summaryrefslogtreecommitdiff
path: root/mm/vmscan.c
AgeCommit message (Collapse)AuthorFilesLines
2022-12-12mm: memcg: fix swapcached stat accountingHugh Dickins1-2/+1
I'd been worried by high "swapcached" counts in memcg OOM reports, thought we had a problem freeing swapcache, but it was just the accounting that was wrong. Two issues: 1. When __remove_mapping() removes swapcache, __delete_from_swap_cache() relies on memcg_data for the right counts to be updated; but that had already been reset by mem_cgroup_swapout(). Swap those calls around - mem_cgroup_swapout() does not require the swapcached flag to be set. 6.1 commit ac35a4902374 ("mm: multi-gen LRU: minimal implementation") already made a similar swap for workingset_eviction(), but not for this. 2. memcg's "swapcached" count was added for memcg v2 stats, but displayed on OOM even for memcg v1: so mem_cgroup_move_account() ought to move it. Link: https://lkml.kernel.org/r/b8b96ee0-1e1e-85f8-df97-c82a11d7cd14@google.com Fixes: b6038942480e ("mm: memcg: add swapcache stat for memcg v2") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-12mm: add nodes= arg to memory.reclaimMina Almasry1-1/+3
The nodes= arg instructs the kernel to only scan the given nodes for proactive reclaim. For example use cases, consider a 2 tier memory system: nodes 0,1 -> top tier nodes 2,3 -> second tier $ echo "1m nodes=0" > memory.reclaim This instructs the kernel to attempt to reclaim 1m memory from node 0. Since node 0 is a top tier node, demotion will be attempted first. This is useful to direct proactive reclaim to specific nodes that are under pressure. $ echo "1m nodes=2,3" > memory.reclaim This instructs the kernel to attempt to reclaim 1m memory in the second tier, since this tier of memory has no demotion targets the memory will be reclaimed. $ echo "1m nodes=0,1" > memory.reclaim Instructs the kernel to reclaim memory from the top tier nodes, which can be desirable according to the userspace policy if there is pressure on the top tiers. Since these nodes have demotion targets, the kernel will attempt demotion first. Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg reclaim""), the proactive reclaim interface memory.reclaim does both reclaim and demotion. Reclaim and demotion incur different latency costs to the jobs in the cgroup. Demoted memory would still be addressable by the userspace at a higher latency, but reclaimed memory would need to incur a pagefault. The 'nodes' arg is useful to allow the userspace to control demotion and reclaim independently according to its policy: if the memory.reclaim is called on a node with demotion targets, it will attempt demotion first; if it is called on a node without demotion targets, it will only attempt reclaim. Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Muchun Song <songmuchun@bytedance.com> Cc: Bagas Sanjaya <bagasdotme@gmail.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Tejun Heo <tj@kernel.org> Cc: Wei Xu <weixugc@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: zefan li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-12mm: disable top-tier fallback to reclaim on proactive reclaimMina Almasry1-3/+22
Reclaiming directly from top tier nodes breaks the aging pipeline of memory tiers. If we have a RAM -> CXL -> storage hierarchy, we should demote from RAM to CXL and from CXL to storage. If we reclaim a page from RAM, it means we 'demote' it directly from RAM to storage, bypassing potentially a huge amount of pages colder than it in CXL. However disabling reclaim from top tier nodes entirely would cause ooms in edge scenarios where lower tier memory is unreclaimable for whatever reason, e.g. memory being mlocked() or too hot to reclaim. In these cases we would rather the job run with a performance regression rather than it oom altogether. However, we can disable reclaim from top tier nodes for proactive reclaim. That reclaim is not real memory pressure, and we don't have any cause to be breaking the aging pipeline. [akpm@linux-foundation.org: restore comment layout, per Ying Huang] Link: https://lkml.kernel.org/r/20221201233317.1394958-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Xu <weixugc@google.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-12mm: memcg: fix stale protection of reclaim target memcgYosry Ahmed1-5/+6
Patch series "mm: memcg: fix protection of reclaim target memcg", v3. This series fixes a bug in calculating the protection of the reclaim target memcg where we end up using stale effective protection values from the last reclaim operation, instead of completely ignoring the protection of the reclaim target as intended. More detailed explanation and examples in patch 1, which includes the fix. Patches 2 & 3 introduce a selftest case that catches the bug. This patch (of 3): When we are doing memcg reclaim, the intended behavior is that we ignore any protection (memory.min, memory.low) of the target memcg (but not its children). Ever since the patch pointed to by the "Fixes" tag, we actually read a stale value for the target memcg protection when deciding whether to skip the memcg or not because it is protected. If the stale value happens to be high enough, we don't reclaim from the target memcg. Essentially, in some cases we may falsely skip reclaiming from the target memcg of reclaim because we read a stale protection value from last time we reclaimed from it. During reclaim, mem_cgroup_calculate_protection() is used to determine the effective protection (emin and elow) values of a memcg. The protection of the reclaim target is ignored, but we cannot set their effective protection to 0 due to a limitation of the current implementation (see comment in mem_cgroup_protection()). Instead, we leave their effective protection values unchaged, and later ignore it in mem_cgroup_protection(). However, mem_cgroup_protection() is called later in shrink_lruvec()->get_scan_count(), which is after the mem_cgroup_below_{min/low}() checks in shrink_node_memcgs(). As a result, the stale effective protection values of the target memcg may lead us to skip reclaiming from the target memcg entirely, before calling shrink_lruvec(). This can be even worse with recursive protection, where the stale target memcg protection can be higher than its standalone protection. See two examples below (a similar version of example (a) is added to test_memcontrol in a later patch). (a) A simple example with proactive reclaim is as follows. Consider the following hierarchy: ROOT | A | B (memory.min = 10M) Consider the following scenario: - B has memory.current = 10M. - The system undergoes global reclaim (or memcg reclaim in A). - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() calculates the effective min (emin) of B as 10M. - mem_cgroup_below_min() returns true for B, we do not reclaim from B. - Now if we want to reclaim 