summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)AuthorFilesLines
2023-10-26mm: kmsan: panic on failure to allocate early boot metadataPedro Falcato1-2/+7
Given large enough allocations and a machine with low enough memory (i.e a default QEMU VM), it's entirely possible that kmsan_init_alloc_meta_for_range's shadow+origin allocation fails. Instead of eating a NULL deref kernel oops, check explicitly for memblock_alloc() failure and panic with a nice error message. Alexander Potapenko said: For posterity, it is generally quite important for the allocated shadow and origin to be contiguous, otherwise an unaligned memory write may result in memory corruption (the corresponding unaligned shadow write will be assuming that shadow pages are adjacent). So instead of panicking we could have split the range into smaller ones until the allocation succeeds, but that would've led to hard-to-debug problems in the future. Link: https://lkml.kernel.org/r/20231016153446.132763-1-pedro.falcato@gmail.com Signed-off-by: Pedro Falcato <pedro.falcato@gmail.com> Reviewed-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26nilfs2: convert nilfs_copy_page() to nilfs_copy_folio()Matthew Wilcox (Oracle)1-0/+1
Both callers already have a folio, so pass it in and use it directly. Removes a lot of hidden calls to compound_head(). Link: https://lkml.kernel.org/r/20231016201114.1928083-13-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb_vmemmap: use folio argument for hugetlb_vmemmap_* functionsUsama Arif3-35/+37
Most function calls in hugetlb.c are made with folio arguments. This brings hugetlb_vmemmap calls inline with them by using folio instead of head struct page. Head struct page is still needed within these functions. The set/clear/test functions for hugepages are also changed to folio versions. Link: https://lkml.kernel.org/r/20231011144557.1720481-2-usama.arif@bytedance.com Signed-off-by: Usama Arif <usama.arif@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Fam Zheng <fam.zheng@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Punit Agrawal <punit.agrawal@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: batch TLB flushes when restoring vmemmapMike Kravetz1-15/+24
Update the internal hugetlb restore vmemmap code path such that TLB flushing can be batched. Use the existing mechanism of passing the VMEMMAP_REMAP_NO_TLB_FLUSH flag to indicate flushing should not be performed for individual pages. The routine hugetlb_vmemmap_restore_folios is the only user of this new mechanism, and it will perform a global flush after all vmemmap is restored. Link: https://lkml.kernel.org/r/20231019023113.345257-9-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: batch TLB flushes when freeing vmemmapJoao Martins1-11/+38
Now that a list of pages is deduplicated at once, the TLB flush can be batched for all vmemmap pages that got remapped. Expand the flags field value to pass whether to skip the TLB flush on remap of the PTE. The TLB flush is global as we don't have guarantees from caller that the set of folios is contiguous, or to add complexity in composing a list of kVAs to flush. Modified by Mike Kravetz to perform TLB flush on single folio if an error is encountered. Link: https://lkml.kernel.org/r/20231019023113.345257-8-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: batch PMD split for bulk vmemmap dedupJoao Martins1-4/+88
In an effort to minimize amount of TLB flushes, batch all PMD splits belonging to a range of pages in order to perform only 1 (global) TLB flush. Add a flags field to the walker and pass whether it's a bulk allocation or just a single page to decide to remap. First value (VMEMMAP_SPLIT_NO_TLB_FLUSH) designates the request to not do the TLB flush when we split the PMD. Rebased and updated by Mike Kravetz Link: https://lkml.kernel.org/r/20231019023113.345257-7-mike.kravetz@oracle.com Signed-off-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: batch freeing of vmemmap pagesMike Kravetz1-26/+56
Now that batching of hugetlb vmemmap optimization processing is possible, batch the freeing of vmemmap pages. When freeing vmemmap pages for a hugetlb page, we add them to a list that is freed after the entire batch has been processed. This enhances the ability to return contiguous ranges of memory to the low level allocators. Link: https://lkml.kernel.org/r/20231019023113.345257-6-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: perform vmemmap restoration on a list of pagesMike Kravetz3-28/+120
The routine update_and_free_pages_bulk already performs vmemmap restoration on the list of hugetlb pages in a separate step. In preparation for more functionality to be added in this step, create a new routine hugetlb_vmemmap_restore_folios() that will restore vmemmap for a list of folios. This new routine must provide sufficient feedback about errors and actual restoration performed so that update_and_free_pages_bulk can perform optimally. Special care must be taken when encountering an error from hugetlb_vmemmap_restore_folios. We want to continue making as much forward progress as possible. A new routine bulk_vmemmap_restore_error handles this specific situation. Link: https://lkml.kernel.org/r/20231019023113.345257-5-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: perform vmemmap optimization on a list of pagesMike Kravetz3-8/+51
When adding hugetlb pages to the pool, we first create a list of the allocated pages before adding to the pool. Pass this list of pages to a new routine hugetlb_vmemmap_optimize_folios() for vmemmap optimization. Due to significant differences in vmemmmap initialization for bootmem allocated hugetlb pages, a new routine prep_and_add_bootmem_folios is created. We also modify the routine vmemmap_should_optimize() to check for pages that are already optimized. There are code paths that might request vmemmap optimization twice and we want to make sure this is not attempted. Link: https://lkml.kernel.org/r/20231019023113.345257-4-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: restructure pool allocationsMike Kravetz1-39/+141
