// SPDX-License-Identifier: MIT /* * Copyright © 2021-2023 Intel Corporation */ #include #include "xe_mmio.h" #include #include #include "regs/xe_engine_regs.h" #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_macros.h" #include "xe_module.h" #define XEHP_MTCFG_ADDR XE_REG(0x101800) #define TILE_COUNT REG_GENMASK(15, 8) #define BAR_SIZE_SHIFT 20 static int xe_set_dma_info(struct xe_device *xe) { unsigned int mask_size = xe->info.dma_mask_size; int err; dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; return 0; mask_err: drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); return err; } static void _resize_bar(struct xe_device *xe, int resno, resource_size_t size) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int bar_size = pci_rebar_bytes_to_size(size); int ret; if (pci_resource_len(pdev, resno)) pci_release_resource(pdev, resno); ret = pci_resize_resource(pdev, resno, bar_size); if (ret) { drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n", resno, 1 << bar_size, ERR_PTR(ret)); return; } drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); } /* * if force_vram_bar_size is set, attempt to set to the requested size * else set to maximum possible size */ static void xe_resize_vram_bar(struct xe_device *xe) { u64 force_vram_bar_size = xe_force_vram_bar_size; struct pci_dev *pdev = to_pci_dev(xe->drm.dev); struct pci_bus *root = pdev->bus; resource_size_t current_size; resource_size_t rebar_size; struct resource *root_res; u32 bar_size_mask; u32 pci_cmd; int i; /* gather some relevant info */ current_size = pci_resource_len(pdev, GEN12_LMEM_BAR); bar_size_mask = pci_rebar_get_possible_sizes(pdev, GEN12_LMEM_BAR); if (!bar_size_mask) return; /* set to a specific size? */ if (force_vram_bar_size) { u32 bar_size_bit; rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M; bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size)); if (!bar_size_bit) { drm_info(&xe->drm, "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n", (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20); return; } rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT); if (rebar_size == current_size) return; } else { rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT); /* only resize if larger than current */ if (rebar_size <= current_size) return; } drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n", (u64)current_size >> 20, (u64)rebar_size >> 20); while (root->parent) root = root->parent; pci_bus_for_each_resource(root, root_res, i) { if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && root_res->start > 0x100000000ull) break; } if (!root_res) { drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n"); return; } pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); _resize_bar(xe, GEN12_LMEM_BAR, rebar_size); pci_assign_unassigned_bus_resources(pdev->bus); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); } static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar) { if (!pci_resource_flags(pdev, bar)) return false; if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) return false; if (!pci_resource_len(pdev, bar)) return false; return true; } static int xe_determine_lmem_bar_size(struct xe_device *xe) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); if (!xe_pci_resource_valid(pdev, GEN12_LMEM_BAR)) { drm_err(&xe->drm, "pci resource is not valid\n"); return -ENXIO; } xe_resize_vram_bar(xe); xe->mem.vram.io_start = pci_resource_start(pdev, GEN12_LMEM_BAR); xe->mem.vram.io_size = pci_resource_len(pdev, GEN12_LMEM_BAR); if (!xe->mem.vram.io_size) return -EIO; xe->mem.vram.base = 0; /* DPA offset */ /* set up a map to the total memory area. */ xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size); return 0; } /** * xe_mmio_tile_vram_size() - Collect vram size and offset information * @tile: tile to get info for * @vram_size: available vram (size - device reserved portions) * @tile_size: actual vram size * @tile_offset: physical start point in the vram address space * * There are 4 