5M from B using proactive reclaim (memory.reclaim), we should be able to, as the protection of the target memcg should be ignored. - In shrink_node_memcgs(): - mem_cgroup_calculate_protection() immediately returns for B without doing anything, as B is the target memcg, relying on mem_cgroup_protection() to ignore B's stale effective min (still 10M). - mem_cgroup_below_min() reads the stale effective min for B and we skip it instead of ignoring its protection as intended, as we never reach mem_cgroup_protection(). (b) An more complex example with recursive protection is as follows. Consider the following hierarchy with memory_recursiveprot: ROOT | A (memory.min = 50M) | B (memory.min = 10M, memory.high = 40M) Consider the following scenario: - B has memory.current = 35M. - The system undergoes global reclaim (target memcg is NULL). - B will have an effective min of 50M (all of A's unclaimed protection). - B will not be reclaimed from. - Now allocate 10M more memory in B, pushing it above it's high limit. - The system undergoes memcg reclaim from B (target memcg is B). - Like example (a), we do nothing in mem_cgroup_calculate_protection(), then call mem_cgroup_below_min(), which will read the stale effective min for B (50M) and skip it. In this case, it's even worse because we are not just considering B's standalone protection (10M), but we are reading a much higher stale protection (50M) which will cause us to not reclaim from B at all. This is an artifact of commit 45c7f7e1ef17 ("mm, memcg: decouple e{low,min} state mutations from protection checks") which made mem_cgroup_calculate_protection() only change the state without returning any value. Before that commit, we used to return MEMCG_PROT_NONE for the target memcg, which would cause us to skip the mem_cgroup_below_{min/low}() checks. After that commit we do not return anything and we end up checking the min & low effective protections for the target memcg, which are stale. Update mem_cgroup_supports_protection() to also check if we are reclaiming from the target, and rename it to mem_cgroup_unprotected() (now returns true if we should not protect the memcg, much simpler logic). Link: https://lkml.kernel.org/r/20221202031512.1365483-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20221202031512.1365483-2-yosryahmed@google.com Fixes: 45c7f7e1ef17 ("mm, memcg: decouple e{low,min} state mutations from protection checks") Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: Chris Down <chris@chrisdown.name> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vasily Averin <vasily.averin@linux.dev> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-01mm: vmscan: use sysfs_emit() to instead of scnprintf()Xu Panda1-1/+1
Replace open-coded snprintf() with sysfs_emit() to simplify the code. Link: https://lkml.kernel.org/r/202211241929015476424@zte.com.cn Signed-off-by: Xu Panda <xu.panda@zte.com.cn> Signed-off-by: Yang Yang <yang.yang29@zte.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-01mm: multi-gen LRU: remove NULL checks on NODE_DATA()Yu Zhao1-11/+2
NODE_DATA() is preallocated for all possible nodes after commit 09f49dca570a ("mm: handle uninitialized numa nodes gracefully"). Checking its return value against NULL is now unnecessary. Link: https://lkml.kernel.org/r/20221116013808.3995280-2-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-01mm: make drop_caches keep reclaiming on all nodesJan Kara1-15/+18
Currently, drop_caches are reclaiming node-by-node, looping on each node until reclaim could not make progress. This can however leave quite some slab entries (such as filesystem inodes) unreclaimed if objects say on node 1 keep objects on node 0 pinned. So move the "loop until no progress" loop to the node-by-node iteration to retry reclaim also on other nodes if reclaim on some nodes made progress. This fixes problem when drop_caches was not reclaiming lots of otherwise perfectly fine to reclaim inodes. Link: https://lkml.kernel.org/r/20221115123255.12559-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reported-by: You Zhou <you.zhou@intel.com> Reported-by: Pengfei Xu <pengfei.xu@intel.com> Tested-by: Pengfei Xu <pengfei.xu@intel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-01mm: vmscan: split khugepaged stats from direct reclaim statsJohannes Weiner1-8/+24
Direct reclaim stats are useful for identifying a potential source for application latency, as well as spotting issues with kswapd. However, khugepaged currently distorts the picture: as a kernel thread it doesn't impose allocation latencies on userspace, and it explicitly opts out of kswapd reclaim. Its activity showing up in the direct reclaim stats is misleading. Counting it as kswapd reclaim could also cause confusion when trying to understand actual kswapd behavior. Break out khugepaged from the direct reclaim counters into new pgsteal_khugepaged, pgdemote_khugepaged, pgscan_khugepaged counters. Test with a huge executable (CONFIG_READ_ONLY_THP_FOR_FS): pgsteal_kswapd 1342185 pgsteal_direct 0 pgsteal_khugepaged 3623 pgscan_kswapd 1345025 pgscan_direct 0 pgscan_khugepaged 3623 Link: https://lkml.kernel.org/r/20221026180133.377671-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Eric Bergen <ebergen@meta.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-01Merge branch 'mm-hotfixes-stable' into mm-stableAndrew Morton1-23/+59
2022-12-01mm: introduce arch_has_hw_nonleaf_pmd_young()Juergen Gross1-5/+5
When running as a Xen PV guests commit eed9a328aa1a ("mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG") can cause a protection violation in pmdp_test_and_clear_young(): BUG: unable to handle page fault for address: ffff8880083374d0 #PF: supervisor write access in kernel mode #PF: error_code(0x0003) - permissions violation PGD 3026067 P4D 3026067 PUD 3027067 PMD 7fee5067 PTE 8010000008337065 Oops: 0003 [#1] PREEMPT SMP NOPTI CPU: 7 PID: 158 Comm: kswapd0 Not tainted 6.1.0-rc5-20221118-doflr+ #1 RIP: e030:pmdp_test_and_clear_young+0x25/0x40 This happens because the Xen hypervisor can't emulate direct writes to page table entries other than PTEs. This can easily be fixed by introducing arch_has_hw_nonleaf_pmd_young() similar to arch_has_hw_pte_young() and test that instead of CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG. Link: https://lkml.kernel.org/r/20221123064510.16225-1-jgross@suse.com Fixes: eed9a328aa1a ("mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG") Signed-off-by: Juergen Gross <jgross@suse.com> Reported-by: Sander Eikelenboom <linux@eikelenboom.it> Acked-by: Yu Zhao <yuzhao@google.com> Tested-by: Sander Eikelenboom <linux@eikelenboom.it> Acked-by: David Hildenbrand <david@redhat.com> [core changes] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-23mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1Aneesh Kumar K.V1-1/+13