Allocation of a hugetlb page for the hugetlb pool is done by the routine alloc_pool_huge_page. This routine will allocate contiguous pages from a low level allocator, prep the pages for usage as a hugetlb page and then add the resulting hugetlb page to the pool. In the 'prep' stage, optional vmemmap optimization is done. For performance reasons we want to perform vmemmap optimization on multiple hugetlb pages at once. To do this, restructure the hugetlb pool allocation code such that vmemmap optimization can be isolated and later batched. The code to allocate hugetlb pages from bootmem was also modified to allow batching. No functional changes, only code restructure. Link: https://lkml.kernel.org/r/20231019023113.345257-3-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Tested-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26hugetlb: optimize update_and_free_pages_bulk to avoid lock cyclesMike Kravetz1-0/+39
Patch series "Batch hugetlb vmemmap modification operations", v8. When hugetlb vmemmap optimization was introduced, the overhead of enabling the option was measured as described in commit 426e5c429d16 [1]. The summary states that allocating a hugetlb page should be ~2x slower with optimization and freeing a hugetlb page should be ~2-3x slower. Such overhead was deemed an acceptable trade off for the memory savings obtained by freeing vmemmap pages. It was recently reported that the overhead associated with enabling vmemmap optimization could be as high as 190x for hugetlb page allocations. Yes, 190x! Some actual numbers from other environments are: Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895 ------------------------------------------------ Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m4.119s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m4.477s Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m28.973s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m36.748s VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan ----------------------------------------------------------- Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 0 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m2.463s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m2.931s Unmodified next-20230824, vm.hugetlb_optimize_vmemmap = 1 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 2m27.609s time echo 0 > .../hugepages-2048kB/nr_hugepages real 2m29.924s In the VM environment, the slowdown of enabling hugetlb vmemmap optimization resulted in allocation times being 61x slower. A quick profile showed that the vast majority of this overhead was due to TLB flushing. Each time we modify the kernel pagetable we need to flush the TLB. For each hugetlb that is optimized, there could be potentially two TLB flushes performed. One for the vmemmap pages associated with the hugetlb page, and potentially another one if the vmemmap pages are mapped at the PMD level and must be split. The TLB flushes required for the kernel pagetable, result in a broadcast IPI with each CPU having to flush a range of pages, or do a global flush if a threshold is exceeded. So, the flush time increases with the number of CPUs. In addition, in virtual environments the broadcast IPI can’t be accelerated by hypervisor hardware and leads to traps that need to wakeup/IPI all vCPUs which is very expensive. Because of this the slowdown in virtual environments is even worse than bare metal as the number of vCPUS/CPUs is increased. The following series attempts to reduce amount of time spent in TLB flushing. The idea is to batch the vmemmap modification operations for multiple hugetlb pages. Instead of doing one or two TLB flushes for each page, we do two TLB flushes for each batch of pages. One flush after splitting pages mapped at the PMD level, and another after remapping vmemmap associated with all hugetlb pages. Results of such batching are as follows: Bare Metal 8 socket Intel(R) Xeon(R) CPU E7-8895 ------------------------------------------------ next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m4.719s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m4.245s next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1 time echo 500000 > .../hugepages-2048kB/nr_hugepages real 0m7.267s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m13.199s VM with 252 vcpus on host with 2 socket AMD EPYC 7J13 Milan ----------------------------------------------------------- next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 0 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m2.715s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m3.186s next-20230824 + Batching patches, vm.hugetlb_optimize_vmemmap = 1 time echo 524288 > .../hugepages-2048kB/nr_hugepages real 0m4.799s time echo 0 > .../hugepages-2048kB/nr_hugepages real 0m5.273s With batching, results are back in the 2-3x slowdown range. This patch (of 8): update_and_free_pages_bulk is designed to free a list of hugetlb pages back to their associated lower level allocators. This may require allocating vmemmmap pages associated with each hugetlb page. The hugetlb page destructor must be changed before pages are freed to lower level allocators. However, the destructor must be changed under the hugetlb lock. This means there is potentially one lock cycle per page. Minimize the number of lock cycles in update_and_free_pages_bulk by: 1) allocating necessary vmemmap for all hugetlb pages on the list 2) take hugetlb lock and clear destructor for all pages on the list 3) free all pages on list back to low level allocators Link: https://lkml.kernel.org/r/20231019023113.345257-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20231019023113.345257-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: James Houghton <jthoughton@google.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Konrad Dybcio <konradybcio@kernel.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Usama Arif <usama.arif@bytedance.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-26mm: fix draining remote pagesetHuang Ying1-1/+3
