// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2021 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include static void encaps_handle_do_release(struct hl_cs_encaps_sig_handle *handle, bool put_hw_sob, bool put_ctx) { struct hl_encaps_signals_mgr *mgr = &handle->ctx->sig_mgr; if (put_hw_sob) hw_sob_put(handle->hw_sob); spin_lock(&mgr->lock); idr_remove(&mgr->handles, handle->id); spin_unlock(&mgr->lock); if (put_ctx) hl_ctx_put(handle->ctx); kfree(handle); } void hl_encaps_release_handle_and_put_ctx(struct kref *ref) { struct hl_cs_encaps_sig_handle *handle = container_of(ref, struct hl_cs_encaps_sig_handle, refcount); encaps_handle_do_release(handle, false, true); } static void hl_encaps_release_handle_and_put_sob(struct kref *ref) { struct hl_cs_encaps_sig_handle *handle = container_of(ref, struct hl_cs_encaps_sig_handle, refcount); encaps_handle_do_release(handle, true, false); } void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref) { struct hl_cs_encaps_sig_handle *handle = container_of(ref, struct hl_cs_encaps_sig_handle, refcount); encaps_handle_do_release(handle, true, true); } static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr) { spin_lock_init(&mgr->lock); idr_init(&mgr->handles); } static void hl_encaps_sig_mgr_fini(struct hl_device *hdev, struct hl_encaps_signals_mgr *mgr) { struct hl_cs_encaps_sig_handle *handle; struct idr *idp; u32 id; idp = &mgr->handles; /* The IDR is expected to be empty at this stage, because any left signal should have been * released as part of CS roll-back. */ if (!idr_is_empty(idp)) { dev_warn(hdev->dev, "device released while some encaps signals handles are still allocated\n"); idr_for_each_entry(idp, handle, id) kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob); } idr_destroy(&mgr->handles); } static void hl_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; int i; /* Release all allocated HW block mapped list entries and destroy * the mutex. */ hl_hw_block_mem_fini(ctx); /* * If we arrived here, there are no jobs waiting for this context * on its queues so we can safely remove it. * This is because for each CS, we increment the ref count and for * every CS that was finished we decrement it and we won't arrive * to this function unless the ref count is 0 */ for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++) hl_fence_put(ctx->cs_pending[i]); kfree(ctx->cs_pending); if (ctx->asid != HL_KERNEL_ASID_ID) { dev_dbg(hdev->dev, "closing user context %d\n", ctx->asid); /* The engines are stopped as there is no executing CS, but the * Coresight might be still working by accessing addresses * related to the stopped engines. Hence stop it explicitly. */ if (hdev->in_debug) hl_device_set_debug_mode(hdev, ctx, false); hdev->asic_funcs->ctx_fini(ctx); hl_dec_ctx_fini(ctx); hl_cb_va_pool_fini(ctx); hl_vm_ctx_fini(ctx); hl_asid_free(hdev, ctx->asid); hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr); } else { dev_dbg(hdev->dev, "closing kernel context\n"); hdev->asic_funcs->ctx_fini(ctx); hl_vm_ctx_fini(ctx); hl_mmu_ctx_fini(ctx); } } void hl_ctx_do_release(struct kref *ref) { struct hl_ctx *ctx; ctx = container_of(ref, struct hl_ctx, refcount); hl_ctx_fini(ctx); if (ctx->hpriv) { struct hl_fpriv *hpriv = ctx->hpriv; mutex_lock(&hpriv->ctx_lock); hpriv->ctx = NULL; mutex_unlock(&hpriv->ctx_lock); hl_hpriv_put(hpriv); } kfree(ctx); } int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv) { struct hl_ctx_mgr *ctx_mgr = &hpriv->ctx_mgr; struct hl_ctx *ctx; int rc; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { rc = -ENOMEM; goto out_err; } mutex_lock(&ctx_mgr->lock); rc = idr_alloc(&ctx_mgr->handles, ctx, 1, 0, GFP_KERNEL); mutex_unlock(&ctx_mgr->lock); if (rc < 0) { dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n"); goto free_ctx; } ctx->handle = rc; rc = hl_ctx_init(hdev, ctx, false); if (rc) goto remove_from_idr; hl_hpriv_get(hpriv); ctx->hpriv = hpriv; /* TODO: remove for multiple contexts per process */ hpriv->ctx = ctx; /* TODO: remove the following line for multiple process support */ hdev->is_compute_ctx_active = true; return 0; remove_from_idr: mutex_lock(&ctx_mgr->lock); idr_remove(&ctx_mgr->handles, ctx->handle); mutex_unlock(&ctx_mgr->lock); free_ctx: kfree(ctx); out_err: return rc; } int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx) { int rc = 0, i; ctx->hdev = hdev; kref_init(&ctx->refcount); ctx->cs_sequence = 1; spin_lock_init(&ctx->cs_lock); atomic_set(&ctx->thread_ctx_switch_token, 1); ctx->thread_ctx_switch_wait_token = 0; ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs, sizeof(struct hl_fence *), GFP_KERNEL); if (!ctx->cs_pending) return -ENOMEM; INIT_LIST_HEAD(&ctx->outcome_store.used_list); INIT_LIST_HEAD(&ctx->outcome_store.free_list); hash_init(ctx->outcome_store.outcome_map); for (i = 0; i < ARRAY_SIZE(ctx->outcome_store.nodes_pool); ++i) list_add(&ctx->outcome_store.nodes_pool[i].list_link, &ctx->outcome_store.free_list); hl_hw_block_mem_init(ctx); if (is_kernel_ctx) { ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */ rc = hl_vm_ctx_init(ctx); if (rc) { dev_err(hdev->dev, "Failed to init mem ctx module\n"); rc = -ENOMEM; goto err_hw_block_mem_fini; } rc = hdev->asic_funcs->ctx_init(ctx); if (rc) { dev_err(hdev->dev, "ctx_init failed\n"); goto err_vm_ctx_fini; } } else { ctx->asid = hl_asid_alloc(hdev); if (!ctx->asid) { dev_err(hdev->dev, "No free ASID, failed to create context\n"); rc = -ENOMEM; goto err_hw_block_mem_fini; } rc = hl_vm_ctx_init(ctx); if (rc) { dev_err(hdev->dev, "Failed to init mem ctx module\n"); rc = -ENOMEM; goto err_asid_free; } rc = hl_cb_va_pool_init(ctx); if (rc) { dev_err(hdev->dev, "Failed to init VA pool for mapped CB\n"); goto err_vm_ctx_fini; } rc = hdev->asic_funcs->ctx_init(ctx); if (rc) { dev_err(hdev->dev, "ctx_init failed\n"); goto err_cb_va_pool_fini; } hl_encaps_sig_mgr_init(&ctx->sig_mgr); dev_dbg(hdev->dev, "create user context %d\n", ctx->asid); } return 0; err_cb_va_pool_fini: hl_cb_va_pool_fini(ctx); err_vm_ctx_fini: hl_vm_ctx_fini(ctx); err_asid_free: if (ctx->asid != HL_KERNEL_ASID_ID) hl_asid_free(hdev, ctx->asid); err_hw_block_mem_fini: hl_hw_block_mem_fini(ctx); kfree(ctx->cs_pending); return rc; } static int hl_ctx_get_unless_zero(struct hl_ctx *ctx) { return kref_get_unless_zero(&ctx->refcount); } void hl_ctx_get(struct hl_ctx *ctx) { kref_get(&ctx->refcount); } int hl_ctx_put(struct hl_ctx *ctx) { return kref_put(&ctx->refcount, hl_ctx_do_release); } struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev) { struct hl_ctx *ctx = NULL; struct hl_fpriv *hpriv; mutex_lock(&hdev->fpriv_list_lock); list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) { mutex_lock(&hpriv->ctx_lock); ctx = hpriv->ctx; if (ctx && !hl_ctx_get_unless_zero(ctx)) ctx = NULL; mutex_unlock(&hpriv->ctx_lock); /* There can only be a single user which has opened the compute device, so exit * immediately once we find its context or if we see that it has been released */ break; } mutex_unlock(&hdev->fpriv_list_lock); return ctx; } /* * hl_ctx_get_fence_locked - get CS fence under CS lock * * @ctx: pointer to the context structure. * @seq: CS sequences number * * @return valid fence pointer on success, NULL if fence is gone, otherwise * error pointer. * * NOTE: this function shall be called with cs_lock locked */ static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq) { struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop; struct hl_fence *fence; if (seq >= ctx->cs_sequence) return ERR_PTR(-EINVAL); if (seq + asic_prop->max_pending_cs < ctx->cs_sequence) return NULL; fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)]; hl_fence_get(fence); return fence; } struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq) { struct hl_fence *fence; spin_lock(&ctx->cs_lock); fence = hl_ctx_get_fence_locked(ctx, seq); spin_unlock(&ctx->cs_lock); return fence; } /* * hl_ctx_get_fences - get multiple CS fences under the same CS lock * * @ctx: pointer to the context structure. * @seq_arr: array of CS sequences to wait for * @fence: fence array to store the CS fences * @arr_len: length of seq_arr and fence_arr * * @return 0 on success, otherwise non 0 error code */ int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr, struct hl_fence **fence, u32 arr_len) { struct hl_fence **fence_arr_base = fence; int i, rc = 0; spin_lock(&ctx->cs_lock); for (i = 0; i < arr_len; i++, fence++) { u64 seq = seq_arr[i]; *fence = hl_ctx_get_fence_locked(ctx, seq); if (IS_ERR(*fence)) { dev_err(ctx->hdev->dev, "Failed to get fence for CS with seq 0x%llx\n", seq); rc = PTR_ERR(*fence); break; } } spin_unlock(&ctx->cs_lock); if (rc) hl_fences_put(fence_arr_base, i); return rc; } /* * hl_ctx_mgr_init - initialize the context manager * * @ctx_mgr: pointer to context manager structure * * This manager is an object inside the hpriv object of the user process. * The function is called when a user process opens the FD. */ void hl_ctx_mgr_init(struct hl_ctx_mgr *ctx_mgr) { mutex_init(&ctx_mgr->lock); idr_init(&ctx_mgr->handles); } /* * hl_ctx_mgr_fini - finalize the context manager * * @hdev: pointer to device structure * @ctx_mgr: pointer to context manager structure * * This function goes over all the contexts in the manager and frees them. * It is called when a process closes the FD. */ void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *ctx_mgr) { struct hl_ctx *ctx; struct idr *idp; u32 id; idp = &ctx_mgr->handles; idr_for_each_entry(idp, ctx, id) kref_put(&ctx->refcount, hl_ctx_do_release); idr_destroy(&ctx_mgr->handles); mutex_destroy(&ctx_mgr->lock); }