balance_dirty_pages doesn't do the required dirty throttling on cgroupv1. See commit 9badce000e2c ("cgroup, writeback: don't enable cgroup writeback on traditional hierarchies"). Instead, the kernel depends on writeback throttling in shrink_folio_list to achieve the same goal. With large memory systems, the flusher may not be able to writeback quickly enough such that we will start finding pages in the shrink_folio_list already in writeback. Hence for cgroupv1 let's do a reclaim throttle after waking up the flusher. The below test which used to fail on a 256GB system completes till the the file system is full with this change. root@lp2:/sys/fs/cgroup/memory# mkdir test root@lp2:/sys/fs/cgroup/memory# cd test/ root@lp2:/sys/fs/cgroup/memory/test# echo 120M > memory.limit_in_bytes root@lp2:/sys/fs/cgroup/memory/test# echo $$ > tasks root@lp2:/sys/fs/cgroup/memory/test# dd if=/dev/zero of=/home/kvaneesh/test bs=1M Killed Link: https://lkml.kernel.org/r/20221118070603.84081-1-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: zefan li <lizefan.x@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-23mm: multi-gen LRU: retry folios written back while isolatedYu Zhao1-11/+37
The page reclaim isolates a batch of folios from the tail of one of the LRU lists and works on those folios one by one. For a suitable swap-backed folio, if the swap device is async, it queues that folio for writeback. After the page reclaim finishes an entire batch, it puts back the folios it queued for writeback to the head of the original LRU list. In the meantime, the page writeback flushes the queued folios also by batches. Its batching logic is independent from that of the page reclaim. For each of the folios it writes back, the page writeback calls folio_rotate_reclaimable() which tries to rotate a folio to the tail. folio_rotate_reclaimable() only works for a folio after the page reclaim has put it back. If an async swap device is fast enough, the page writeback can finish with that folio while the page reclaim is still working on the rest of the batch containing it. In this case, that folio will remain at the head and the page reclaim will not retry it before reaching there. This patch adds a retry to evict_folios(). After evict_folios() has finished an entire batch and before it puts back folios it cannot free immediately, it retries those that may have missed the rotation. Before this patch, ~60% of folios swapped to an Intel Optane missed folio_rotate_reclaimable(). After this patch, ~99% of missed folios were reclaimed upon retry. This problem affects relatively slow async swap devices like Samsung 980 Pro much less and does not affect sync swap devices like zram or zswap at all. Link: https://lkml.kernel.org/r/20221116013808.3995280-1-yuzhao@google.com Fixes: ac35a4902374 ("mm: multi-gen LRU: minimal implementation") Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: "Yin, Fengwei" <fengwei.yin@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-23mm: vmscan: fix extreme overreclaim and swap floodsJohannes Weiner1-6/+4
During proactive reclaim, we sometimes observe severe overreclaim, with several thousand times more pages reclaimed than requested. This trace was obtained from shrink_lruvec() during such an instance: prio:0 anon_cost:1141521 file_cost:7767 nr_reclaimed:4387406 nr_to_reclaim:1047 (or_factor:4190) nr=[7161123 345 578 1111] While he reclaimer requested 4M, vmscan reclaimed close to 16G, most of it by swapping. These requests take over a minute, during which the write() to memory.reclaim is unkillably stuck inside the kernel. Digging into the source, this is caused by the proportional reclaim bailout logic. This code tries to resolve a fundamental conflict: to reclaim roughly what was requested, while also aging all LRUs fairly and in accordance to their size, swappiness, refault rates etc. The way it attempts fairness is that once the reclaim goal has been reached, it stops scanning the LRUs with the smaller remaining scan targets, and adjusts the remainder of the bigger LRUs according to how much of the smaller LRUs was scanned. It then finishes scanning that remainder regardless of the reclaim goal. This works fine if priority levels are low and the LRU lists are comparable in size. However, in this instance, the cgroup that is targeted by proactive reclaim has almost no files left - they've already been squeezed out by proactive reclaim earlier - and the remaining anon pages are hot. Anon rotations cause the priority level to drop to 0, which results in reclaim targeting all of anon (a lot) and all of file (almost nothing). By the time reclaim decides to bail, it has scanned most or all of the file target, and therefor must also scan most or all of the enormous anon target. This target is thousands of times larger than the reclaim goal, thus causing the overreclaim. The bailout code hasn't changed in years, why is this failing now? The most likely explanations are two other recent changes in anon reclaim: 1. Before the series starting with commit 5df741963d52 ("mm: fix LRU balancing effect of new transparent huge pages"), the VM was overall relatively reluctant to swap at all, even if swap was configured. This means the LRU balancing code didn't come into play as often as it does now, and mostly in high pressure situations where pronounced swap activity wouldn't be as surprising. 2. For historic reasons, shrink_lruvec() loops on the scan targets of all LRU lists except the active anon one, meaning it would bail if the only remaining pages to scan were active anon - even if there were a lot of them. Before the series starting with commit ccc5dc67340c ("mm/vmscan: make active/inactive ratio as 1:1 for anon lru"), most anon pages would live on the active LRU; the inactive one would contain only a handful of preselected reclaim candidates. After the series, anon gets aged similarly to file, and the inactive list is the default for new anon pages as well, making it often the much bigger list. As a result, the VM is now more likely to actually finish large anon targets than before. Change the code such that only one SWAP_CLUSTER_MAX-sized nudge toward the larger LRU lists is made before bailing out on a met reclaim goal. This fixes the extreme overreclaim problem. Fairness is more subtle and harder to evaluate. No obvious misbehavior was observed on the test workload, in any case. Conceptually, fairness should primarily be a cumulative effect from regular, lower priority scans. Once the VM is in trouble and needs to escalate scan targets to make forward progress, fairness needs to take a backseat. This is also acknowledged by the myriad exceptions in get_scan_count(). This patch makes fairness decrease gradually, as it keeps fairness work static over increasing priority levels with growing scan targets. This should make more sense - although we may have to re-visit the exact values. Link: https://lkml.kernel.org/r/20220802162811.39216-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-09mm: vmscan: make rotations a secondary factor in balancing anon vs fileJohannes Weiner1-1/+3
