08mm: Add unmap_mapping_folio()Matthew Wilcox (Oracle)1-14/+35
Convert both callers of unmap_mapping_page() to call unmap_mapping_folio() instead. Also move zap_details from linux/mm.h to mm/memory.c Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com>
2021-11-07Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-92/+70
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ...
2021-11-06mm: remove redundant smp_wmb()Qi Zheng1-29/+23
The smp_wmb() which is in the __pte_alloc() is used to ensure all ptes setup is visible before the pte is made visible to other CPUs by being put into page tables. We only need this when the pte is actually populated, so move it to pmd_install(). __pte_alloc_kernel(), __p4d_alloc(), __pud_alloc() and __pmd_alloc() are similar to this case. We can also defer smp_wmb() to the place where the pmd entry is really populated by preallocated pte. There are two kinds of user of preallocated pte, one is filemap & finish_fault(), another is THP. The former does not need another smp_wmb() because the smp_wmb() has been done by pmd_install(). Fortunately, the latter also does not need another smp_wmb() because there is already a smp_wmb() before populating the new pte when the THP uses a preallocated pte to split a huge pmd. Link: https://lkml.kernel.org/r/20210901102722.47686-3-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: introduce pmd_install() helperQi Zheng1-18/+16
Patch series "Do some code cleanups related to mm", v3. This patch (of 2): Currently we have three times the same few lines repeated in the code. Deduplicate them by newly introduced pmd_install() helper. Link: https://lkml.kernel.org/r/20210901102722.47686-1-zhengqi.arch@bytedance.com Link: https://lkml.kernel.org/r/20210901102722.47686-2-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Mika Penttila <mika.penttila@nextfour.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: add zap_skip_check_mapping() helperPeter Xu1-23/+6
Use the helper for the checks. Rename "check_mapping" into "zap_mapping" because "check_mapping" looks like a bool but in fact it stores the mapping itself. When it's set, we check the mapping (it must be non-NULL). When it's cleared we skip the check, which works like the old way. Move the duplicated comments to the helper too. Link: https://lkml.kernel.org/r/20210915181538.11288-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: drop first_index/last_index in zap_detailsPeter Xu1-13/+18
The first_index/last_index parameters in zap_details are actually only used in unmap_mapping_range_tree(). At the meantime, this function is only called by unmap_mapping_pages() once. Instead of passing these two variables through the whole stack of page zapping code, remove them from zap_details and let them simply be parameters of unmap_mapping_range_tree(), which is inlined. Link: https://lkml.kernel.org/r/20210915181535.11238-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Liam Howlett <liam.howlett@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm: clear vmf->pte after pte_unmap_same() returnsPeter Xu1-6/+6
pte_unmap_same() will always unmap the pte pointer. After the unmap, vmf->pte will not be valid any more, we should clear it. It was safe only because no one is accessing vmf->pte after pte_unmap_same() returns, since the only caller of pte_unmap_same() (so far) is do_swap_page(), where vmf->pte will in most cases be overwritten very soon. Directly pass in vmf into pte_unmap_same() and then we can also avoid the long parameter list too, which should be a nice cleanup. Link: https://lkml.kernel.org/r/20210915181533.11188-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Liam Howlett <liam.howlett@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06mm/memory.c: avoid unnecessary kernel/user pointer conversionAmit Daniel Kachhap1-3/+1
Annotating a pointer from __user to kernel and then back again might confuse sparse. In copy_huge_page_from_user() it can be avoided by removing the intermediate variable since it is never used. Link: https://lkml.kernel.org/r/20210914150820.19326-1-amit.kachhap@arm.com Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vincenzo Frascino <Vincenzo.Frascino@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-01Merge tag 'locking-core-2021-10-31' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Thomas Gleixner: - Move futex code into kernel/futex/ and split up the kitchen sink into seperate files to make integration of sys_futex_waitv() simpler. - Add a new sys_futex_waitv() syscall which allows to wait on multiple futexes. The main use case is emulating Windows' WaitForMultipleObjects which allows Wine to improve the performance of Windows Games. Also native Linux games can benefit from this interface as this is a common wait pattern for this kind of applications. - Add context to ww_mutex_trylock() to provide a path for i915 to rework their eviction code step by step without making lockdep upset until the final steps of rework are completed. It's also useful for regulator and TTM to avoid dropping locks in the non contended path. - Lockdep and might_sleep() cleanups and improvements - A few improvements for the RT substitutions. - The usual small improvements and cleanups. * tag 'locking-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits) locking: Remove spin_lock_flags() etc locking/rwsem: Fix comments about reader optimistic lock stealing conditions locking: Remove rcu_read_{,un}lock() for preempt_{dis,en}able() locking/rwsem: Disable preemption for spinning region docs: futex: Fix kernel-doc references futex: Fix PREEMPT_RT build futex2: Documentation: Document sys_futex_waitv() uAPI selftests: futex: Test sys_futex_waitv() wouldblock selftests: futex: Test sys_futex_waitv() timeout selftests: futex: Add sys_futex_waitv() test futex,arm: Wire up sys_futex_waitv() futex,x86: Wire up sys_futex_waitv() futex: Implement sys_futex_waitv() futex: Simplify double_lock_hb() futex: Split out wait/wake futex: Split out requeue futex: Rename mark_wake_futex() futex: Rename: match_futex() futex: Rename: hb_waiter_{inc,dec,pending}() futex: Split out PI futex ...
