// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #include #include "../habanalabs.h" #include /** * hl_mmu_get_funcs() - get MMU functions structure * @hdev: habanalabs device structure. * @pgt_residency: page table residency. * @is_dram_addr: true if we need HMMU functions * * @return appropriate MMU functions structure */ static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, bool is_dram_addr) { return &hdev->mmu_func[pgt_residency]; } bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); } /** * hl_mmu_init() - initialize the MMU module. * @hdev: habanalabs device structure. * * Return: 0 for success, non-zero for failure. */ int hl_mmu_init(struct hl_device *hdev) { int rc = -EOPNOTSUPP; if (hdev->mmu_disable) return 0; mutex_init(&hdev->mmu_lock); if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].init != NULL) { rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); if (rc) goto fini_dr_mmu; } return 0; fini_dr_mmu: if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); return rc; } /** * hl_mmu_fini() - release the MMU module. * @hdev: habanalabs device structure. * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_fini(struct hl_device *hdev) { if (hdev->mmu_disable) return; if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) hdev->mmu_func[MMU_HR_PGT].fini(hdev); mutex_destroy(&hdev->mmu_lock); } /** * hl_mmu_ctx_init() - initialize a context for using the MMU module. * @ctx: pointer to the context structure to initialize. * * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all * page tables hops related to this context. * Return: 0 on success, non-zero otherwise. */ int hl_mmu_ctx_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; int rc = -EOPNOTSUPP; if (hdev->mmu_disable) return 0; if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); if (rc) return rc; } if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) { rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); if (rc) goto fini_dr_ctx; } return 0; fini_dr_ctx: if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) hdev->mmu_func[MMU_DR_PGT].fini(hdev); return rc; } /* * hl_mmu_ctx_fini - disable a ctx from using the mmu module * * @ctx: pointer to the context structure * * This function does the following: * - Free any pgts which were not freed yet * - Free the mutex * - Free DRAM default page mapping hops */ void hl_mmu_ctx_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (hdev->mmu_disable) return; if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); } /* * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation * * @hdev: pointer to device data. * @mmu_prop: MMU properties. * @page_size: page size * @real_page_size: set here the actual page size to use for the operation * @is_dram_addr: true if DRAM address, otherwise false. * * @return 0 on success, otherwise non 0 error code * * note that this is general implementation that can fit most MMU arch. but as this is used as an * MMU function: * 1. it shall not be called directly- only from mmu_func structure instance * 2. each MMU may modify the implementation internally */ int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, u32 page_size, u32 *real_page_size, bool is_dram_addr) { /* * The H/W handles mapping of specific page sizes. Hence if the page * size is bigger, we break it to sub-pages and map them separately. */ if ((page_size % mmu_prop->page_size) == 0) { *real_page_size = mmu_prop->page_size; return 0; } dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", page_size, mmu_prop->page_size >> 10); return -EFAULT; } static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, bool is_dram_addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (is_dram_addr) return &prop->dmmu; else if ((page_size % prop->pmmu_huge.page_size) == 0) return &prop->pmmu_huge; return &prop->pmmu; } /* * hl_mmu_unmap_page - unmaps a virtual addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @page_size: size of the page to unmap * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is mapped * - Unmap the virt addr and frees pgts if possible * - Returns 0 on success, -EINVAL if the given addr is not mapped * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after unmapping of * large area. */ int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) { struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; struct hl_mmu_funcs *mmu_funcs; int i, pgt_residency, rc = 0; u32 real_page_size, npages; u64 real_virt_addr; bool is_dram_addr; if (hdev->mmu_disable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, is_dram_addr); if (rc) return rc; npages = page_size / real_page_size; real_virt_addr = virt_addr; for (i = 0 ; i < npages ; i++) { rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); if (rc) break; real_virt_addr += real_page_size; } if (flush_pte) mmu_funcs->flush(ctx); if (trace_habanalabs_mmu_unmap_enabled() && !rc) trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte); return rc; } /* * hl_mmu_map_page - maps a virtual addr to physical addr * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @page_size: physical page size * @flush_pte: whether to do a PCI flush * * This function