// SPDX-License-Identifier: GPL-2.0-only OR MIT /* Copyright (c) 2023 Imagination Technologies Ltd. */ #include "pvr_context.h" #include "pvr_device.h" #include "pvr_drv.h" #include "pvr_gem.h" #include "pvr_hwrt.h" #include "pvr_job.h" #include "pvr_mmu.h" #include "pvr_power.h" #include "pvr_rogue_fwif.h" #include "pvr_rogue_fwif_client.h" #include "pvr_stream.h" #include "pvr_stream_defs.h" #include "pvr_sync.h" #include #include #include #include static void pvr_job_release(struct kref *kref) { struct pvr_job *job = container_of(kref, struct pvr_job, ref_count); xa_erase(&job->pvr_dev->job_ids, job->id); pvr_hwrt_data_put(job->hwrt); pvr_context_put(job->ctx); WARN_ON(job->paired_job); pvr_queue_job_cleanup(job); pvr_job_release_pm_ref(job); kfree(job->cmd); kfree(job); } /** * pvr_job_put() - Release reference on job * @job: Target job. */ void pvr_job_put(struct pvr_job *job) { if (job) kref_put(&job->ref_count, pvr_job_release); } /** * pvr_job_process_stream() - Build job FW structure from stream * @pvr_dev: Device pointer. * @cmd_defs: Stream definition. * @stream: Pointer to command stream. * @stream_size: Size of command stream, in bytes. * @job: Pointer to job. * * Caller is responsible for freeing the output structure. * * Returns: * * 0 on success, * * -%ENOMEM on out of memory, or * * -%EINVAL on malformed stream. */ static int pvr_job_process_stream(struct pvr_device *pvr_dev, const struct pvr_stream_cmd_defs *cmd_defs, void *stream, u32 stream_size, struct pvr_job *job) { int err; job->cmd = kzalloc(cmd_defs->dest_size, GFP_KERNEL); if (!job->cmd) return -ENOMEM; job->cmd_len = cmd_defs->dest_size; err = pvr_stream_process(pvr_dev, cmd_defs, stream, stream_size, job->cmd); if (err) kfree(job->cmd); return err; } static int pvr_fw_cmd_init(struct pvr_device *pvr_dev, struct pvr_job *job, const struct pvr_stream_cmd_defs *stream_def, u64 stream_userptr, u32 stream_len) { void *stream; int err; stream = kzalloc(stream_len, GFP_KERNEL); if (!stream) return -ENOMEM; if (copy_from_user(stream, u64_to_user_ptr(stream_userptr), stream_len)) { err = -EFAULT; goto err_free_stream; } err = pvr_job_process_stream(pvr_dev, stream_def, stream, stream_len, job); err_free_stream: kfree(stream); return err; } static u32 convert_geom_flags(u32 in_flags) { u32 out_flags = 0; if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_FIRST) out_flags |= ROGUE_GEOM_FLAGS_FIRSTKICK; if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_LAST) out_flags |= ROGUE_GEOM_FLAGS_LASTKICK; if (in_flags & DRM_PVR_SUBMIT_JOB_GEOM_CMD_SINGLE_CORE) out_flags |= ROGUE_GEOM_FLAGS_SINGLE_CORE; return out_flags; } static u32 convert_frag_flags(u32 in_flags) { u32 out_flags = 0; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_SINGLE_CORE) out_flags |= ROGUE_FRAG_FLAGS_SINGLE_CORE; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_DEPTHBUFFER) out_flags |= ROGUE_FRAG_FLAGS_DEPTHBUFFER; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_STENCILBUFFER) out_flags |= ROGUE_FRAG_FLAGS_STENCILBUFFER; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_PREVENT_CDM_OVERLAP) out_flags |= ROGUE_FRAG_FLAGS_PREVENT_CDM_OVERLAP; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_SCRATCHBUFFER) out_flags |= ROGUE_FRAG_FLAGS_SCRATCHBUFFER; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_GET_VIS_RESULTS) out_flags |= ROGUE_FRAG_FLAGS_GET_VIS_RESULTS; if (in_flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_DISABLE_PIXELMERGE) out_flags |= ROGUE_FRAG_FLAGS_DISABLE_PIXELMERGE; return out_flags; } static int pvr_geom_job_fw_cmd_init(struct pvr_job *job, struct drm_pvr_job *args) { struct rogue_fwif_cmd_geom *cmd; int