If there is no memory allocation/freeing in the PCP (Per-CPU Pageset) of a remote zone (zone in remote NUMA node) after some time (3 seconds for now), the pages of the PCP of the remote zone will be drained to avoid memory wastage. This behavior was introduced in the commit 4ae7c03943fc ("[PATCH] Periodically drain non local pagesets") and the commit 4037d452202e ("Move remote node draining out of slab allocators") But, after the commit 7cc36bbddde5 ("vmstat: on-demand vmstat workers V8"), the vmstat updater worker which is used to drain the PCP of remote zones may not be re-queued when we are waiting for the timeout (pcp->expire != 0) if there are no vmstat changes on this CPU, for example, when the CPU goes idle or runs user space only workloads. This may cause the pages of a remote zone be kept in PCP of this CPU for long time. So that, the page reclaiming of the remote zone may be triggered prematurely. This isn't a severe problem in practice, because the PCP of the remote zone will be drained if some memory are allocated/freed again on this CPU. And, the PCP will eventually be drained during the direct reclaiming if necessary. Anyway, the problem still deserves a fix via guaranteeing that the vmstat updater worker will always be re-queued when we are waiting for the timeout. In effect, this restores the original behavior before the commit 7cc36bbddde5. We can reproduce the bug via allocating/freeing pages from a remote zone then go idle as follows. And the patch can fix it. - Run some workloads, use `numactl` to bind CPU to node 0 and memory to node 1. So the PCP of the CPU on node 0 for zone on node 1 will be filled. - After workloads finish, idle for 60s - Check /proc/zoneinfo With the original kernel, the number of pages in the PCP of the CPU on node 0 for zone on node 1 is non-zero after idle. With the patched kernel, it becomes 0 after idle. That is, we avoid to keep pages in the remote PCP during idle. Link: https://lkml.kernel.org/r/20231007062356.187621-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20230811090819.60845-1-ying.huang@intel.com Fixes: 7cc36bbddde5 ("vmstat: on-demand vmstat workers V8") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: perform the mapping_map_writable() check after call_mmap()Lorenzo Stoakes1-8/+11
In order for a F_SEAL_WRITE sealed memfd mapping to have an opportunity to clear VM_MAYWRITE, we must be able to invoke the appropriate vm_ops->mmap() handler to do so. We would otherwise fail the mapping_map_writable() check before we had the opportunity to avoid it. This patch moves this check after the call_mmap() invocation. Only memfd actively denies write access causing a potential failure here (in memfd_add_seals()), so there should be no impact on non-memfd cases. This patch makes the userland-visible change that MAP_SHARED, PROT_READ mappings of an F_SEAL_WRITE sealed memfd mapping will now succeed. There is a delicate situation with cleanup paths assuming that a writable mapping must have occurred in circumstances where it may now not have. In order to ensure we do not accidentally mark a writable file unwritable by mistake, we explicitly track whether we have a writable mapping and unmap only if we do. [lstoakes@gmail.com: do not set writable_file_mapping in inappropriate case] Link: https://lkml.kernel.org/r/c9eb4cc6-7db4-4c2b-838d-43a0b319a4f0@lucifer.local Link: https://bugzilla.kernel.org/show_bug.cgi?id=217238 Link: https://lkml.kernel.org/r/55e413d20678a1bb4c7cce889062bbb07b0df892.1697116581.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: update memfd seal write check to include F_SEAL_WRITELorenzo Stoakes1-1/+1
The seal_check_future_write() function is called by shmem_mmap() or hugetlbfs_file_mmap() to disallow any future writable mappings of an memfd sealed this way. The F_SEAL_WRITE flag is not checked here, as that is handled via the mapping->i_mmap_writable mechanism and so any attempt at a mapping would fail before this could be run. However we intend to change this, meaning this check can be performed for F_SEAL_WRITE mappings also. The logic here is equally applicable to both flags, so update this function to accommodate both and rename it accordingly. Link: https://lkml.kernel.org/r/913628168ce6cce77df7d13a63970bae06a526e0.1697116581.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: drop the assumption that VM_SHARED always implies writableLorenzo Stoakes3-8/+8
Patch series "permit write-sealed memfd read-only shared mappings", v4. The man page for fcntl() describing memfd file seals states the following about F_SEAL_WRITE:- Furthermore, trying to create new shared, writable memory-mappings via mmap(2) will also fail with EPERM. With emphasis on 'writable'. In turns out in fact that currently the kernel simply disallows all new shared memory mappings for a memfd with F_SEAL_WRITE applied, rendering this documentation inaccurate. This matters because users are therefore unable to obtain a shared mapping to a memfd after write sealing altogether, which limits their usefulness. This was reported in the discussion thread [1] originating from a bug report [2]. This is a product of both using the struct address_space->i_mmap_writable atomic counter to determine whether writing may be permitted, and the kernel adjusting this counter when any VM_SHARED mapping is performed and more generally implicitly assuming VM_SHARED implies writable. It seems sensible that we should only update this mapping if VM_MAYWRITE is specified, i.e. whether it is possible that this mapping could at any point be written to. If we do so then all we need to do to permit write seals to function as documented is to clear VM_MAYWRITE when mapping read-only. It turns out this functionality already exists for F_SEAL_FUTURE_WRITE - we can therefore simply adapt this logic to do the same for F_SEAL_WRITE. We then hit a chicken and egg situation in mmap_region() where the check for VM_MAYWRITE occurs before we are able to clear this flag. To work around this, perform this check after we invoke call_mmap(), with careful consideration of error paths. Thanks to Andy Lutomirski for the suggestion! [1]:https://lore.kernel.org/all/20230324133646.16101dfa666f253c4715d965@linux-foundation.org/ [2]:https://bugzilla.kernel.org/show_bug.cgi?id=217238 This patch (of 3): There is a general assumption that VMAs with the VM_SHARED flag set are writable. If the VM_MAYWRITE flag is not set, then this is simply not the case. Update those checks which affect the struct address_space->i_mmap_writable field to explicitly test for this by introducing [vma_]is_shared_maywrite() helper functions. This remains entirely conservative, as the lack of VM_MAYWRITE guarantees that the VMA cannot be written to. Link: https://lkml.kernel.org/r/cover.1697116581.git.lstoakes@gmail.com Link: https://lkml.kernel.org/r/d978aefefa83ec42d18dfa964ad180dbcde34795.1697116581.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/damon/sysfs: avoid empty scheme tried regions for large apply intervalSeongJae Park3-4/+48