does the following: * - Check that the virt addr is not mapped * - Allocate pgts as necessary in order to map the virt addr to the phys * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. * * Because this function changes the page tables in the device and because it * changes the MMU hash, it must be protected by a lock. * However, because it maps only a single page, the lock should be implemented * in a higher level in order to protect the entire mapping of the memory area * * For optimization reasons PCI flush may be requested once after mapping of * large area. */ int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, bool flush_pte) { int i, rc, pgt_residency, mapped_cnt = 0; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; u64 real_virt_addr, real_phys_addr; struct hl_mmu_funcs *mmu_funcs; u32 real_page_size, npages; bool is_dram_addr; if (hdev->mmu_disable) return 0; is_dram_addr = hl_is_dram_va(hdev, virt_addr); mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, is_dram_addr); if (rc) return rc; /* * Verify that the phys and virt addresses are aligned with the * MMU page size (in dram this means checking the address and MMU * after scrambling) */ if ((is_dram_addr && ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & (mmu_prop->page_size - 1)) || (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & (mmu_prop->page_size - 1)))) || (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || (virt_addr & (real_page_size - 1))))) dev_crit(hdev->dev, "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", phys_addr, virt_addr, real_page_size); npages = page_size / real_page_size; real_virt_addr = virt_addr; real_phys_addr = phys_addr; for (i = 0 ; i < npages ; i++) { rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, is_dram_addr); if (rc) goto err; real_virt_addr += real_page_size; real_phys_addr += real_page_size; mapped_cnt++; } if (flush_pte) mmu_funcs->flush(ctx); trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte); return 0; err: real_virt_addr = virt_addr; for (i = 0 ; i < mapped_cnt ; i++) { if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) dev_warn_ratelimited(hdev->dev, "failed to unmap va: 0x%llx\n", real_virt_addr); real_virt_addr += real_page_size; } mmu_funcs->flush(ctx); return rc; } /* * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page * for mapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to map from * @phys_addr: phys addr to map to * @size: size to map * */ int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va, curr_pa; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; curr_pa = phys_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, flush_pte); if (rc) { dev_err(hdev->dev, "Map failed for va 0x%llx to pa 0x%llx\n", curr_va, curr_pa); /* last mapping failed so don't try to unmap it - reduce off by page_size */ off -= page_size; goto unmap; } } return rc; unmap: for (; off >= 0 ; off -= page_size) { curr_va = virt_addr + off; flush_pte = (off - (s32) page_size) < 0; if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) dev_warn_ratelimited(hdev->dev, "failed to unmap va 0x%llx\n", curr_va); } return rc; } /* * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page * for unmapping contiguous physical memory * * @ctx: pointer to the context structure * @virt_addr: virt addr to unmap * @size: size to unmap * */ int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u64 curr_va; u32 page_size; bool flush_pte; int rc = 0, off; if (hl_mem_area_inside_range(virt_addr, size, prop->dmmu.start_addr, prop->dmmu.end_addr)) page_size = prop->dmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) page_size = prop->pmmu.page_size; else if (hl_mem_area_inside_range(virt_addr, size, prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) page_size = prop->pmmu_huge.page_size; else return -EINVAL; for (off = 0 ; off < size ; off += page_size) { curr_va = virt_addr + off; flush_pte = (off + page_size) >= size; rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); if (rc) dev_warn_ratelimited(hdev->dev, "Unmap failed for va 0x%llx\n", curr_va); } return rc; } static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, u64 *phys_addr) { struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; struct hl_mmu_properties *mmu_prop; /* last hop holds the phys address and flags */ if (hops->unscrambled_paddr) tmp_phys_addr = hops->unscrambled_paddr; else tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) mmu_prop = &prop->pmmu_huge; else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) mmu_prop = &prop->pmmu; else /* HL_VA_RANGE_TYPE_DRAM */ mmu_prop = &prop->dmmu; if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && !is_power_of_2(prop->dram_page_size)) { u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, page_id, page_start; u32 page_off; /* * Bit arithmetic cannot be used for non power of two page * sizes. In addition, since bit arithmetic is not used, * we cannot ignore dram base. All that shall be considered. */ dram_page_size = prop->dram_page_size; dram_base = prop->dram_base_address; abs_phys_addr = tmp_phys_addr - dram_base; abs_virt_addr = virt_addr - dram_base; page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); page_start = page_id * dram_page_size; div_u64_rem(abs_virt_addr, dram_page_size, &page_off); *phys_addr = page_start + page_off + dram_base; } else { /* * find the correct hop shift field in hl_mmu_properties * structure in order to determine the right masks * for the page offset. */ hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; offset_mask = (1ull << hop_shift) - 1; addr_mask = ~(offset_mask); *phys_addr = (tmp_phys_addr & addr_mask) | (virt_addr & offset_mask); } } int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) { struct hl_mmu_hop_info hops; int rc; memset(&hops, 0, sizeof(hops)); rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); if (rc) return rc; hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); return 0; } int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop; struct hl_mmu_properties *mmu_prop; struct hl_mmu_funcs *mmu_funcs; int pgt_residency, rc; bool is_dram_addr; if (hdev->mmu_disable) return -EOPNOTSUPP; prop = &hdev->asic_prop; hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, prop->dmmu.start_addr, prop->dmmu.end_addr); /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); mutex_lock(&hdev->mmu_lock); rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); mutex_unlock(&hdev->mmu_lock); if (rc) return rc; /* add page offset to physical address */ if (hops->unscrambled_paddr) hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); return 0; } int hl_mmu_if_set_funcs(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (hdev->mmu_disable) return 0; switch (hdev->asic_type) { case ASIC_GOYA: case ASIC_GAUDI: case ASIC_GAUDI_SEC: hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); break; case ASIC_GAUDI2: case ASIC_GAUDI2B: case ASIC_GAUDI2C: hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); if (prop->pmmu.host_resident) hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EOPNOTSUPP; } return 0; } /** * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. * @hdev: pointer to device data. * @addr: The address to scramble. * * Return: The scrambled address. */ u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) { return addr; } /** * hl_mmu_descramble_addr() - The generic mmu address descrambling * routine. * @hdev: pointer to device data. * @addr: The address to descramble. * * Return: The un-scrambled address. */ u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) { return addr; } int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) { int rc; rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); if (rc) dev_err_ratelimited(hdev->dev, "%s cache invalidation failed, rc=%d\n", flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc); return rc; } int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, u32 flags, u32 asid, u64 va, u64 size) { int rc; rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, asid, va, size); if (rc) dev_err_ratelimited(hdev->dev, "%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d", flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc); return rc; } static void hl_mmu_prefetch_work_function(struct work_struct *work) { struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work); struct hl_ctx *ctx = pfw->ctx; struct hl_device *hdev = ctx->hdev; if (!hl_device_operational(hdev, NULL)) goto put_ctx; mutex_lock(&hdev->mmu_lock); hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size); mutex_unlock(&hdev->mmu_lock); put_ctx: /* * context was taken in the common mmu prefetch function- see comment there about * context handling. */ hl_ctx_put(ctx); kfree(pfw); } int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) { struct hl_prefetch_work *handle_prefetch_work; handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL); if (!handle_prefetch_work) return -ENOMEM; INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function); handle_prefetch_work->ctx = ctx; handle_prefetch_work->va = va; handle_prefetch_work->size = size; handle_prefetch_work->flags = flags; handle_prefetch_work->asid = asid; /* * as actual prefetch is done in a WQ we must get the context (and put it * at the end of the work function) */ hl_ctx_get(ctx); queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work); return 0; } u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) { return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; } /** * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP * @ctx: pointer to the context structure to initialize. * @mmu_prop: MMU properties. * @hop_idx: HOP index. * @hop_addr: HOP address. * @virt_addr: virtual address for the translation. * * @return the matching PTE value on success, otherwise U64_MAX. */ u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, u8 hop_idx, u64 hop_addr, u64 virt_addr) { u64 mask, shift; if (hop_idx >= mmu_prop->num_hops) { dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); return U64_MAX; } shift = mmu_prop->hop_shifts[hop_idx]; mask = mmu_prop->hop_masks[hop_idx]; return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); } static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data) { struct hl_device *hdev = data; hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1, (void *)chunk->start_addr, chunk->phys_addr); } void hl_mmu_hr_flush(struct hl_ctx *ctx) { /* a flush operation requires memory barrier */ mb(); } /** * hl_mmu_hr_pool_destroy() - destroy genpool * @hdev: habanalabs device structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. * * This function does the following: * - free entries allocated for shadow HOP0 * - free pool chunks * - free pool */ static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct gen_pool **pool = &hr_priv->mmu_pgt_pool; struct pgt_info *hop0_pgt; int asid; if (ZERO_OR_NULL_PTR(*pool)) return; /* Free the Fixed allocation of HOPs0 */ if (hr_priv->mmu_asid_hop0) { for (asid = 0 ; asid < prop->max_asid ; asid++) { hop0_pgt = &hr_priv->mmu_asid_hop0[asid]; if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr)) continue; gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size); } } gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev); gen_pool_destroy(*pool); /* Make sure that if we arrive here again without init was called we * won't cause kernel panic. This can happen for example if we fail * during hard reset code at certain points */ *pool = NULL; } /** * hl_mmu_hr_init() - initialize the MMU module. * @hdev: habanalabs device structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. * @pgt_size: memory size allocated for the page table * * @return 0 on success otherwise non-zero error code * * This function does the following: * - Create a pool of pages for pgt_infos. * - Create a shadow table for pgt */ int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, u64 pgt_size) { struct asic_fixed_properties *prop = &hdev->asic_prop; size_t pool_chunk_size = SZ_4M; struct pgt_info *hop0_pgt; dma_addr_t dma_addr; u64 virt_addr; int i, rc; /* * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment. * This way we can call "DMA alloc align" according to dma_alloc granularity and supply * allocations with higher-order alignment restrictions */ hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1); if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) { dev_err(hdev->dev, "Failed to create hr page pool\n"); return -ENOMEM; } hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL); if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } for (i = 0 ; i < pgt_size ; i += pool_chunk_size) { virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size, &dma_addr, GFP_KERNEL | __GFP_ZERO); if (ZERO_OR_NULL_PTR(virt_addr)) { dev_err(hdev->dev, "Failed to allocate memory for host-resident page pool\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr, pool_chunk_size, -1); if (rc) { dev_err(hdev->dev, "Failed to fill host-resident page pool\n"); goto destroy_mmu_pgt_pool; } } for (i = 0 ; i < prop->max_asid ; i++) { hop0_pgt = &hr_priv->mmu_asid_hop0[i]; hop0_pgt->virt_addr = (uintptr_t) gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, hop_table_size, (dma_addr_t *) &hop0_pgt->phys_addr, hop_table_size); if (!hop0_pgt->virt_addr) { dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n"); rc = -ENOMEM; goto destroy_mmu_pgt_pool; } } /* MMU H/W init will be done in device hw_init() */ return 0; destroy_mmu_pgt_pool: hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) kvfree(hr_priv->mmu_asid_hop0); return rc; } /** * hl_mmu_hr_fini() - release the MMU module. * @hdev: habanalabs device structure. * @hr_priv: MMU host resident private info. * @hop_table_size: HOP table size * * This function does the following: * - Disable MMU in H/W. * - Free the pgt_infos pool. * * All contexts should be freed before calling this function. */ void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { /* MMU H/W fini was already done in device hw_fini() */ hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { kvfree(hr_priv->mmu_asid_hop0); /* Make sure that if we arrive here again without init was * called we won't cause kernel panic. This can happen for * example if we fail during hard reset code at certain points */ hr_priv->mmu_asid_hop0 = NULL; } } /** * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash * @pgt_info: page table info structure. * @hr_priv: MMU HR private data. * @hop_table_size: HOP table size. */ void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size); hash_del(&pgt_info->node); kfree(pgt_info); } /** * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr * @ctx: pointer to the context structure * @pgt: pgt_info for the HOP hosting the PTE * @phys_pte_addr: phys address of the PTE * @hop_table_size: HOP table size * * @return PTE virtual address * * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr * by adding the PTE offset. */ u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr, u32 hop_table_size) { u64 page_mask = (hop_table_size - 1); u64 pte_offset = phys_pte_addr & page_mask; return pgt->virt_addr + pte_offset; } /** * hl_mmu_hr_write_pte() - write HR PTE * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @phys_pte_addr: phys PTE address * @val: raw PTE data * @hop_table_size: HOP table size */ void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u64 val, u32 hop_table_size) { /* * The value to write is the phys address