err; if (args->flags & ~DRM_PVR_SUBMIT_JOB_GEOM_CMD_FLAGS_MASK) return -EINVAL; if (job->ctx->type != DRM_PVR_CTX_TYPE_RENDER) return -EINVAL; if (!job->hwrt) return -EINVAL; job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_GEOM; err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_geom_stream, args->cmd_stream, args->cmd_stream_len); if (err) return err; cmd = job->cmd; cmd->cmd_shared.cmn.frame_num = 0; cmd->flags = convert_geom_flags(args->flags); pvr_fw_object_get_fw_addr(job->hwrt->fw_obj, &cmd->cmd_shared.hwrt_data_fw_addr); return 0; } static int pvr_frag_job_fw_cmd_init(struct pvr_job *job, struct drm_pvr_job *args) { struct rogue_fwif_cmd_frag *cmd; int err; if (args->flags & ~DRM_PVR_SUBMIT_JOB_FRAG_CMD_FLAGS_MASK) return -EINVAL; if (job->ctx->type != DRM_PVR_CTX_TYPE_RENDER) return -EINVAL; if (!job->hwrt) return -EINVAL; job->fw_ccb_cmd_type = (args->flags & DRM_PVR_SUBMIT_JOB_FRAG_CMD_PARTIAL_RENDER) ? ROGUE_FWIF_CCB_CMD_TYPE_FRAG_PR : ROGUE_FWIF_CCB_CMD_TYPE_FRAG; err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_frag_stream, args->cmd_stream, args->cmd_stream_len); if (err) return err; cmd = job->cmd; cmd->cmd_shared.cmn.frame_num = 0; cmd->flags = convert_frag_flags(args->flags); pvr_fw_object_get_fw_addr(job->hwrt->fw_obj, &cmd->cmd_shared.hwrt_data_fw_addr); return 0; } static u32 convert_compute_flags(u32 in_flags) { u32 out_flags = 0; if (in_flags & DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_PREVENT_ALL_OVERLAP) out_flags |= ROGUE_COMPUTE_FLAG_PREVENT_ALL_OVERLAP; if (in_flags & DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_SINGLE_CORE) out_flags |= ROGUE_COMPUTE_FLAG_SINGLE_CORE; return out_flags; } static int pvr_compute_job_fw_cmd_init(struct pvr_job *job, struct drm_pvr_job *args) { struct rogue_fwif_cmd_compute *cmd; int err; if (args->flags & ~DRM_PVR_SUBMIT_JOB_COMPUTE_CMD_FLAGS_MASK) return -EINVAL; if (job->ctx->type != DRM_PVR_CTX_TYPE_COMPUTE) return -EINVAL; job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_CDM; err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_compute_stream, args->cmd_stream, args->cmd_stream_len); if (err) return err; cmd = job->cmd; cmd->common.frame_num = 0; cmd->flags = convert_compute_flags(args->flags); return 0; } static u32 convert_transfer_flags(u32 in_flags) { u32 out_flags = 0; if (in_flags & DRM_PVR_SUBMIT_JOB_TRANSFER_CMD_SINGLE_CORE) out_flags |= ROGUE_TRANSFER_FLAGS_SINGLE_CORE; return out_flags; } static int pvr_transfer_job_fw_cmd_init(struct pvr_job *job, struct drm_pvr_job *args) { struct rogue_fwif_cmd_transfer *cmd; int err; if (args->flags & ~DRM_PVR_SUBMIT_JOB_TRANSFER_CMD_FLAGS_MASK) return -EINVAL; if (job->ctx->type != DRM_PVR_CTX_TYPE_TRANSFER_FRAG) return -EINVAL; job->fw_ccb_cmd_type = ROGUE_FWIF_CCB_CMD_TYPE_TQ_3D; err = pvr_fw_cmd_init(job->pvr_dev, job, &pvr_cmd_transfer_stream, args->cmd_stream, args->cmd_stream_len); if (err) return err; cmd = job->cmd; cmd->common.frame_num = 0; cmd->flags = convert_transfer_flags(args->flags); return 0; } static int pvr_job_fw_cmd_init(struct pvr_job *job, struct drm_pvr_job *args) { switch (args->type) { case DRM_PVR_JOB_TYPE_GEOMETRY: return pvr_geom_job_fw_cmd_init(job, args); case DRM_PVR_JOB_TYPE_FRAGMENT: return pvr_frag_job_fw_cmd_init(job, args); case DRM_PVR_JOB_TYPE_COMPUTE: return pvr_compute_job_fw_cmd_init(job, args); case DRM_PVR_JOB_TYPE_TRANSFER_FRAG: return pvr_transfer_job_fw_cmd_init(job, args); default: return -EINVAL; } } /** * struct pvr_job_data - Helper container for pairing jobs with the * sync_ops supplied for them by the user. */ struct pvr_job_data { /** @job: Pointer to the job. */ struct