We noticed a 2% webserver throughput regression after upgrading from 5.6. This could be tracked down to a shift in the anon/file reclaim balance (confirmed with swappiness) that resulted in worse reclaim efficiency and thus more kswapd activity for the same outcome. The change that exposed the problem is aae466b0052e ("mm/swap: implement workingset detection for anonymous LRU"). By qualifying swapins based on their refault distance, it lowered the cost of anon reclaim in this workload, in turn causing (much) more anon scanning than before. Scanning the anon list is more expensive due to the higher ratio of mmapped pages that may rotate during reclaim, and so the result was an increase in %sys time. Right now, rotations aren't considered a cost when balancing scan pressure between LRUs. We can end up with very few file refaults putting all the scan pressure on hot anon pages that are rotated en masse, don't get reclaimed, and never push back on the file LRU again. We still only reclaim file cache in that case, but we burn a lot CPU rotating anon pages. It's "fair" from an LRU age POV, but doesn't reflect the real cost it imposes on the system. Consider rotations as a secondary factor in balancing the LRUs. This doesn't attempt to make a precise comparison between IO cost and CPU cost, it just says: if reloads are about comparable between the lists, or rotations are overwhelmingly different, adjust for CPU work. This fixed the regression on our webservers. It has since been deployed to the entire Meta fleet and hasn't caused any problems. Link: https://lkml.kernel.org/r/20221013193113.726425-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-08mglru: mm/vmscan.c: fix imprecise commentsYu Zhao1-5/+4
Link: https://lkml.kernel.org/r/YzSWfFI+MOeb1ils@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-08mm/mglru: don't sync disk for each aging cycleYu Zhao1-2/+0
wakeup_flusher_threads() was added under the assumption that if a system runs out of clean cold pages, it might want to write back dirty pages more aggressively so that they can become clean and be dropped. However, doing so can breach the rate limit a system wants to impose on writeback, resulting in early SSD wearout. Link: https://lkml.kernel.org/r/YzSiWq9UEER5LKup@google.com Fixes: bd74fdaea146 ("mm: multi-gen LRU: support page table walks") Signed-off-by: Yu Zhao <yuzhao@google.com> Reported-by: Axel Rasmussen <axelrasmussen@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-04memcg: convert mem_cgroup_swap_full() to take a folioMatthew Wilcox (Oracle)1-2/+1
All callers now have a folio, so convert the function to take a folio. Saves a couple of calls to compound_head(). Link: https://lkml.kernel.org/r/20220902194653.1739778-48-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-04mm/swap: convert put_swap_page() to put_swap_folio()Matthew Wilcox (Oracle)1-1/+1
With all callers now using a folio, we can convert this function. Link: https://lkml.kernel.org/r/20220902194653.1739778-14-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-04mm/swapfile: convert try_to_free_swap() to folio_free_swap()Matthew Wilcox (Oracle)1-1/+1
Add kernel-doc for folio_free_swap() and make it return bool. Add a try_to_free_swap() compatibility wrapper. Link: https://lkml.kernel.org/r/20220902194653.1739778-11-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-04mm/vmscan: fix a lot of commentsMatthew Wilcox (Oracle)1-133/+130
Patch series "MM folio changes for 6.1", v2. My focus this round has been on shmem. I believe it is now fully converted to folios. Of course, shmem interacts with a lot of the swap cache and other parts of the kernel, so there are patches all over the MM. This patch series survives a round of xfstests on tmpfs, which is nice, but hardly an exhaustive test. Hugh was nice enough to run a round of tests on it and found a bug which is fixed in this edition. This patch (of 57): A lot of comments mention pages when they should say folios. Fix them up. [akpm@linux-foundation.org: fixups for mglru additions] Link: https://lkml.kernel.org/r/20220902194653.1739778-1-willy@infradead.org Link: https://lkml.kernel.org/r/20220902194653.1739778-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm/vmscan: use vma iterator instead of vm_nextLiam R. Howlett1-9/+3
Use the vma iterator in in get_next_vma() instead of the linked list. [yuzhao@google.com: mm/vmscan: use the proper VMA iterator] Link: https://lkml.kernel.org/r/Yx+QGOgHg1Wk8tGK@google.com Link: https://lkml.kernel.org/r/20220906194824.2110408-68-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Yu Zhao <yuzhao@google.com> Tested-by: Yu Zhao <yuzhao@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm/demotion: demote pages according to allocation fallback orderJagdish Gediya1-15/+43
Currently, a higher tier node can only be demoted to selected nodes on the next lower tier as defined by the demotion path. This strict demotion order does not work in all use cases (e.g. some use cases may want to allow cross-socket demotion to another node in the same demotion tier as a fallback when the preferred demotion node is out of space). This demotion order is also inconsistent with the page allocation fallback order when all the nodes in a higher tier are out of space: The page allocation can fall back to any node from any lower tier, whereas the demotion order doesn't allow that currently. This patch adds support to get all the allowed demotion targets for a memory tier. demote_page_list() function is now modified to utilize this allowed node mask as the fallback allocation mask. Link: https://lkml.kernel.org/r/20220818131042.113280-9-aneesh.kumar@linux.ibm.com Signed-off-by: Jagdish Gediya <jvgediya.oss@gmail.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm/demotion: move memory demotion related codeAneesh Kumar K.V1-0/+1
This moves memory demotion related code to mm/memory-tiers.c. No functional change in this patch. Link: https://lkml.kernel.org/r/20220818131042.113280-3-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Wei Xu <weixugc@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Bharata B Rao <bharata@amd.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Hesham Almatary <hesham.almatary@huawei.com> Cc: Jagdish Gediya <jvgediya.oss@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tim Chen <tim.c.chen@intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: admin guideYu Zhao1-0/+4
Add an admin guide. Link: https://lkml.kernel.org/r/20220918080010.2920238-14-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: debugfs interfaceYu Zhao1-10/+401