of the next hop + * flags at the 12 LSBs. */ u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size); *((u64 *) (uintptr_t) virt_addr) = val; } /** * hl_mmu_hr_clear_pte() - clear HR PTE * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @phys_pte_addr: phys PTE address * @hop_table_size: HOP table size */ void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, u32 hop_table_size) { /* no need to transform the value to physical address */ hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size); } /** * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs) * @ctx: pointer to the context structure * @pgt_info: HOP's page table info structure * @hr_priv: HR MMU private info * @hop_table_size: HOP table size * * @return number of PTEs still in the HOP */ int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) { int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size); return num_of_ptes_left; } /** * hl_mmu_hr_get_pte() - increase PGT PTE count * @ctx: pointer to the context structure * @hr_func: host resident functions * @phys_hop_addr: HOP phys address */ void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr) { hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++; } /** * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP * @ctx: pointer to the context structure. * @hr_func: host resident functions. * @curr_pte: current PTE value. * * @return pgt_info structure on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 curr_pte) { u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (next_hop_phys_addr == ULLONG_MAX) return NULL; return hr_func->get_pgt_info(ctx, next_hop_phys_addr); } /** * hl_mmu_hr_alloc_hop() - allocate HOP * @ctx: pointer to the context structure. * @hr_priv: host resident private info structure. * @hr_func: host resident functions. * @mmu_prop: MMU properties. * * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop) { struct hl_device *hdev = ctx->hdev; struct pgt_info *pgt_info; dma_addr_t phys_addr; void *virt_addr; int i, retry = 1; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return NULL; for (i = 0; i <= retry; i++) { virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, mmu_prop->hop_table_size, &phys_addr, mmu_prop->hop_table_size); if (virt_addr) break; /* No memory in pool - get some and try again */ virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr, GFP_KERNEL | __GFP_ZERO); if (ZERO_OR_NULL_PTR(virt_addr)) break; if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr, phys_addr, SZ_2M, -1)) { hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr); virt_addr = NULL; break; } } if (ZERO_OR_NULL_PTR(virt_addr)) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_alloc_err; } pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = (unsigned long) NULL; pgt_info->virt_addr = (unsigned long)virt_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hr_func->add_pgt_info(ctx, pgt_info, phys_addr); return pgt_info; pool_alloc_err: kfree(pgt_info); return NULL; } /** * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist * @ctx: pointer to the context structure. * @hr_priv: host resident private info structure. * @hr_func: host resident functions. * @mmu_prop: MMU properties. * @curr_pte: current PTE value. * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false). * * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. */ struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, struct hl_hr_mmu_funcs *hr_func, struct hl_mmu_properties *mmu_prop, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr != ULLONG_MAX) return hr_func->get_pgt_info(ctx, hop_addr); *is_new_hop = true; return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop); } /** * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping) * @ctx: pointer to the context structure. * @virt_addr: the virt address for which to get info. * @hops: HOPs info structure. * @hr_func: host resident functions. * * @return 0 on success, otherwise non 0 error code.. */ int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, struct hl_hr_mmu_funcs *hr_func) { /* using 6 HOPs as this is the maximum number of HOPs */ struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; struct hl_device *hdev = ctx->hdev; struct hl_mmu_properties *mmu_prop; int rc, i, used_hops; bool is_huge; rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge); if (rc) return rc; used_hops = mmu_prop->num_hops; /* huge pages use one less hop */ if (is_huge) used_hops--; hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); for (i = 0 ; i < used_hops ; i++) { if (i == 0) hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx); else hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func, hops->hop_info[i - 1].hop_pte_val); if (!hops_pgt_info[i]) return -EFAULT; hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr; hops->hop_info[i].hop_pte_addr = hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, hops->hop_info[i].hop_addr, hops->scrambled_vaddr); hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t) hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], hops->hop_info[i].hop_pte_addr, mmu_prop->hop_table_size); if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) return -EFAULT; if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) break; } /* if passed over all hops then no last hop was found */ if (i == mmu_prop->num_hops) return -EFAULT; if (hops->scrambled_vaddr != virt_addr) hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr (hdev, hops->hop_info[i].hop_pte_val); else hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; hops->used_hops = i + 1; return 0; } struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = NULL; hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, (unsigned long) hop_addr) if (hop_addr == pgt_info->shadow_addr) break; return pgt_info; } void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); hl_mmu_dr_free_pgt_node(ctx, pgt_info); } void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info) { struct hl_device *hdev = ctx->hdev; gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, hdev->asic_prop.dmmu.hop_table_size); hash_del(&pgt_info->node); kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); kfree(pgt_info); } u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx) { return ctx->hdev->asic_prop.mmu_pgt_addr + (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); } u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx) { return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); } u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) { u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1; u64 shadow_hop_addr = shadow_addr & (~page_mask); u64 pte_offset = shadow_addr & page_mask; u64 phys_hop_addr; if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx)) phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr; else phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); return phys_hop_addr + pte_offset; } void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val); ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), phys_val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) { ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val); *(u64 *) (uintptr_t) shadow_pte_addr = val; } void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr) { hl_mmu_dr_write_final_pte(ctx, pte_addr, 0); } void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr) { hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++; } int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr) { struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); int num_of_ptes_left; pgt_info->num_of_ptes--; /* * Need to save the number of ptes left because hl_mmu_free_hop might free * the pgt_info */ num_of_ptes_left = pgt_info->num_of_ptes; if (!num_of_ptes_left) hl_mmu_dr_free_pgt_node(ctx, pgt_info); return num_of_ptes_left; } u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; struct pgt_info *pgt_info; u64 phys_addr, shadow_addr; pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); if (!pgt_info) return ULLONG_MAX; phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, prop->dmmu.hop_table_size); if (!phys_addr) { dev_err(hdev->dev, "failed to allocate page\n"); goto pool_add_err; } shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size, GFP_KERNEL); if (!shadow_addr) goto shadow_err; pgt_info->phys_addr = phys_addr; pgt_info->shadow_addr = shadow_addr; pgt_info->ctx = ctx; pgt_info->num_of_ptes = 0; hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); return shadow_addr; shadow_err: gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, phys_addr, prop->dmmu.hop_table_size); pool_add_err: kfree(pgt_info); return ULLONG_MAX; } u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) { u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); if (hop_addr == ULLONG_MAX) { hop_addr = hl_mmu_dr_alloc_hop(ctx); *is_new_hop = (hop_addr != ULLONG_MAX); } return hop_addr; } void hl_mmu_dr_flush(struct hl_ctx *ctx) { /* flush all writes from all cores to reach PCI */ mb(); ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx)); } int hl_mmu_dr_init(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; hdev->mmu_priv.dr.mmu_pgt_pool = gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1); if (!hdev->mmu_priv.dr.mmu_pgt_pool) { dev_err(hdev->dev, "Failed to create page gen pool\n"); return -ENOMEM; } rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + prop->dmmu.hop0_tables_total_size, prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); goto err_pool_add; } hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid, prop->dmmu.hop_table_size, GFP_KERNEL); if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { rc = -ENOMEM; goto err_pool_add; } /* MMU H/W init will be done in device hw_init() */ return 0; err_pool_add: gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); return rc; } void hl_mmu_dr_fini(struct hl_device *hdev) { /* MMU H/W fini was already done in device hw_fini() */ if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) return; kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); /* Make sure that if we arrive here again without init was * called we won't cause kernel panic. This can happen for * example if we fail during hard reset code at certain points */ hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; }