pvr_job *job; /** @sync_ops: Pointer to the sync_ops associated with @job. */ struct drm_pvr_sync_op *sync_ops; /** @sync_op_count: Number of members of @sync_ops. */ u32 sync_op_count; }; /** * prepare_job_syncs() - Prepare all sync objects for a single job. * @pvr_file: PowerVR file. * @job_data: Precreated job and sync_ops array. * @signal_array: xarray to receive signal sync objects. * * Returns: * * 0 on success, or * * Any error code returned by pvr_sync_signal_array_collect_ops(), * pvr_sync_add_deps_to_job(), drm_sched_job_add_resv_dependencies() or * pvr_sync_signal_array_update_fences(). */ static int prepare_job_syncs(struct pvr_file *pvr_file, struct pvr_job_data *job_data, struct xarray *signal_array) { struct dma_fence *done_fence; int err = pvr_sync_signal_array_collect_ops(signal_array, from_pvr_file(pvr_file), job_data->sync_op_count, job_data->sync_ops); if (err) return err; err = pvr_sync_add_deps_to_job(pvr_file, &job_data->job->base, job_data->sync_op_count, job_data->sync_ops, signal_array); if (err) return err; if (job_data->job->hwrt) { /* The geometry job writes the HWRT region headers, which are * then read by the fragment job. */ struct drm_gem_object *obj = gem_from_pvr_gem(job_data->job->hwrt->fw_obj->gem); enum dma_resv_usage usage = dma_resv_usage_rw(job_data->job->type == DRM_PVR_JOB_TYPE_GEOMETRY); dma_resv_lock(obj->resv, NULL); err = drm_sched_job_add_resv_dependencies(&job_data->job->base, obj->resv, usage); dma_resv_unlock(obj->resv); if (err) return err; } /* We need to arm the job to get the job done fence. */ done_fence = pvr_queue_job_arm(job_data->job); err = pvr_sync_signal_array_update_fences(signal_array, job_data->sync_op_count, job_data->sync_ops, done_fence); return err; } /** * prepare_job_syncs_for_each() - Prepare all sync objects for an array of jobs. * @pvr_file: PowerVR file. * @job_data: Array of precreated jobs and their sync_ops. * @job_count: Number of jobs. * @signal_array: xarray to receive signal sync objects. * * Returns: * * 0 on success, or * * Any error code returned by pvr_vm_bind_job_prepare_syncs(). */ static int prepare_job_syncs_for_each(struct pvr_file *pvr_file, struct pvr_job_data *job_data, u32 *job_count, struct xarray *signal_array) { for (u32 i = 0; i < *job_count; i++) { int err = prepare_job_syncs(pvr_file, &job_data[i], signal_array); if (err) { *job_count = i; return err; } } return 0; } static struct pvr_job * create_job(struct pvr_device *pvr_dev, struct pvr_file *pvr_file, struct drm_pvr_job *args) { struct pvr_job *job = NULL; int err; if (!args->cmd_stream || !args->cmd_stream_len) return ERR_PTR(-EINVAL); if (args->type != DRM_PVR_JOB_TYPE_GEOMETRY && args->type != DRM_PVR_JOB_TYPE_FRAGMENT && (args->hwrt.set_handle || args->hwrt.data_index)) return ERR_PTR(-EINVAL); job = kzalloc(sizeof(*job), GFP_KERNEL); if (!job) return ERR_PTR(-ENOMEM); kref_init(&job->ref_count); job->type = args->type; job->pvr_dev = pvr_dev; err = xa_alloc(&pvr_dev->job_ids, &job->id, job, xa_limit_32b, GFP_KERNEL); if (err) goto err_put_job; job->ctx = pvr_context_lookup(pvr_file, args->context_handle); if (!job->ctx) { err = -EINVAL; goto err_put_job; } if (args->hwrt.set_handle) { job->hwrt = pvr_hwrt_data_lookup(pvr_file, args->hwrt.set_handle, args->hwrt.data_index); if (!job->hwrt) { err = -EINVAL; goto err_put_job; } } err = pvr_job_fw_cmd_init(job, args); if (err) goto err_put_job; err = pvr_queue_job_init(job); if (err) goto err_put_job; return job; err_put_job: pvr_job_put(job); return ERR_PTR(err); } /** * pvr_job_data_fini() - Cleanup all allocs used to set up job submission. * @job_data: Job data array. * @job_count: Number