Add /sys/kernel/debug/lru_gen for working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. Compared with the page table-based approach and the PFN-based approach, this lruvec-based approach has the following advantages: 1. It offers better choices because it is aware of memcgs, NUMA nodes, shared mappings and unmapped page cache. 2. It is more scalable because it is O(nr_hot_pages), whereas the PFN-based approach is O(nr_total_pages). Add /sys/kernel/debug/lru_gen_full for debugging. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 Link: https://lkml.kernel.org/r/20220918080010.2920238-13-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: thrashing preventionYu Zhao1-3/+71
Add /sys/kernel/mm/lru_gen/min_ttl_ms for thrashing prevention, as requested by many desktop users [1]. When set to value N, it prevents the working set of N milliseconds from getting evicted. The OOM killer is triggered if this working set cannot be kept in memory. Based on the average human detectable lag (~100ms), N=1000 usually eliminates intolerable lags due to thrashing. Larger values like N=3000 make lags less noticeable at the risk of premature OOM kills. Compared with the size-based approach [2], this time-based approach has the following advantages: 1. It is easier to configure because it is agnostic to applications and memory sizes. 2. It is more reliable because it is directly wired to the OOM killer. [1] https://lore.kernel.org/r/Ydza%2FzXKY9ATRoh6@google.com/ [2] https://lore.kernel.org/r/20101028191523.GA14972@google.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-12-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: kill switchYu Zhao1-5/+223
Add /sys/kernel/mm/lru_gen/enabled as a kill switch. Components that can be disabled include: 0x0001: the multi-gen LRU core 0x0002: walking page table, when arch_has_hw_pte_young() returns true 0x0004: clearing the accessed bit in non-leaf PMD entries, when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y [yYnN]: apply to all the components above E.g., echo y >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0007 echo 5 >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0005 NB: the page table walks happen on the scale of seconds under heavy memory pressure, in which case the mmap_lock contention is a lesser concern, compared with the LRU lock contention and the I/O congestion. So far the only well-known case of the mmap_lock contention happens on Android, due to Scudo [1] which allocates several thousand VMAs for merely a few hundred MBs. The SPF and the Maple Tree also have provided their own assessments [2][3]. However, if walking page tables does worsen the mmap_lock contention, the kill switch can be used to disable it. In this case the multi-gen LRU will suffer a minor performance degradation, as shown previously. Clearing the accessed bit in non-leaf PMD entries can also be disabled, since this behavior was not tested on x86 varieties other than Intel and AMD. [1] https://source.android.com/devices/tech/debug/scudo [2] https://lore.kernel.org/r/20220128131006.67712-1-michel@lespinasse.org/ [3] https://lore.kernel.org/r/20220426150616.3937571-1-Liam.Howlett@oracle.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-11-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: optimize multiple memcgsYu Zhao1-9/+96
When multiple memcgs are available, it is possible to use generations as a frame of reference to make better choices and improve overall performance under global memory pressure. This patch adds a basic optimization to select memcgs that can drop single-use unmapped clean pages first. Doing so reduces the chance of going into the aging path or swapping, which can be costly. A typical example that benefits from this optimization is a server running mixed types of workloads, e.g., heavy anon workload in one memcg and heavy buffered I/O workload in the other. Though this optimization can be applied to both kswapd and direct reclaim, it is only added to kswapd to keep the patchset manageable. Later improvements may cover the direct reclaim path. While ensuring certain fairness to all eligible memcgs, proportional scans of individual memcgs also require proper backoff to avoid overshooting their aggregate reclaim target by too much. Otherwise it can cause high direct reclaim latency. The conditions for backoff are: 1. At low priorities, for direct reclaim, if aging fairness or direct reclaim latency is at risk, i.e., aging one memcg multiple times or swapping after the target is met. 2. At high priorities, for global reclaim, if per-zone free pages are above respective watermarks. Server benchmark results: Mixed workloads: fio (buffered I/O): +[19, 21]% IOPS BW patch1-8: 1880k 7343MiB/s patch1-9: 2252k 8796MiB/s memcached (anon): +[119, 123]% Ops/sec KB/sec patch1-8: 862768.65 33514.68 patch1-9: 1911022.12 74234.54 Mixed workloads: fio (buffered I/O): +[75, 77]% IOPS BW 5.19-rc1: 1279k 4996MiB/s patch1-9: 2252k 8796MiB/s memcached (anon): +[13, 15]% Ops/sec KB/sec 5.19-rc1: 1673524.04 65008.87 patch1-9: 1911022.12 74234.54 Configurations: (changes since patch 6) cat mixed.sh modprobe brd rd_nr=2 rd_size=56623104 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 mkfs.ext4 /dev/ram1 mount -t ext4 /dev/ram1 /mnt memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=50000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 fio -name=mglru --numjobs=36 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=90m --group_reporting & pid=$! sleep 200 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=50000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed kill -INT $pid wait Client benchmark results: no change (CONFIG_MEMCG=n) Link: https://lkml.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: support page table walksYu Zhao1-16/+994
To further exploit spatial locality, the aging prefers to walk page tables to search for young PTEs and promote hot pages. A kill switch will be added in the next patch to disable this behavior. When disabled, the aging relies on the rmap only. NB: this behavior has nothing similar with the page table scanning in the 2.4 kernel [1], which searches page tables for old PTEs, adds cold pages to swapcache and unmaps them. To avoid confusion, the term "iteration" specifically means the traversal of an entire mm_struct list; the term "walk" will be applied to page tables and the rmap, as usual. An mm_struct list is maintained for each memcg, and an mm_struct follows its owner task to the new memcg when this task is migrated. Given an lruvec, the aging iterates lruvec_memcg()->mm_list and calls walk_page_range() with each mm_struct on this list to promote hot pages before it increments max_seq. When multiple page table walkers iterate the same list, each of them gets a unique mm_struct; therefore they can run concurrently. Page table walkers ignore any misplaced pages, e.g., if an mm_struct was migrated, pages it left in the previous memcg will not be promoted when its current memcg is under reclaim. Similarly, page table walkers will not promote pages from nodes other than the one under reclaim. This patch uses the following optimizations when walking page tables: 1. It tracks the usage of mm_struct's between context switches so that page table walkers can skip processes that have been sleeping since the last iteration. 