DAMON_SYSFS assumes all schemes will be applied for at least one DAMON monitoring results snapshot within one aggregation interval, or makes no sense to wait for it while DAMON is deactivated by the watermarks. That for deactivated status still makes sense, but the aggregation interval based assumption is invalid now because each scheme can has its own apply interval. For schemes having larger than the aggregation or watermarks check interval, DAMOS tried regions update request can be finished without the update. Avoid the case by explicitly checking the status of the schemes tried regions update and watermarks based DAMON deactivation. Link: https://lkml.kernel.org/r/20231012192256.33556-3-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/damon/sysfs-schemes: do not update tried regions more than one DAMON snapshotSeongJae Park1-0/+77
Patch series "mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval". DAMOS tried regions update feature of DAMON sysfs interface is doing the update for one aggregation interval after the request is made. Since the per-scheme apply interval is supported, that behavior makes no much sense. That is, the tried regions directory will have regions from multiple DAMON monitoring results snapshots, or no region for apply intervals that much shorter than, or longer than the aggregation interval, respectively. Update the behavior to update the regions for each scheme for only its apply interval, and update the document. Since DAMOS apply interval is the aggregation by default, this change makes no visible behavioral difference to old users who don't explicitly set the apply intervals. Patches Sequence ---------------- The first two patches makes schemes of apply intervals that much shorter or longer than the aggregation interval to keep the maximum and minimum times for continuing the update. After the two patches, the update aligns with the each scheme's apply interval. Finally, the third patch updates the document to reflect the behavior. This patch (of 3): DAMON_SYSFS exposes every DAMON-found region that eligible for applying the scheme action for one aggregation interval. However, each DAMON-based operation scheme has its own apply interval. Hence, for a scheme that having its apply interval much smaller than the aggregation interval, DAMON_SYSFS will expose the scheme regions that applied to more than one DAMON monitoring results snapshots. Since the purpose of DAMON tried regions is exposing single snapshot, this makes no much sense. Track progress of each scheme's tried regions update and avoid the case. Link: https://lkml.kernel.org/r/20231012192256.33556-1-sj@kernel.org Link: https://lkml.kernel.org/r/20231012192256.33556-2-sj@kernel.org Signed-off-by: SeongJae Park <sj@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/page_owner: remove free_ts from page_owner outputAudra Mitchell1-2/+2
Patch series "Fix page_owner's use of free timestamps". While page ower output is used to investigate memory utilization, typically the allocation pathway, the introduction of timestamps to the page owner records caused each record to become unique due to the granularity of the nanosecond timestamp (for example): Page allocated via order 0 ... ts 5206196026 ns, free_ts 5187156703 ns Page allocated via order 0 ... ts 5206198540 ns, free_ts 5187162702 ns Furthermore, the page_owner output only dumps the currently allocated records, so having the free timestamps is nonsensical for the typical use case. In addition, the introduction of timestamps was not properly handled in the page_owner_sort tool causing most use cases to be broken. This series is meant to remove the free timestamps from the page_owner output and fix the page_owner_sort tool so proper collation can occur. This patch (of 5): When printing page_owner data via the sysfs interface, no free pages will ever be dumped due to the series of checks in read_page_owner(): /* * Although we do have the info about past allocation of free * pages, it's not relevant for current memory usage. */ if (!test_bit(PAGE_EXT_OWNER_ALLOCATED, &page_ext->flags)) The free_ts values are still used when dump_page_owner() is called, so keeping the field for other use cases but removing them for the typical page_owner case. Link: https://lkml.kernel.org/r/20231013190350.579407-1-audra@redhat.com Link: https://lkml.kernel.org/r/20231013190350.579407-2-audra@redhat.com Fixes: 866b48526217 ("mm/page_owner: record the timestamp of all pages during free") Signed-off-by: Audra Mitchell <audra@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Georgi Djakov <djakov@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: abstract VMA merge and extend into vma_merge_extend() helperLorenzo Stoakes3-29/+40
mremap uses vma_merge() in the case where a VMA needs to be extended. This can be significantly simplified and abstracted. This makes it far easier to understand what the actual function is doing, avoids future mistakes in use of the confusing vma_merge() function and importantly allows us to make future changes to how vma_merge() is implemented by knowing explicitly which merge cases each invocation uses. Note that in the mremap() extend case, we perform this merge only when old_len == vma->vm_end - addr. The extension_start, i.e. the start of the extended portion of the VMA is equal to addr + old_len, i.e. vma->vm_end. With this refactoring, vma_merge() is no longer required anywhere except mm/mmap.c, so mark it static. Link: https://lkml.kernel.org/r/f16cbdc2e72d37a1a097c39dc7d1fee8919a1c93.1697043508.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: abstract merge for new VMAs into vma_merge_new_vma()Lorenzo Stoakes1-7/+18