places for size information: * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1) * - TILEx size (actual vram size) * - GSMBASE offset (TILEx - "stolen") * - CSSBASE offset (TILEx - CSS space necessary) * * CSSBASE is always a lower/smaller offset then GSMBASE. * * The actual available size of memory is to the CCS or GSM base. * NOTE: multi-tile bases will include the tile offset. * */ int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size, u64 *tile_size, u64 *tile_offset) { struct xe_device *xe = tile_to_xe(tile); struct xe_gt *gt = tile->primary_gt; u64 offset; int err; u32 reg; err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return err; /* actual size */ if (unlikely(xe->info.platform == XE_DG1)) { *tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), GEN12_LMEM_BAR); *tile_offset = 0; } else { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id)); *tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; *tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G; } /* minus device usage */ if (xe->info.has_flat_ccs) { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); offset = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K; } else { offset = xe_mmio_read64(gt, GSMBASE); } /* remove the tile offset so we have just the available size */ *vram_size = offset - *tile_offset; return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } int xe_mmio_probe_vram(struct xe_device *xe) { struct xe_tile *tile; resource_size_t io_size; u64 available_size = 0; u64 total_size = 0; u64 tile_offset; u64 tile_size; u64 vram_size; int err; u8 id; if (!IS_DGFX(xe)) return 0; /* Get the size of the root tile's vram for later accessibility comparison */ tile = xe_device_get_root_tile(xe); err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); if (err) return err; err = xe_determine_lmem_bar_size(xe); if (err) return err; drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &xe->mem.vram.io_size); io_size = xe->mem.vram.io_size; /* tile specific ranges */ for_each_tile(tile, xe, id) { err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); if (err) return err; tile->mem.vram.actual_physical_size = tile_size; tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset; tile->mem.vram.io_size = min_t(u64, vram_size, io_size); if (!tile->mem.vram.io_size) { drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n"); return -ENODEV; } tile->mem.vram.base = tile_offset; tile->mem.vram.usable_size = vram_size; tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset; drm_info(&xe->drm, "VRAM[%u, %u]: %pa, %pa\n", id, tile->id, &tile->mem.vram.io_start, &tile->mem.vram.usable_size); if (tile->mem.vram.io_size < tile->mem.vram.usable_size) drm_info(&xe->drm, "VRAM[%u, %u]: CPU access limited to %pa\n", id, tile->id, &tile->mem.vram.io_size); /* calculate total size using tile size to get the correct HW sizing */ total_size += tile_size; available_size += vram_size; if (total_size > xe->mem.vram.io_size) { drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n", &total_size, &xe->mem.vram.io_size); } io_size -= min_t(u64, tile_size, io_size); } xe->mem.vram.size = total_size; drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &xe->mem.vram.size); drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &available_size); return 0; } static void xe_mmio_probe_tiles(struct xe_device *xe) { struct xe_gt *gt = xe_root_mmio_gt(xe); u32 mtcfg; u8 adj_tile_count; u8 id; if (xe->info.tile_count == 1) return; mtcfg = xe_mmio_read64(gt, XEHP_MTCFG_ADDR); adj_tile_count = xe->info.tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; /* * FIXME: Needs some work for standalone media, but should be impossible * with multi-tile for now. */ xe->info.gt_count = xe->info.tile_count; drm_info(&xe->drm, "tile_count: %d, adj_tile_count %d\n", xe->info.tile_count, adj_tile_count); if (xe->info.tile_count > 1) { const int mmio_bar = 0; struct xe_tile *tile; size_t size; void *regs; if (adj_tile_count > 1) { pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); xe->mmio.size = SZ_16M * adj_tile_count; xe->mmio.regs = pci_iomap(to_pci_dev(xe->drm.dev), mmio_bar, xe->mmio.size); } size = xe->mmio.size / adj_tile_count; regs = xe->mmio.regs; for_each_tile(tile, xe, id) { tile->mmio.size = size; tile->mmio.regs = regs; regs += size; } } } static void mmio_fini(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); if (xe->mem.vram.mapping) iounmap(xe->mem.vram.mapping); } int xe_mmio_init(struct xe_device *xe) { struct xe_tile *root_tile = xe_device_get_root_tile(xe); struct xe_gt *gt = xe_root_mmio_gt(xe); const int mmio_bar = 0; int err; /* * Map the first 16MB of th BAR, which includes the registers (0-4MB), * reserved space (4MB-8MB), and GGTT (8MB-16MB) for a single tile. * This will get remapped later if we determine that we're running * on a multi-tile system. */ xe->mmio.size = SZ_16M; xe->mmio.regs = pci_iomap(to_pci_dev(xe->drm.dev), mmio_bar, xe->mmio.size); if (xe->mmio.regs == NULL) { drm_err(&xe->drm, "failed to map registers\n"); return -EIO; } err = drmm_add_action_or_reset(&xe->drm, mmio_fini, xe); if (err) return err; /* Setup first tile; other tiles (if present) will be setup later. */ root_tile->mmio.size = xe->mmio.size; root_tile->mmio.regs = xe->mmio.regs; /* * The boot firmware initializes local memory and assesses its health. * If memory training fails, the punit will have been instructed to * keep the GT powered down; we won't be able to communicate with it * and we should not continue with driver initialization. */ if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT)) { drm_err(&xe->drm, "VRAM not initialized by firmware\n"); return -ENODEV; } err = xe_set_dma_info(xe); if (err) return err; xe_mmio_probe_tiles(xe); return 0; } #define VALID_MMIO_FLAGS (\ DRM_XE_MMIO_BITS_MASK |\ DRM_XE_MMIO_READ |\ DRM_XE_MMIO_WRITE) static const struct xe_reg mmio_read_whitelist[] = { RING_TIMESTAMP(RENDER_RING_BASE), }; int xe_mmio_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_gt *gt = xe_root_mmio_gt(xe); struct drm_xe_mmio *args = data; unsigned int bits_flag, bytes; struct xe_reg reg; bool allowed; int ret = 0; if (XE_IOCTL_DBG(xe, args->extensions) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; if (XE_IOCTL_DBG(xe, args->flags & ~VALID_MMIO_FLAGS)) return -EINVAL; if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_MMIO_WRITE) && args->value)) return -EINVAL; allowed = capable(CAP_SYS_ADMIN); if (!allowed && ((args->flags & ~DRM_XE_MMIO_BITS_MASK) == DRM_XE_MMIO_READ)) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mmio_read_whitelist); i++) { if (mmio_read_whitelist[i].addr == args->addr) { allowed = true; break; } } } if (XE_IOCTL_DBG(xe, !allowed)) return -EPERM; bits_flag = args->flags & DRM_XE_MMIO_BITS_MASK; bytes = 1 << bits_flag; if (XE_IOCTL_DBG(xe, args->addr + bytes > xe->mmio.size)) return -EINVAL; /* * TODO: migrate to xe_gt_mcr to lookup the mmio range and handle * multicast registers. Steering would need uapi extension. */ reg = XE_REG(args->addr); xe_device_mem_access_get(xe); xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); if (args->flags & DRM_XE_MMIO_WRITE) { switch (bits_flag) { case DRM_XE_MMIO_32BIT: if (XE_IOCTL_DBG(xe, args->value > U32_MAX)) { ret = -EINVAL; goto exit; } xe_mmio_write32(gt, reg, args->value); break; case DRM_XE_MMIO_64BIT: xe_mmio_write64(gt, reg, args->value); break; default: drm_dbg(&xe->drm, "Invalid MMIO bit size"); fallthrough; case DRM_XE_MMIO_8BIT: /* TODO */ case DRM_XE_MMIO_16BIT: /* TODO */ ret = -EOPNOTSUPP; goto exit; } } if (args->flags & DRM_XE_MMIO_READ) { switch (bits_flag) { case DRM_XE_MMIO_32BIT: args->value = xe_mmio_read32(gt, reg); break; case DRM_XE_MMIO_64BIT: args->value = xe_mmio_read64(gt, reg); break; default: drm_dbg(&xe->drm, "Invalid MMIO bit size"); fallthrough; case DRM_XE_MMIO_8BIT: /* TODO */ case DRM_XE_MMIO_16BIT: /* TODO */ ret = -EOPNOTSUPP; } } exit: xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL); xe_device_mem_access_put(xe); return ret; }