summaryrefslogtreecommitdiff
path: root/net/ipv4/fou_bpf.c
AgeCommit message (Collapse)AuthorFilesLines
2024-04-01ip_tunnel: convert __be16 tunnel flags to bitmapsAlexander Lobakin1-1/+1
Historically, tunnel flags like TUNNEL_CSUM or TUNNEL_ERSPAN_OPT have been defined as __be16. Now all of those 16 bits are occupied and there's no more free space for new flags. It can't be simply switched to a bigger container with no adjustments to the values, since it's an explicit Endian storage, and on LE systems (__be16)0x0001 equals to (__be64)0x0001000000000000. We could probably define new 64-bit flags depending on the Endianness, i.e. (__be64)0x0001 on BE and (__be64)0x00010000... on LE, but that would introduce an Endianness dependency and spawn a ton of Sparse warnings. To mitigate them, all of those places which were adjusted with this change would be touched anyway, so why not define stuff properly if there's no choice. Define IP_TUNNEL_*_BIT counterparts as a bit number instead of the value already coded and a fistful of <16 <-> bitmap> converters and helpers. The two flags which have a different bit position are SIT_ISATAP_BIT and VTI_ISVTI_BIT, as they were defined not as __cpu_to_be16(), but as (__force __be16), i.e. had different positions on LE and BE. Now they both have strongly defined places. Change all __be16 fields which were used to store those flags, to IP_TUNNEL_DECLARE_FLAGS() -> DECLARE_BITMAP(__IP_TUNNEL_FLAG_NUM) -> unsigned long[1] for now, and replace all TUNNEL_* occurrences to their bitmap counterparts. Use the converters in the places which talk to the userspace, hardware (NFP) or other hosts (GRE header). The rest must explicitly use the new flags only. This must be done at once, otherwise there will be too many conversions throughout the code in the intermediate commits. Finally, disable the old __be16 flags for use in the kernel code (except for the two 'irregular' flags mentioned above), to prevent any accidental (mis)use of them. For the userspace, nothing is changed, only additions were made. Most noticeable bloat-o-meter difference (.text): vmlinux: 307/-1 (306) gre.ko: 62/0 (62) ip_gre.ko: 941/-217 (724) [*] ip_tunnel.ko: 390/-900 (-510) [**] ip_vti.ko: 138/0 (138) ip6_gre.ko: 534/-18 (516) [*] ip6_tunnel.ko: 118/-10 (108) [*] gre_flags_to_tnl_flags() grew, but still is inlined [**] ip_tunnel_find() got uninlined, hence such decrease The average code size increase in non-extreme case is 100-200 bytes per module, mostly due to sizeof(long) > sizeof(__be16), as %__IP_TUNNEL_FLAG_NUM is less than %BITS_PER_LONG and the compilers are able to expand the majority of bitmap_*() calls here into direct operations on scalars. Reviewed-by: Simon Horman <horms@kernel.org> Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2024-02-01bpf: treewide: Annotate BPF kfuncs in BTFDaniel Xu1-2/+2
This commit marks kfuncs as such inside the .BTF_ids section. The upshot of these annotations is that we'll be able to automatically generate kfunc prototypes for downstream users. The process is as follows: 1. In source, use BTF_KFUNCS_START/END macro pair to mark kfuncs 2. During build, pahole injects into BTF a "bpf_kfunc" BTF_DECL_TAG for each function inside BTF_KFUNCS sets 3. At runtime, vmlinux or module BTF is made available in sysfs 4. At runtime, bpftool (or similar) can look at provided BTF and generate appropriate prototypes for functions with "bpf_kfunc" tag To ensure future kfunc are similarly tagged, we now also return error inside kfunc registration for untagged kfuncs. For vmlinux kfuncs, we also WARN(), as initcall machinery does not handle errors. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Acked-by: Benjamin Tissoires <bentiss@kernel.org> Link: https://lore.kernel.org/r/e55150ceecbf0a5d961e608941165c0bee7bc943.1706491398.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-02bpf: Add __bpf_kfunc_{start,end}_defs macrosDave Marchevsky1-4/+2
BPF kfuncs are meant to be called from BPF programs. Accordingly, most kfuncs are not called from anywhere in the kernel, which the -Wmissing-prototypes warning is unhappy about. We've peppered __diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are defined in the codebase to suppress this warning. This patch adds two macros meant to bound one or many kfunc definitions. All existing kfunc definitions which use these __diag calls to suppress -Wmissing-prototypes are migrated to use the newly-introduced macros. A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the __bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier version of this patch [0] and another recent mailing list thread [1]. In the future we might need to ignore different warnings or do other kfunc-specific things. This change will make it easier to make such modifications for all kfunc defs. [0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/ [1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-13bpf,fou: Add bpf_skb_{set,get}_fou_encap kfuncsChristian Ehrig1-0/+119
Add two new kfuncs that allow a BPF tc-hook, installed on an ipip device in collect-metadata mode, to control FOU encap parameters on a per-packet level. The set of kfuncs is registered with the fou module. The bpf_skb_set_fou_encap kfunc is supposed to be used in tandem and after a successful call to the bpf_skb_set_tunnel_key bpf-helper. UDP source and destination ports can be controlled by passing a struct bpf_fou_encap. A source port of zero will auto-assign a source port. enum bpf_fou_encap_type is used to specify if the egress path should FOU or GUE encap the packet. On the ingress path bpf_skb_get_fou_encap can be used to read UDP source and destination ports from the receiver's point of view and allows for packet multiplexing across different destination ports within a single BPF program and ipip device. Signed-off-by: Christian Ehrig <cehrig@cloudflare.com> Link: https://lore.kernel.org/r/e17c94a646b63e78ce0dbf3f04b2c33dc948a32d.1680874078.git.cehrig@cloudflare.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>