Only in mmap_region() and copy_vma() do we attempt to merge VMAs which occupy entirely new regions of virtual memory. We can abstract this logic and make the intent of this invocations of it completely explicit, rather than invoking vma_merge() with an inscrutable wall of parameters. This also paves the way for a simplification of the core vma_merge() implementation, as we seek to make it entirely an implementation detail. The VMA merge call in mmap_region() occurs only for file-backed mappings, where each of the parameters previously specified as NULL are defaulted to NULL in vma_init() (called by vm_area_alloc()). This matches the previous behaviour of specifying NULL for a number of fields, however note that prior to this call we pass the VMA to the file system driver via call_mmap(), which may in theory adjust fields that we pass in to vma_merge_new_vma(). Therefore we actually resolve an oversight here by allowing for the fact that the driver may have done this. Link: https://lkml.kernel.org/r/3dc71d17e307756a54781d4a4ce7315cf8b18bea.1697043508.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: make vma_merge() and split_vma() internalLorenzo Stoakes3-6/+15
Now the common pattern of - attempting a merge via vma_merge() and should this fail splitting VMAs via split_vma() - has been abstracted, the former can be placed into mm/internal.h and the latter made static. In addition, the split_vma() nommu variant also need not be exported. Link: https://lkml.kernel.org/r/405f2be10e20c4e9fbcc9fe6b2dfea105f6642e0.1697043508.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: abstract the vma_merge()/split_vma() pattern for mprotect() et al.Lorenzo Stoakes5-91/+63
mprotect() and other functions which change VMA parameters over a range each employ a pattern of:- 1. Attempt to merge the range with adjacent VMAs. 2. If this fails, and the range spans a subset of the VMA, split it accordingly. This is open-coded and duplicated in each case. Also in each case most of the parameters passed to vma_merge() remain the same. Create a new function, vma_modify(), which abstracts this operation, accepting only those parameters which can be changed. To avoid the mess of invoking each function call with unnecessary parameters, create inline wrapper functions for each of the modify operations, parameterised only by what is required to perform the action. We can also significantly simplify the logic - by returning the VMA if we split (or merged VMA if we do not) we no longer need specific handling for merge/split cases in any of the call sites. Note that the userfaultfd_release() case works even though it does not split VMAs - since start is set to vma->vm_start and end is set to vma->vm_end, the split logic does not trigger. In addition, since we calculate pgoff to be equal to vma->vm_pgoff + (start - vma->vm_start) >> PAGE_SHIFT, and start - vma->vm_start will be 0 in this instance, this invocation will remain unchanged. We eliminate a VM_WARN_ON() in mprotect_fixup() as this simply asserts that vma_merge() correctly ensures that flags remain the same, something that is already checked in is_mergeable_vma() and elsewhere, and in any case is not specific to mprotect(). Link: https://lkml.kernel.org/r/0dfa9368f37199a423674bf0ee312e8ea0619044.1697043508.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19filemap: remove use of wait bookmarksMatthew Wilcox (Oracle)1-20/+1
The original problem of the overly long list of waiters on a locked page was solved properly by commit 9a1ea439b16b ("mm: put_and_wait_on_page_locked() while page is migrated"). In the meantime, using bookmarks for the writeback bit can cause livelocks, so we need to stop using them. Link: https://lkml.kernel.org/r/20231010035829.544242-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Bin Lai <sclaibin@gmail.com> Cc: Benjamin Segall <bsegall@google.com> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/mprotect: allow unfaulted VMAs to be unaccounted on mprotect()Lorenzo Stoakes1-2/+11
When mprotect() is used to make unwritable VMAs writable, they have the VM_ACCOUNT flag applied and memory accounted accordingly. If the VMA has had no pages faulted in and is then made unwritable once again, it will remain accounted for, despite not being capable of extending memory usage. Consider:- ptr = mmap(NULL, page_size * 3, PROT_READ, MAP_ANON | MAP_PRIVATE, -1, 0); mprotect(ptr + page_size, page_size, PROT_READ | PROT_WRITE); mprotect(ptr + page_size, page_size, PROT_READ); The first mprotect() splits the range into 3 VMAs and the second fails to merge the three as the middle VMA has VM_ACCOUNT set and the others do not, rendering them unmergeable. This is unnecessary, since no pages have actually been allocated and the middle VMA is not capable of utilising more memory, thereby introducing unnecessary VMA fragmentation (and accounting for more memory than is necessary). Since we cannot efficiently determine which pages map to an anonymous VMA, we have to be very conservative - determining whether any pages at all have been faulted in, by checking whether vma->anon_vma is NULL. We can see that the lack of anon_vma implies that no anonymous pages are present as evidenced by vma_needs_copy() utilising this on fork to determine whether page tables need to be copied. The only place where anon_vma is set NULL explicitly is on fork with VM_WIPEONFORK set, however since this flag is intended to cause the child process to not CoW on a given memory range, it is right to interpret this as indicating the VMA has no faulted-in anonymous memory mapped. If the VMA was forked without VM_WIPEONFORK set, then anon_vma_fork() will have ensured that a new anon_vma is assigned (and correctly related to its parent anon_vma) should any pages be CoW-mapped. The overall operation is safe against races as we hold a write lock against mm->mmap_lock. If we could efficiently look up the VMA's faulted-in pages then we would unaccount all those pages not yet faulted in. However as the original comment alludes this simply isn't currently possible, so we are conservative and account all pages or none at all. Link: https://lkml.kernel.org/r/ad5540371a16623a069f03f4db1739f33cde1fab.1696921767.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: add printf attribute to shrinker_debugfs_name_allocLucy Mielke1-2/+2
This fixes a compiler warning when compiling an allyesconfig with W=1: mm/internal.h:1235:9: error: function might be a candidate for `gnu_printf' format attribute [-Werror=suggest-attribute=format] [akpm@linux-foundation.org: fix shrinker_alloc() as welll per Qi Zheng] Link: https://lkml.kernel.org/r/822387b7-4895-4e64-5806-0f56b5d6c447@bytedance.com Link: https://lkml.kernel.org/r/ZSBue-3kM6gI6jCr@mainframe Fixes: c42d50aefd17 ("mm: shrinker: add infrastructure for dynamically allocating shrinker") Signed-off-by: Lucy Mielke <lucymielke@icloud.com> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/thp: fix "mm: thp: kill __transhuge_page_enabled()"Zach O'Keefe1-7/+13
