#include #include #include #include #include #include #include #include static __init struct range *find_range_array(int count) { u64 end, size, mem; struct range *range; size = sizeof(struct range) * count; end = memblock.current_limit; mem = memblock_find_in_range(0, end, size, sizeof(struct range)); if (!mem) panic("can not find more space for range array"); /* * This range is tempoaray, so don't reserve it, it will not be * overlapped because We will not alloccate new buffer before * We discard this one */ range = __va(mem); memset(range, 0, size); return range; } static void __init memblock_x86_subtract_reserved(struct range *range, int az) { u64 final_start, final_end; struct memblock_region *r; /* Take out region array itself at first*/ memblock_free_reserved_regions(); memblock_dbg("Subtract (%ld early reservations)\n", memblock.reserved.cnt); for_each_memblock(reserved, r) { memblock_dbg(" [%010llx-%010llx]\n", (u64)r->base, (u64)r->base + r->size - 1); final_start = PFN_DOWN(r->base); final_end = PFN_UP(r->base + r->size); if (final_start >= final_end) continue; subtract_range(range, az, final_start, final_end); } /* Put region array back ? */ memblock_reserve_reserved_regions(); } static int __init count_early_node_map(int nodeid) { int i, cnt = 0; for_each_mem_pfn_range(i, nodeid, NULL, NULL, NULL) cnt++; return cnt; } int __init __get_free_all_memory_range(struct range **rangep, int nodeid, unsigned long start_pfn, unsigned long end_pfn) { int count; struct range *range; int nr_range; count = (memblock.reserved.cnt + count_early_node_map(nodeid)) * 2; range = find_range_array(count); nr_range = 0; /* * Use early_node_map[] and memblock.reserved.region to get range array * at first */ nr_range = add_from_early_node_map(range, count, nr_range, nodeid); subtract_range(range, count, 0, start_pfn); subtract_range(range, count, end_pfn, -1ULL); memblock_x86_subtract_reserved(range, count); nr_range = clean_sort_range(range, count); *rangep = range; return nr_range; } static u64 __init __memblock_x86_memory_in_range(u64 addr, u64 limit, bool get_free) { int i, count; struct range *range; int nr_range; u64 final_start, final_end; u64 free_size; struct memblock_region *r; count = (memblock.reserved.cnt + memblock.memory.cnt) * 2; range = find_range_array(count); nr_range = 0; addr = PFN_UP(addr); limit = PFN_DOWN(limit); for_each_memblock(memory, r) { final_start = PFN_UP(r->base); final_end = PFN_DOWN(r->base + r->size); if (final_start >= final_end) continue; if (final_start >= limit || final_end <= addr) continue; nr_range = add_range(range, count, nr_range, final_start, final_end); } subtract_range(range, count, 0, addr); subtract_range(range, count, limit, -1ULL); /* Subtract memblock.reserved.region in range ? */ if (!get_free) goto sort_and_count_them; for_each_memblock(reserved, r) { final_start = PFN_DOWN(r->base); final_end = PFN_UP(r->base + r->size); if (final_start >= final_end) continue; if (final_start >= limit || final_end <= addr) continue; subtract_range(range, count, final_start, final_end); } sort_and_count_them: nr_range = clean_sort_range(range, count); free_size = 0; for (i = 0; i < nr_range; i++) free_size += range[i].end - range[i].start; return free_size << PAGE_SHIFT; } u64 __init memblock_x86_free_memory_in_range(u64 addr, u64 limit) { return __memblock_x86_memory_in_range(addr, limit, true); } u64 __init memblock_x86_memory_in_range(u64 addr, u64 limit) { return __memblock_x86_memory_in_range(addr, limit, false); } void __init memblock_x86_reserve_range(u64 start, u64 end, char *name) { if (start == end) return; if (WARN_ONCE(start > end, "memblock_x86_reserve_range: wrong range [%#llx, %#llx)\n", start, end)) return; memblock_dbg(" memblock_x86_reserve_range: [%#010llx-%#010llx] %16s\n", start, end - 1, name); memblock_reserve(start, end - start); } void __init memblock_x86_free_range(u64 start, u64 end) { if (start == end) return; if (WARN_ONCE(start > end, "memblock_x86_free_range: wrong range [%#llx, %#llx)\n", start, end)) return; memblock_dbg(" memblock_x86_free_range: [%#010llx-%#010llx]\n", start, end - 1); memblock_free(start, end - start); } /* * Finds an active region in the address range from start_pfn to last_pfn and * returns its range in ei_startpfn and ei_endpfn for the memblock entry. */ static int __init memblock_x86_find_active_region(const struct memblock_region *ei, unsigned long start_pfn, unsigned long last_pfn, unsigned long *ei_startpfn, unsigned long *ei_endpfn) { u64 align = PAGE_SIZE; *ei_startpfn = round_up(ei->base, align) >> PAGE_SHIFT; *ei_endpfn = round_down(ei->base + ei->size, align) >> PAGE_SHIFT; /* Skip map entries smaller than a page */ if (*ei_startpfn >= *ei_endpfn) return 0; /* Skip if map is outside the node */ if (*ei_endpfn <= start_pfn || *ei_startpfn >= last_pfn) return 0; /* Check for overlaps */ if (*ei_startpfn < start_pfn) *ei_startpfn = start_pfn; if (*ei_endpfn > last_pfn) *ei_endpfn = last_pfn; return 1; } /* * Find the hole size (in bytes) in the memory range. * @start: starting address of the memory range to scan * @end: ending address of the memory range to scan */ u64 __init memblock_x86_hole_size(u64 start, u64 end) { unsigned long start_pfn = start >> PAGE_SHIFT; unsigned long last_pfn = end >> PAGE_SHIFT; unsigned long ei_startpfn, ei_endpfn, ram = 0; struct memblock_region *r; for_each_memblock(memory, r) if (memblock_x86_find_active_region(r, start_pfn, last_pfn, &ei_startpfn, &ei_endpfn)) ram += ei_endpfn - ei_startpfn; return end - start - ((u64)ram << PAGE_SHIFT); }