of members of @job_data. */ static void pvr_job_data_fini(struct pvr_job_data *job_data, u32 job_count) { for (u32 i = 0; i < job_count; i++) { pvr_job_put(job_data[i].job); kvfree(job_data[i].sync_ops); } } /** * pvr_job_data_init() - Init an array of created jobs, associating them with * the appropriate sync_ops args, which will be copied in. * @pvr_dev: Target PowerVR device. * @pvr_file: Pointer to PowerVR file structure. * @job_args: Job args array copied from user. * @job_count: Number of members of @job_args. * @job_data_out: Job data array. */ static int pvr_job_data_init(struct pvr_device *pvr_dev, struct pvr_file *pvr_file, struct drm_pvr_job *job_args, u32 *job_count, struct pvr_job_data *job_data_out) { int err = 0, i = 0; for (; i < *job_count; i++) { job_data_out[i].job = create_job(pvr_dev, pvr_file, &job_args[i]); err = PTR_ERR_OR_ZERO(job_data_out[i].job); if (err) { *job_count = i; job_data_out[i].job = NULL; goto err_cleanup; } err = PVR_UOBJ_GET_ARRAY(job_data_out[i].sync_ops, &job_args[i].sync_ops); if (err) { *job_count = i; /* Ensure the job created above is also cleaned up. */ i++; goto err_cleanup; } job_data_out[i].sync_op_count = job_args[i].sync_ops.count; } return 0; err_cleanup: pvr_job_data_fini(job_data_out, i); return err; } static void push_jobs(struct pvr_job_data *job_data, u32 job_count) { for (u32 i = 0; i < job_count; i++) pvr_queue_job_push(job_data[i].job); } static int prepare_fw_obj_resv(struct drm_exec *exec, struct pvr_fw_object *fw_obj) { return drm_exec_prepare_obj(exec, gem_from_pvr_gem(fw_obj->gem), 1); } static int jobs_lock_all_objs(struct drm_exec *exec, struct pvr_job_data *job_data, u32 job_count) { for (u32 i = 0; i < job_count; i++) { struct pvr_job *job = job_data[i].job; /* Grab a lock on a the context, to guard against * concurrent submission to the same queue. */ int err = drm_exec_lock_obj(exec, gem_from_pvr_gem(job->ctx->fw_obj->gem)); if (err) return err; if (job->hwrt) { err = prepare_fw_obj_resv(exec, job->hwrt->fw_obj); if (err) return err; } } return 0; } static int prepare_job_resvs_for_each(struct drm_exec *exec, struct pvr_job_data *job_data, u32 job_count) { drm_exec_until_all_locked(exec) { int err = jobs_lock_all_objs(exec, job_data, job_count); drm_exec_retry_on_contention(exec); if (err) return err; } return 0; } static void update_job_resvs(struct pvr_job *job) { if (job->hwrt) { enum dma_resv_usage usage = job->type == DRM_PVR_JOB_TYPE_GEOMETRY ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ; struct drm_gem_object *obj = gem_from_pvr_gem(job->hwrt->fw_obj->gem); dma_resv_add_fence(obj->resv, &job->base.s_fence->finished, usage); } } static void update_job_resvs_for_each(struct pvr_job_data *job_data, u32 job_count) { for (u32 i = 0; i < job_count; i++) update_job_resvs(job_data[i].job); } static bool can_combine_jobs(struct pvr_job *a, struct pvr_job *b) { struct pvr_job *geom_job = a, *frag_job = b; struct dma_fence *fence; unsigned long index; /* Geometry and fragment jobs can be combined if they are queued to the * same context and targeting the same HWRT. */ if (a->type != DRM_PVR_JOB_TYPE_GEOMETRY || b->type != DRM_PVR_JOB_TYPE_FRAGMENT || a->ctx != b->ctx || a->hwrt != b->hwrt) return false; xa_for_each(&frag_job->base.dependencies, index, fence) { /* We combine when we see an explicit geom -> frag dep. */ if (&geom_job->base.s_fence->scheduled == fence) return true; } return false; } static struct dma_fence * get_last_queued_job_scheduled_fence(struct pvr_queue *queue, struct pvr_job_data *job_data, u32 cur_job_pos) { /* We iterate over the current job array in reverse order to grab the * last to-be-queued