The 6.0 commits: commit 9fec51689ff6 ("mm: thp: kill transparent_hugepage_active()") commit 7da4e2cb8b1f ("mm: thp: kill __transhuge_page_enabled()") merged "can we have THPs in this VMA?" logic that was previously done separately by fault-path, khugepaged, and smaps "THPeligible" checks. During the process, the semantics of the fault path check changed in two ways: 1) A VM_NO_KHUGEPAGED check was introduced (also added to smaps path). 2) We no longer checked if non-anonymous memory had a vm_ops->huge_fault handler that could satisfy the fault. Previously, this check had been done in create_huge_pud() and create_huge_pmd() routines, but after the changes, we never reach those routines. During the review of the above commits, it was determined that in-tree users weren't affected by the change; most notably, since the only relevant user (in terms of THP) of VM_MIXEDMAP or ->huge_fault is DAX, which is explicitly approved early in approval logic. However, this was a bad assumption to make as it assumes the only reason to support ->huge_fault was for DAX (which is not true in general). Remove the VM_NO_KHUGEPAGED check when not in collapse path and give any ->huge_fault handler a chance to handle the fault. Note that we don't validate the file mode or mapping alignment, which is consistent with the behavior before the aforementioned commits. Link: https://lkml.kernel.org/r/20230925200110.1979606-1-zokeefe@google.com Fixes: 7da4e2cb8b1f ("mm: thp: kill __transhuge_page_enabled()") Reported-by: Saurabh Singh Sengar <ssengar@microsoft.com> Signed-off-by: Zach O'Keefe <zokeefe@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19hugetlb: memcg: account hugetlb-backed memory in memory controllerNhat Pham3-10/+70
Currently, hugetlb memory usage is not acounted for in the memory controller, which could lead to memory overprotection for cgroups with hugetlb-backed memory. This has been observed in our production system. For instance, here is one of our usecases: suppose there are two 32G containers. The machine is booted with hugetlb_cma=6G, and each container may or may not use up to 3 gigantic page, depending on the workload within it. The rest is anon, cache, slab, etc. We can set the hugetlb cgroup limit of each cgroup to 3G to enforce hugetlb fairness. But it is very difficult to configure memory.max to keep overall consumption, including anon, cache, slab etc. fair. What we have had to resort to is to constantly poll hugetlb usage and readjust memory.max. Similar procedure is done to other memory limits (memory.low for e.g). However, this is rather cumbersome and buggy. Furthermore, when there is a delay in memory limits correction, (for e.g when hugetlb usage changes within consecutive runs of the userspace agent), the system could be in an over/underprotected state. This patch rectifies this issue by charging the memcg when the hugetlb folio is utilized, and uncharging when the folio is freed (analogous to the hugetlb controller). Note that we do not charge when the folio is allocated to the hugetlb pool, because at this point it is not owned by any memcg. Some caveats to consider: * This feature is only available on cgroup v2. * There is no hugetlb pool management involved in the memory controller. As stated above, hugetlb folios are only charged towards the memory controller when it is used. Host overcommit management has to consider it when configuring hard limits. * Failure to charge towards the memcg results in SIGBUS. This could happen even if the hugetlb pool still has pages (but the cgroup limit is hit and reclaim attempt fails). * When this feature is enabled, hugetlb pages contribute to memory reclaim protection. low, min limits tuning must take into account hugetlb memory. * Hugetlb pages utilized while this option is not selected will not be tracked by the memory controller (even if cgroup v2 is remounted later on). Link: https://lkml.kernel.org/r/20231006184629.155543-4-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19memcontrol: only transfer the memcg data for migrationNhat Pham2-4/+38
For most migration use cases, only transfer the memcg data from the old folio to the new folio, and clear the old folio's memcg data. No charging and uncharging will be done. This shaves off some work on the migration path, and avoids the temporary double charging of a folio during its migration. The only exception is replace_page_cache_folio(), which will use the old mem_cgroup_migrate() (now renamed to mem_cgroup_replace_folio). In that context, the isolation of the old page isn't quite as thorough as with migration, so we cannot use our new implementation directly. This patch is the result of the following discussion on the new hugetlb memcg accounting behavior: https://lore.kernel.org/lkml/20231003171329.GB314430@monkey/ Link: https://lkml.kernel.org/r/20231006184629.155543-3-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19memcontrol: add helpers for hugetlb memcg accountingNhat Pham1-12/+47
Patch series "hugetlb memcg accounting", v4. Currently, hugetlb memory usage is not acounted for in the memory controller, which could lead to memory overprotection for cgroups with hugetlb-backed memory. This has been observed in our production system. For instance, here is one of our usecases: suppose there are two 32G containers. The machine is booted with hugetlb_cma=6G, and each container may or may not use up to 3 gigantic page, depending on the workload within it. The rest is anon, cache, slab, etc. We can set the hugetlb cgroup limit of each cgroup to 3G to enforce hugetlb fairness. But it is very difficult to configure memory.max to keep overall consumption, including anon, cache, slab etcetera fair. What we have had to resort to is to constantly poll hugetlb usage and readjust memory.max. Similar procedure is done to other memory limits (memory.low for e.g). However, this is rather cumbersome and buggy. Furthermore, when there is a delay in memory limits correction, (for e.g when hugetlb usage changes within