2021-11-01Merge tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds1-9/+11
Pull memory folios from Matthew Wilcox: "Add memory folios, a new type to represent either order-0 pages or the head page of a compound page. This should be enough infrastructure to support filesystems converting from pages to folios. The point of all this churn is to allow filesystems and the page cache to manage memory in larger chunks than PAGE_SIZE. The original plan was to use compound pages like THP does, but I ran into problems with some functions expecting only a head page while others expect the precise page containing a particular byte. The folio type allows a function to declare that it's expecting only a head page. Almost incidentally, this allows us to remove various calls to VM_BUG_ON(PageTail(page)) and compound_head(). This converts just parts of the core MM and the page cache. For 5.17, we intend to convert various filesystems (XFS and AFS are ready; other filesystems may make it) and also convert more of the MM and page cache to folios. For 5.18, multi-page folios should be ready. The multi-page folios offer some improvement to some workloads. The 80% win is real, but appears to be an artificial benchmark (postgres startup, which isn't a serious workload). Real workloads (eg building the kernel, running postgres in a steady state, etc) seem to benefit between 0-10%. I haven't heard of any performance losses as a result of this series. Nobody has done any serious performance tuning; I imagine that tweaking the readahead algorithm could provide some more interesting wins. There are also other places where we could choose to create large folios and currently do not, such as writes that are larger than PAGE_SIZE. I'd like to thank all my reviewers who've offered review/ack tags: Christoph Hellwig, David Howells, Jan Kara, Jeff Layton, Johannes Weiner, Kirill A. Shutemov, Michal Hocko, Mike Rapoport, Vlastimil Babka, William Kucharski, Yu Zhao and Zi Yan. I'd also like to thank those who gave feedback I incorporated but haven't offered up review tags for this part of the series: Nick Piggin, Mel Gorman, Ming Lei, Darrick Wong, Ted Ts'o, John Hubbard, Hugh Dickins, and probably a few others who I forget" * tag 'folio-5.16' of git://git.infradead.org/users/willy/pagecache: (90 commits) mm/writeback: Add folio_write_one mm/filemap: Add FGP_STABLE mm/filemap: Add filemap_get_folio mm/filemap: Convert mapping_get_entry to return a folio mm/filemap: Add filemap_add_folio() mm/filemap: Add filemap_alloc_folio mm/page_alloc: Add folio allocation functions mm/lru: Add folio_add_lru() mm/lru: Convert __pagevec_lru_add_fn to take a folio mm: Add folio_evictable() mm/workingset: Convert workingset_refault() to take a folio mm/filemap: Add readahead_folio() mm/filemap: Add folio_mkwrite_check_truncate() mm/filemap: Add i_blocks_per_folio() mm/writeback: Add folio_redirty_for_writepage() mm/writeback: Add folio_account_redirty() mm/writeback: Add folio_clear_dirty_for_io() mm/writeback: Add folio_cancel_dirty() mm/writeback: Add folio_account_cleaned() mm/writeback: Add filemap_dirty_folio() ...
2021-10-29mm: filemap: check if THP has hwpoisoned subpage for PMD page faultYang Shi1-0/+9
When handling shmem page fault the THP with corrupted subpage could be PMD mapped if certain conditions are satisfied. But kernel is supposed to send SIGBUS when trying to map hwpoisoned page. There are two paths which may do PMD map: fault around and regular fault. Before commit f9ce0be71d1f ("mm: Cleanup faultaround and finish_fault() codepaths") the thing was even worse in fault around path. The THP could be PMD mapped as long as the VMA fits regardless what subpage is accessed and corrupted. After this commit as long as head page is not corrupted the THP could be PMD mapped. In the regular fault path the THP could be PMD mapped as long as the corrupted page is not accessed and the VMA fits. This loophole could be fixed by iterating every subpage to check if any of them is hwpoisoned or not, but it is somewhat costly in page fault path. So introduce a new page flag called HasHWPoisoned on the first tail page. It indicates the THP has hwpoisoned subpage(s). It is set if any subpage of THP is found hwpoisoned by memory failure and after the refcount is bumped successfully, then cleared when the THP is freed or split. The soft offline path doesn't need this since soft offline handler just marks a subpage hwpoisoned when the subpage is migrated successfully. But shmem THP didn't get split then migrated at all. Link: https://lkml.kernel.org/r/20211020210755.23964-3-shy828301@gmail.com Fixes: 800d8c63b2e9 ("shmem: add huge pages support") Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/workingset: Convert workingset_refault() to take a folioMatthew Wilcox (Oracle)1-1/+2
This nets us 178 bytes of savings from removing calls to compound_head. The three callers all grow a little, but each of them will be converted to use folios soon, so that's fine. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-10-01sched: Remove preempt_offset argument from __might_sleep()Thomas Gleixner1-1/+1
All callers hand in 0 and never will hand in anything else. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210923165358.054321586@linutronix.de