job targeting the same queue. */ for (u32 i = cur_job_pos; i > 0; i--) { struct pvr_job *job = job_data[i - 1].job; if (job->ctx == queue->ctx && job->type == queue->type) return dma_fence_get(&job->base.s_fence->scheduled); } /* If we didn't find any, we just return the last queued job scheduled * fence attached to the queue. */ return dma_fence_get(queue->last_queued_job_scheduled_fence); } static int pvr_jobs_link_geom_frag(struct pvr_job_data *job_data, u32 *job_count) { for (u32 i = 0; i < *job_count - 1; i++) { struct pvr_job *geom_job = job_data[i].job; struct pvr_job *frag_job = job_data[i + 1].job; struct pvr_queue *frag_queue; struct dma_fence *f; if (!can_combine_jobs(job_data[i].job, job_data[i + 1].job)) continue; /* The fragment job will be submitted by the geometry queue. We * need to make sure it comes after all the other fragment jobs * queued before it. */ frag_queue = pvr_context_get_queue_for_job(frag_job->ctx, frag_job->type); f = get_last_queued_job_scheduled_fence(frag_queue, job_data, i); if (f) { int err = drm_sched_job_add_dependency(&geom_job->base, f); if (err) { *job_count = i; return err; } } /* The KCCB slot will be reserved by the geometry job, so we can * drop the KCCB fence on the fragment job. */ pvr_kccb_fence_put(frag_job->kccb_fence); frag_job->kccb_fence = NULL; geom_job->paired_job = frag_job; frag_job->paired_job = geom_job; /* Skip the fragment job we just paired to the geometry job. */ i++; } return 0; } /** * pvr_submit_jobs() - Submit jobs to the GPU * @pvr_dev: Target PowerVR device. * @pvr_file: Pointer to PowerVR file structure. * @args: Ioctl args. * * This initial implementation is entirely synchronous; on return the GPU will * be idle. This will not be the case for future implementations. * * Returns: * * 0 on success, * * -%EFAULT if arguments can not be copied from user space, or * * -%EINVAL on invalid arguments, or * * Any other error. */ int pvr_submit_jobs(struct pvr_device *pvr_dev, struct pvr_file *pvr_file, struct drm_pvr_ioctl_submit_jobs_args *args) { struct pvr_job_data *job_data = NULL; struct drm_pvr_job *job_args; struct xarray signal_array; u32 jobs_alloced = 0; struct drm_exec exec; int err; if (!args->jobs.count) return -EINVAL; err = PVR_UOBJ_GET_ARRAY(job_args, &args->jobs); if (err) return err; job_data = kvmalloc_array(args->jobs.count, sizeof(*job_data), GFP_KERNEL | __GFP_ZERO); if (!job_data) { err = -ENOMEM; goto out_free; } err = pvr_job_data_init(pvr_dev, pvr_file, job_args, &args->jobs.count, job_data); if (err) goto out_free; jobs_alloced = args->jobs.count; /* * Flush MMU if needed - this has been deferred until now to avoid * overuse of this expensive operation. */ err = pvr_mmu_flush_exec(pvr_dev, false); if (err) goto out_job_data_cleanup; drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES, 0); xa_init_flags(&signal_array, XA_FLAGS_ALLOC); err = prepare_job_syncs_for_each(pvr_file, job_data, &args->jobs.count, &signal_array); if (err) goto out_exec_fini; err = prepare_job_resvs_for_each(&exec, job_data, args->jobs.count); if (err) goto out_exec_fini; err = pvr_jobs_link_geom_frag(job_data, &args->jobs.count); if (err) goto out_exec_fini; /* Anything after that point must succeed because we start exposing job * finished fences to the outside world. */ update_job_resvs_for_each(job_data, args->jobs.count); push_jobs(job_data, args->jobs.count); pvr_sync_signal_array_push_fences(&signal_array); err = 0; out_exec_fini: drm_exec_fini(&exec); pvr_sync_signal_array_cleanup(&signal_array); out_job_data_cleanup: pvr_job_data_fini(job_data, jobs_alloced); out_free: kvfree(job_data); kvfree(job_args); return err; }