consecutive runs of the userspace agent), the system could be in an over/underprotected state. This patch series rectifies this issue by charging the memcg when the hugetlb folio is allocated, and uncharging when the folio is freed. In addition, a new selftest is added to demonstrate and verify this new behavior. This patch (of 4): This patch exposes charge committing and cancelling as parts of the memory controller interface. These functionalities are useful when the try_charge() and commit_charge() stages have to be separated by other actions in between (which can fail). One such example is the new hugetlb accounting behavior in the following patch. The patch also adds a helper function to obtain a reference to the current task's memcg. Link: https://lkml.kernel.org/r/20231006184629.155543-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231006184629.155543-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Frank van der Linden <fvdl@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tejun heo <tj@kernel.org> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm, hugetlb: remove HUGETLB_CGROUP_MIN_ORDERFrank van der Linden2-19/+3
Originally, hugetlb_cgroup was the only hugetlb user of tail page structure fields. So, the code defined and checked against HUGETLB_CGROUP_MIN_ORDER to make sure pages weren't too small to use. However, by now, tail page #2 is used to store hugetlb hwpoison and subpool information as well. In other words, without that tail page hugetlb doesn't work. Acknowledge this fact by getting rid of HUGETLB_CGROUP_MIN_ORDER and checks against it. Instead, just check for the minimum viable page order at hstate creation time. Link: https://lkml.kernel.org/r/20231004153248.3842997-1-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: use folio_xor_flags_has_waiters() in folio_end_writeback()Matthew Wilcox (Oracle)3-16/+10
Match how folio_unlock() works by combining the test for PG_waiters with the clearing of PG_writeback. This should have a small performance win, and removes the last user of folio_wake(). Link: https://lkml.kernel.org/r/20231004165317.1061855-18-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: make __end_folio_writeback() return voidMatthew Wilcox (Oracle)3-25/+24
Rather than check the result of test-and-clear, just check that we have the writeback bit set at the start. This wouldn't catch every case, but it's good enough (and enables the next patch). Link: https://lkml.kernel.org/r/20231004165317.1061855-17-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: add folio_xor_flags_has_waiters()Matthew Wilcox (Oracle)1-3/+11
Optimise folio_end_read() by setting the uptodate bit at the same time we clear the unlock bit. This saves at least one memory barrier and one write-after-write hazard. Link: https://lkml.kernel.org/r/20231004165317.1061855-16-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: delete checks for xor_unlock_is_negative_byte()Matthew Wilcox (Oracle)2-32/+1
Architectures which don't define their own use the one in asm-generic/bitops/lock.h. Get rid of all the ifdefs around "maybe we don't have it". Link: https://lkml.kernel.org/r/20231004165317.1061855-15-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19bitops: add xor_unlock_is_negative_byte()Matthew Wilcox (Oracle)2-3/+9
Replace clear_bit_and_unlock_is_negative_byte() with xor_unlock_is_negative_byte(). We have a few places that like to lock a folio, set a flag and unlock it again. Allow for the possibility of combining the latter two operations for efficiency. We are guaranteed that the caller holds the lock, so it is safe to unlock it with the xor. The caller must guarantee that nobody else will set the flag without holding the lock; it is not safe to do this with the PG_dirty flag, for example. Link: https://lkml.kernel.org/r/20231004165317.1061855-8-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: add folio_end_read()Matthew Wilcox (Oracle)1-0/+22
Provide a function for filesystems to call when they have finished reading an entire folio. Link: https://lkml.kernel.org/r/20231004165317.1061855-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19zsmalloc: use copy_page for full page copyMark-PK Tsai1-1/+1
Some architectures have implemented optimized copy_page for full page copying, such as arm. On my arm platform, use the copy_page helper for single page copying is about 10 percent faster than memcpy. Link: https://lkml.kernel.org/r/20231006060245.7411-1-mark-pk.tsai@mediatek.com Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: YJ Chiang <yj.chiang@mediatek.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19filemap: call filemap_get_folios_tag() from filemap_get_folios()Pankaj Raghav1-37/+8
filemap_get_folios() is filemap_get_folios_tag() with XA_PRESENT as the tag that is being matched. Return filemap_get_folios_tag() with XA_PRESENT as the tag instead of duplicating the code in filemap_get_folios(). No functional changes. Link: https://lkml.kernel.org/r/20231006110120.136809-1-kernel@pankajraghav.com Signed-off-by: Pankaj Raghav <p.raghav@samsung.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/page_alloc: remove unnecessary next_page in break_down_buddy_pagesKemeng Shi1-4/+2
The next_page is only used to forward page in case target is in second half range. Move forward page directly to remove unnecessary next_page. Link: https://lkml.kernel.org/r/20230927103514.98281-3-shikemeng@huaweicloud.com Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/page_alloc: remove unnecessary check in break_down_buddy_pagesKemeng Shi1-4/+2
Patch series "Two minor cleanups to break_down_buddy_pages", v2. Two minor cleanups to break_down_buddy_pages. This patch (of 2): 1. We always have target in range started with next_page and full free range started with current_buddy. 2. The last split range size is 1 << low and low should be >= 0, then size >= 1. So page + size != page is always true (because size > 0). As summary, current_page will not equal to target page. Link: https://lkml.kernel.org/r/20230927103514.98281-1-shikemeng@huaweicloud.com Link: https://lkml.kernel.org/r/20230927103514.98281-2-shikemeng@huaweicloud.com Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mmap: add clarifying comment to vma_merge() codeLiam R. Howlett1-0/+5