2. It uses generational Bloom filters to record populated branches so that page table walkers can reduce their search space based on the query results, e.g., to skip page tables containing mostly holes or misplaced pages. 3. It takes advantage of the accessed bit in non-leaf PMD entries when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y. 4. It does not zigzag between a PGD table and the same PMD table spanning multiple VMAs. IOW, it finishes all the VMAs within the range of the same PMD table before it returns to a PGD table. This improves the cache performance for workloads that have large numbers of tiny VMAs [2], especially when CONFIG_PGTABLE_LEVELS=5. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[8, 10]% Ops/sec KB/sec patch1-7: 1147696.57 44640.29 patch1-8: 1245274.91 48435.66 Configurations: no change Client benchmark results: kswapd profiles: patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset patch1-8 49.44% lzo1x_1_do_compress (real work) 6.19% page_vma_mapped_walk (overhead) 5.97% _raw_spin_unlock_irq 3.13% get_pfn_folio 2.85% ptep_clear_flush 2.42% __zram_bvec_write 2.08% do_raw_spin_lock 1.92% memmove 1.44% alloc_zspage 1.36% memset Configurations: no change Thanks to the following developers for their efforts [3]. kernel test robot <lkp@intel.com> [1] https://lwn.net/Articles/23732/ [2] https://llvm.org/docs/ScudoHardenedAllocator.html [3] https://lore.kernel.org/r/202204160827.ekEARWQo-lkp@intel.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-9-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: exploit locality in rmapYu Zhao1-0/+184
Searching the rmap for PTEs mapping each page on an LRU list (to test and clear the accessed bit) can be expensive because pages from different VMAs (PA space) are not cache friendly to the rmap (VA space). For workloads mostly using mapped pages, searching the rmap can incur the highest CPU cost in the reclaim path. This patch exploits spatial locality to reduce the trips into the rmap. When shrink_page_list() walks the rmap and finds a young PTE, a new function lru_gen_look_around() scans at most BITS_PER_LONG-1 adjacent PTEs. On finding another young PTE, it clears the accessed bit and updates the gen counter of the page mapped by this PTE to (max_seq%MAX_NR_GENS)+1. Server benchmark results: Single workload: fio (buffered I/O): no change Single workload: memcached (anon): +[3, 5]% Ops/sec KB/sec patch1-6: 1106168.46 43025.04 patch1-7: 1147696.57 44640.29 Configurations: no change Client benchmark results: kswapd profiles: patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next patch1-7 48.16% lzo1x_1_do_compress (real work) 8.20% page_vma_mapped_walk (overhead) 7.06% _raw_spin_unlock_irq 2.92% ptep_clear_flush 2.53% __zram_bvec_write 2.11% do_raw_spin_lock 2.02% memmove 1.93% lru_gen_look_around 1.56% free_unref_page_list 1.40% memset Configurations: no change Link: https://lkml.kernel.org/r/20220918080010.2920238-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Barry Song <baohua@kernel.org> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: minimal implementationYu Zhao1-8/+784
To avoid confusion, the terms "promotion" and "demotion" will be applied to the multi-gen LRU, as a new convention; the terms "activation" and "deactivation" will be applied to the active/inactive LRU, as usual. The aging produces young generations. Given an lruvec, it increments max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS. The aging promotes hot pages to the youngest generation when it finds them accessed through page tables; the demotion of cold pages happens consequently when it increments max_seq. Promotion in the aging path does not involve any LRU list operations, only the updates of the gen counter and lrugen->nr_pages[]; demotion, unless as the result of the increment of max_seq, requires LRU list operations, e.g., lru_deactivate_fn(). The aging has the complexity O(nr_hot_pages), since it is only interested in hot pages. The eviction consumes old generations. Given an lruvec, it increments min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty. A feedback loop modeled after the PID controller monitors refaults over anon and file types and decides which type to evict when both types are available from the same generation. The protection of pages accessed multiple times through file descriptors takes place in the eviction path. Each generation is divided into multiple tiers. A page accessed N times through file descriptors is in tier order_base_2(N). Tiers do not have dedicated lrugen->lists[], only bits in folio->flags. The aforementioned feedback loop also monitors refaults over all tiers and decides when to protect pages in which tiers (N>1), using the first tier (N=0,1) as a baseline. The first tier contains single-use unmapped clean pages, which are most likely the best choices. In contrast to promotion in the aging path, the protection of a page in the eviction path is achieved by moving this page to the next generation, i.e., min_seq+1, if the feedback loop decides so. This approach has the following advantages: 1. It removes the cost of activation in the buffered access path by inferring whether pages accessed multiple times through file descriptors are statistically hot and thus worth protecting in the eviction path. 2. It takes pages accessed through page tables into account and avoids overprotecting pages accessed multiple times through file descriptors. (Pages accessed through page tables are in the first tier, since N=0.) 3. More tiers provide better protection for pages accessed more than twice through file descriptors, when under heavy buffered I/O workloads. Server benchmark results: Single workload: fio (buffered I/O): +[30, 32]% IOPS BW 5.19-rc1: 2673k 10.2GiB/s patch1-6: 3491k 13.3GiB/s Single workload: memcached (anon): -[4, 6]% Ops/sec KB/sec 5.19-rc1: 1161501.04 45177.25 patch1-6: 1106168.46 43025.04 Configurations: CPU: two Xeon 6154 Mem: total 256G Node 1 was only used as a ram disk to reduce the variance in the results. patch drivers/block/brd.c <<EOF 99,100c99,100 < gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; < page = alloc_page(gfp_flags); --- > gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE; > page = alloc_pages_node(1, gfp_flags, 0); EOF cat >>/etc/systemd/system.conf <<EOF CPUAffinity=numa NUMAPolicy=bind NUMAMask=0 EOF cat >>/etc/memcached.conf <<EOF -m 184320 -s /var/run/memcached/memcached.sock -a 0766 -t 36 -B binary EOF cat fio.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkfs.ext4 /dev/ram0 mount -t ext4 /dev/ram0 /mnt mkdir /sys/fs/cgroup/user.slice/test echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=5m --group_reporting cat memcached.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed Client benchmark results: kswapd profiles: 5.19-rc1 40.33% page_vma_mapped_walk (overhead) 21.80% lzo1x_1_do_compress (real work) 7.53% do_raw_spin_lock 3.95% _raw_spin_unlock_irq 2.52% vma_interval_tree_iter_next 2.37% folio_referenced_one 2.28% vma_interval_tree_subtree_search 1.97% anon_vma_interval_tree_iter_first 1.60% ptep_clear_flush 1.06% __zram_bvec_write patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next Configurations: CPU: single Snapdragon 7c Mem: total 4G ChromeOS MemoryPressure [1] [1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/ Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm: multi-gen LRU: groundworkYu Zhao1-0/+75
Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27mm/vmscan.c: refactor shrink_node()Yu Zhao1-94/+104
This patch refactors shrink_node() to improve readability for the upcoming changes to mm/vmscan.c. Link: https://lkml.kernel.org/r/20220918080010.2920238-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Barry Song <baohua@kernel.org> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26Merge branch 'mm-hotfixes-stable' into mm-stableAndrew Morton1-2/+2
2022-09-12mm: fix null-ptr-deref in kswapd_is_running()Kefeng Wang1-11/+16
kswapd_run/stop() will set pgdat->kswapd to NULL, which could race with kswapd_is_running() in kcompactd(), kswapd_run/stop() kcompactd() kswapd_is_running() pgdat->kswapd // error or nomal ptr verify pgdat->kswapd // load non-NULL pgdat->kswapd pgdat->kswapd = NULL task_is_running(pgdat->kswapd) // Null pointer derefence KASAN reports the null-ptr-deref shown below, vmscan: Failed to start kswapd on node 0 ... BUG: KASAN: null-ptr-deref in kcompactd+0x440/0x504 Read of size 8 at addr 0000000000000024 by task kcompactd0/37 CPU: 0 PID: 37 Comm: kcompactd0 Kdump: loaded Tainted: G OE 5.10.60 #1 Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: dump_backtrace+0x0/0x394 show_stack+0x34/0x4c dump_stack+0x158/0x1e4 __kasan_report+0x138/0x140 kasan_report+0x44/0xdc __asan_load8+0x94/0xd0 kcompactd+0x440/0x504 kthread+0x1a4/0x1f0 ret_from_fork+0x10/0x18 At present kswapd/kcompactd_run() and kswapd/kcompactd_stop() are protected by mem_hotplug_begin/done(), but without kcompactd(). There is no need to involve memory hotplug lock in kcompactd(), so let's add a new mutex to protect pgdat->kswapd accesses. Also, because the kcompactd task will check the state of kswapd task, it's better to call kcompactd_stop() before kswapd_stop() to reduce lock conflicts. [akpm@linux-foundation.org: add comments] Link: https://lkml.kernel.org/r/20220827111959.186838-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-12mm/vmscan: make the annotations of refaults code at the right placeYang Yang1-5/+5
After patch "mm/workingset: prepare the workingset detection infrastructure for anon LRU", we can handle the refaults of anonymous pages too. So the annotations of refaults should cover both of anonymous pages and file pages. Link: https://lkml.kernel.org/r/20220813080757.59131-1-yang.yang29@zte.com.cn Fixes: 170b04b7ae4963 ("mm/workingset: prepare the workingset detection infrastructure for anon LRU") Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Signed-off-by: CGEL ZTE <cgel.zte@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-12mm/vmscan: define macros for refaults in struct lruvecYang Yang1-4/+4
The magic number 0 and 1 are used in several places in vmscan.c. Define macros for them to improve code readability. Link: https://lkml.kernel.org/r/20220808005644.1721066-1-yang.yang29@zte.com.cn Signed-off-by: Yang Yang <yang.yang29@zte.com.cn> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-12vmscan: check folio_test_private(), not folio_get_private()Matthew Wilcox (Oracle)1-2/+2
These two predicates are the same for file pages, but are not the same for anonymous pages. Link: https://lkml.kernel.org/r/20220902192639.1737108-3-willy@infradead.org Fixes: 07f67a8dedc0 ("mm/vmscan: convert shrink_active_list() to use a folio") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reported-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-08-06Merge tag 'mm-stable-2022-08-03' of ↵Linus Torvalds1-135/+197
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Most of the MM queue. A few things are still pending. Liam's maple tree rework didn't make it. This has resulted in a few other minor patch series being held over for next time. Multi-gen LRU still isn't merged as we were waiting for mapletree to stabilize. The current plan is to merge MGLRU into -mm soon and to later reintroduce mapletree, with a view to hopefully getting both into 6.1-rc1. Summary: - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe Lin, Yang Shi, Anshuman Khandual and Mike Rapoport - Some kmemleak fixes from Patrick Wang and Waiman Long - DAMON updates from SeongJae Park - memcg debug/visibility work from Roman Gushchin - vmalloc speedup from Uladzislau Rezki - more folio conversion work from Matthew Wilcox - enhancements for coherent device memory mapping from Alex Sierra - addition of shared pages tracking and CoW support for fsdax, from Shiyang Ruan - hugetlb optimizations from Mike Kravetz - Mel Gorman has contributed some pagealloc changes to improve latency and realtime behaviour. - mprotect soft-dirty checking has been improved by Peter Xu - Many other singleton patches all over the place" [ XFS merge from hell as per Darrick Wong in https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ] * tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits) tools/testing/selftests/vm/hmm-tests.c: fix build mm: Kconfig: fix typo mm: memory-failure: convert to pr_fmt() mm: use is_zone_movable_page() helper hugetlbfs: fix inaccurate comment in hugetlbfs_statfs() hugetlbfs: cleanup some comments in inode.c hugetlbfs: remove unneeded header file hugetlbfs: remove unneeded hugetlbfs_ops forward declaration hugetlbfs: use helper macro SZ_1{K,M} mm: cleanup is_highmem() mm/hmm: add a test for cross device private faults selftests: add soft-dirty into run_vmtests.sh selftests: soft-dirty: add test for mprotect mm/mprotect: fix soft-dirty check in can_change_pte_writable() mm: memcontrol: fix potential oom_lock recursion deadlock mm/gup.c: fix formatting in check_and_migrate_movable_page() xfs: fail dax mount if reflink is enabled on a partition mm/memcontrol.c: remove the redundant updating of stats_flush_threshold userfaultfd: don't fail on unrecognized features hugetlb_cgroup: fix wrong hugetlb cgroup numa stat ...