When tracing through the code in vma_merge(), it was not completely clear why the error return to a dup_anon_vma() call would not overwrite a previous attempt to the same function. This commit adds a comment specifying why it is safe. Link: https://lkml.kernel.org/r/20230929183041.2835469-4-Liam.Howlett@oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Suggested-by: Jann Horn <jannh@google.com> Link: https://lore.kernel.org/linux-mm/CAG48ez3iDwFPR=Ed1BfrNuyUJPMK_=StjxhUsCkL6po1s7bONg@mail.gmail.com/ Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19kasan: fix and update KUNIT_EXPECT_KASAN_FAIL commentAndrey Konovalov1-4/+5
Update the comment for KUNIT_EXPECT_KASAN_FAIL to describe the parameters this macro accepts. Also drop the mention of the "kasan_status" KUnit resource, as it no longer exists. Link: https://lkml.kernel.org/r/6fad6661e72c407450ae4b385c71bc4a7e1579cd.1696605143.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202308171757.7V5YUcje-lkp@intel.com/ Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19kasan: use unchecked __memset internallyAndrey Konovalov2-3/+3
KASAN code is supposed to use the unchecked __memset implementation when accessing its metadata. Change uses of memset to __memset in mm/kasan/. Link: https://lkml.kernel.org/r/6f621966c6f52241b5aaa7220c348be90c075371.1696605143.git.andreyknvl@google.com Fixes: 59e6e098d1c1 ("kasan: introduce kasan_complete_mode_report_info") Fixes: 3c5c3cfb9ef4 ("kasan: support backing vmalloc space with real shadow memory") Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19kasan: unify printk prefixesAndrey Konovalov4-6/+8
Unify prefixes for printk messages in mm/kasan/. Link: https://lkml.kernel.org/r/35589629806cf0840e5f01ec9d8011a7bad648df.1696605143.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/gup: adapt get_user_page_vma_remote() to never return NULLLorenzo Stoakes1-2/+1
get_user_pages_remote() will never return 0 except in the case of FOLL_NOWAIT being specified, which we explicitly disallow. This simplifies error handling for the caller and avoids the awkwardness of dealing with both errors and failing to pin. Failing to pin here is an error. Link: https://lkml.kernel.org/r/00319ce292d27b3aae76a0eb220ce3f528187508.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Suggested-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/gup: make failure to pin an error if FOLL_NOWAIT not specifiedLorenzo Stoakes1-0/+11
There really should be no circumstances under which a non-FOLL_NOWAIT GUP operation fails to return any pages, so make this an error and warn on it. To catch the trivial case, simply exit early if nr_pages == 0. This brings __get_user_pages_locked() in line with the behaviour of its nommu variant. Link: https://lkml.kernel.org/r/2a42d96dd1e37163f90a0019a541163dafb7e4c3.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/gup: explicitly define and check internal GUP flags, disallow FOLL_TOUCHLorenzo Stoakes2-3/+5
Rather than open-coding a list of internal GUP flags in is_valid_gup_args(), define which ones are internal. In addition, explicitly check to see if the user passed in FOLL_TOUCH somehow, as this appears to have been accidentally excluded. Link: https://lkml.kernel.org/r/971e013dfe20915612ea8b704e801d7aef9a66b6.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: make __access_remote_vm() staticLorenzo Stoakes2-4/+4
Patch series "various improvements to the GUP interface", v2. A series of fixes to simplify and improve the GUP interface with an eye to providing groundwork to future improvements:- * __access_remote_vm() and access_remote_vm() are functionally identical, so make the former static such that in future we can potentially change the external-facing implementation details of this function. * Extend is_valid_gup_args() to cover the missing FOLL_TOUCH case, and simplify things by defining INTERNAL_GUP_FLAGS to check against. * Adjust __get_user_pages_locked() to explicitly treat a failure to pin any pages as an error in all circumstances other than FOLL_NOWAIT being specified, bringing it in line with the nommu implementation of this function. * (With many thanks to Arnd who suggested this in the first instance) Update get_user_page_vma_remote() to explicitly only return a page or an error, simplifying the interface and avoiding the questionable IS_ERR_OR_NULL() pattern. This patch (of 4): access_remote_vm() passes through parameters to __access_remote_vm() directly, so remove the __access_remote_vm() function from mm.h and use access_remote_vm() in the one caller that needs it (ptrace_access_vm()). This allows future adjustments to the GUP-internal __access_remote_vm() function while keeping the access_remote_vm() function stable. Link: https://lkml.kernel.org/r/cover.1696288092.git.lstoakes@gmail.com Link: https://lkml.kernel.org/r/f7877c5039ce1c202a514a8aeeefc5cdd5e32d19.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm: multi-gen LRU: reuse some legacy trace eventsJaewon Kim1-5/+13
As the legacy lru provides, the mglru needs some trace events for debugging. Let's reuse following legacy events for the mglru. trace_mm_vmscan_lru_isolate trace_mm_vmscan_lru_shrink_inactive Here's an example mm_vmscan_lru_isolate: classzone=2 order=0 nr_requested=4096 nr_scanned=64 nr_skipped=0 nr_taken=64 lru=inactive_file mm_vmscan_lru_shrink_inactive: nid=0 nr_scanned=64 nr_reclaimed=63 nr_dirty=0 nr_writeback=0 nr_congested=0 nr_immediate=0 nr_activate_anon=0 nr_activate_file=1 nr_ref_keep=0 nr_unmap_fail=0 priority=2 flags=RECLAIM_WB_FILE|RECLAIM_WB_ASYNC Link: https://lkml.kernel.org/r/20231003114155.21869-1-jaewon31.kim@samsung.com Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com> Acked-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: SeongJae Park <sj@kernel.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: T.J. Mercier <tjmercier@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19mm/migrate: remove unused mm argument from do_move_pages_to_nodeGregory Price1-7/+6
This function does not actively use the mm_struct, it can be removed. Link: https://lkml.kernel.org/r/20231003144857.752952-2-gregory.price@memverge.com Signed-off-by: Gregory Price <gregory.price@memverge.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Gregory Price <gregory.price@memverge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>