2022-07-30mm: vmpressure: don't count proactive reclaim in vmpressureYosry Ahmed1-10/+17
memory.reclaim is a cgroup v2 interface that allows users to proactively reclaim memory from a memcg, without real memory pressure. Reclaim operations invoke vmpressure, which is used: (a) To notify userspace of reclaim efficiency in cgroup v1, and (b) As a signal for a memcg being under memory pressure for networking (see mem_cgroup_under_socket_pressure()). For (a), vmpressure notifications in v1 are not affected by this change since memory.reclaim is a v2 feature. For (b), the effects of the vmpressure signal (according to Shakeel [1]) are as follows: 1. Reducing send and receive buffers of the current socket. 2. May drop packets on the rx path. 3. May throttle current thread on the tx path. Since proactive reclaim is invoked directly by userspace, not by memory pressure, it makes sense not to throttle networking. Hence, this change makes sure that proactive reclaim caused by memory.reclaim does not trigger vmpressure. [1] https://lore.kernel.org/lkml/CALvZod68WdrXEmBpOkadhB5GPYmCXaDZzXH=yyGOCAjFRn4NDQ@mail.gmail.com/ [yosryahmed@google.com: update documentation] Link: https://lkml.kernel.org/r/20220721173015.2643248-1-yosryahmed@google.com Link: https://lkml.kernel.org/r/20220714064918.2576464-1-yosryahmed@google.com Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Acked-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: NeilBrown <neilb@suse.de> Cc: Alistair Popple <apopple@nvidia.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-30mm: shrinkers: fix double kfree on shrinker nameTetsuo Handa1-2/+7
syzbot is reporting double kfree() at free_prealloced_shrinker() [1], for destroy_unused_super() calls free_prealloced_shrinker() even if prealloc_shrinker() returned an error. Explicitly clear shrinker name when prealloc_shrinker() called kfree(). [roman.gushchin@linux.dev: zero shrinker->name in all cases where shrinker->name is freed] Link: https://lkml.kernel.org/r/YtgteTnQTgyuKUSY@castle Link: https://syzkaller.appspot.com/bug?extid=8b481578352d4637f510 [1] Link: https://lkml.kernel.org/r/ffa62ece-6a42-2644-16cf-0d33ef32c676@I-love.SAKURA.ne.jp Fixes: e33c267ab70de424 ("mm: shrinkers: provide shrinkers with names") Reported-by: syzbot <syzbot+8b481578352d4637f510@syzkaller.appspotmail.com> Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm, docs: fix comments that mention mem_hotplug_end()Yun-Ze Li1-1/+1
Comments that mention mem_hotplug_end() are confusing as there is no function called mem_hotplug_end(). Fix them by replacing all the occurences of mem_hotplug_end() in the comments with mem_hotplug_done(). [akpm@linux-foundation.org: grammatical fixes] Link: https://lkml.kernel.org/r/20220620071516.1286101-1-p76091292@gs.ncku.edu.tw Signed-off-by: Yun-Ze Li <p76091292@gs.ncku.edu.tw> Cc: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/swap: convert __delete_from_swap_cache() to a folioMatthew Wilcox (Oracle)1-1/+1
All callers now have a folio, so convert the entire function to operate on folios. Link: https://lkml.kernel.org/r/20220617175020.717127-23-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm: convert page_swap_flags to folio_swap_flagsMatthew Wilcox (Oracle)1-1/+1
The only caller already has a folio, so push the folio->page conversion down a level. Link: https://lkml.kernel.org/r/20220617175020.717127-21-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm: convert destroy_compound_page() to destroy_large_folio()Matthew Wilcox (Oracle)1-2/+2
All callers now have a folio, so push the folio->page conversion down to this function. [akpm@linux-foundation.org: uninline destroy_large_folio() to fix build issue] Link: https://lkml.kernel.org/r/20220617175020.717127-20-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/vmscan: convert reclaim_pages() to use a folioMatthew Wilcox (Oracle)1-13/+12
Remove a few hidden calls to compound_head, saving 76 bytes of text. Link: https://lkml.kernel.org/r/20220617154248.700416-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/vmscan: convert shrink_active_list() to use a folioMatthew Wilcox (Oracle)1-32/+29
Remove a few hidden calls to compound_head, saving 411 bytes of text. Link: https://lkml.kernel.org/r/20220617154248.700416-5-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/vmscan: convert move_pages_to_lru() to use a folioMatthew Wilcox (Oracle)1-27/+27
Remove a few hidden calls to compound_head, saving 387 bytes of text on my test configuration. Link: https://lkml.kernel.org/r/20220617154248.700416-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/vmscan: convert isolate_lru_pages() to use a folioMatthew Wilcox (Oracle)1-33/+33
Remove a few hidden calls to compound_head, saving 279 bytes of text. Link: https://lkml.kernel.org/r/20220617154248.700416-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-04mm/vmscan: convert reclaim_clean_pages_from_list() to foliosMatthew Wilcox (Oracle)1-11/+11
Patch series "nvert much of vmscan to folios" vmscan always operates on folios since it puts the pages on the LRU list. Switching all of these functions from pages to folios saves 1483 bytes of text from removing all the baggage around calling compound_page() and similar functions. This patch (of 5): This is a straightforward conversion which removes several hidden calls to compound_head, saving 330 bytes of kernel text. Link: https://lkml.kernel.org/r/20220617154248.700416-1-willy@infradead.org Link: https://lkml.kernel.org/r/20220617154248.700416-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>