// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2012 Realtek Corporation. */ #define _RTW_WLAN_UTIL_C_ #include "../include/osdep_service.h" #include "../include/drv_types.h" #include "../include/wifi.h" static unsigned char ARTHEROS_OUI1[] = {0x00, 0x03, 0x7f}; static unsigned char ARTHEROS_OUI2[] = {0x00, 0x13, 0x74}; static unsigned char BROADCOM_OUI1[] = {0x00, 0x10, 0x18}; static unsigned char BROADCOM_OUI2[] = {0x00, 0x0a, 0xf7}; static unsigned char CISCO_OUI[] = {0x00, 0x40, 0x96}; static unsigned char MARVELL_OUI[] = {0x00, 0x50, 0x43}; static unsigned char RALINK_OUI[] = {0x00, 0x0c, 0x43}; static unsigned char REALTEK_OUI[] = {0x00, 0xe0, 0x4c}; static unsigned char AIRGOCAP_OUI[] = {0x00, 0x0a, 0xf5}; static unsigned char EPIGRAM_OUI[] = {0x00, 0x90, 0x4c}; unsigned char REALTEK_96B_IE[] = {0x00, 0xe0, 0x4c, 0x02, 0x01, 0x20}; #define R2T_PHY_DELAY (0) /* define WAIT_FOR_BCN_TO_M (3000) */ #define WAIT_FOR_BCN_TO_MIN (6000) #define WAIT_FOR_BCN_TO_MAX (20000) static u8 rtw_basic_rate_cck[4] = { IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK }; static u8 rtw_basic_rate_ofdm[3] = { IEEE80211_OFDM_RATE_6MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_24MB | IEEE80211_BASIC_RATE_MASK }; static u8 rtw_basic_rate_mix[7] = { IEEE80211_CCK_RATE_1MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_2MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_5MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_CCK_RATE_11MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_6MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_12MB | IEEE80211_BASIC_RATE_MASK, IEEE80211_OFDM_RATE_24MB | IEEE80211_BASIC_RATE_MASK }; bool cckrates_included(unsigned char *rate, int ratelen) { int i; for (i = 0; i < ratelen; i++) { if ((((rate[i]) & 0x7f) == 2) || (((rate[i]) & 0x7f) == 4) || (((rate[i]) & 0x7f) == 11) || (((rate[i]) & 0x7f) == 22)) return true; } return false; } bool cckratesonly_included(unsigned char *rate, int ratelen) { int i; for (i = 0; i < ratelen; i++) { if ((((rate[i]) & 0x7f) != 2) && (((rate[i]) & 0x7f) != 4) && (((rate[i]) & 0x7f) != 11) && (((rate[i]) & 0x7f) != 22)) return false; } return true; } unsigned char networktype_to_raid(unsigned char network_type) { unsigned char raid; switch (network_type) { case WIRELESS_11B: raid = RATR_INX_WIRELESS_B; break; case WIRELESS_11G: raid = RATR_INX_WIRELESS_G; break; case WIRELESS_11BG: raid = RATR_INX_WIRELESS_GB; break; case WIRELESS_11_24N: raid = RATR_INX_WIRELESS_N; break; case WIRELESS_11G_24N: raid = RATR_INX_WIRELESS_NG; break; case WIRELESS_11BG_24N: raid = RATR_INX_WIRELESS_NGB; break; default: raid = RATR_INX_WIRELESS_GB; break; } return raid; } u8 judge_network_type(struct adapter *padapter, unsigned char *rate, int ratelen) { u8 network_type = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if (pmlmeext->cur_channel > 14) { network_type |= WIRELESS_INVALID; } else { if (pmlmeinfo->HT_enable) network_type = WIRELESS_11_24N; if (cckratesonly_included(rate, ratelen)) network_type |= WIRELESS_11B; else if (cckrates_included(rate, ratelen)) network_type |= WIRELESS_11BG; else network_type |= WIRELESS_11G; } return network_type; } static unsigned char ratetbl_val_2wifirate(unsigned char rate) { unsigned char val = 0; switch (rate & 0x7f) { case 0: val = IEEE80211_CCK_RATE_1MB; break; case 1: val = IEEE80211_CCK_RATE_2MB; break; case 2: val = IEEE80211_CCK_RATE_5MB; break; case 3: val = IEEE80211_CCK_RATE_11MB; break; case 4: val = IEEE80211_OFDM_RATE_6MB; break; case 5: val = IEEE80211_OFDM_RATE_9MB; break; case 6: val = IEEE80211_OFDM_RATE_12MB; break; case 7: val = IEEE80211_OFDM_RATE_18MB; break; case 8: val = IEEE80211_OFDM_RATE_24MB; break; case 9: val = IEEE80211_OFDM_RATE_36MB; break; case 10: val = IEEE80211_OFDM_RATE_48MB; break; case 11: val = IEEE80211_OFDM_RATE_54MB; break; } return val; } static bool is_basicrate(struct adapter *padapter, unsigned char rate) { int i; unsigned char val; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; for (i = 0; i < NumRates; i++) { val = pmlmeext->basicrate[i]; if ((val != 0xff) && (val != 0xfe)) { if (rate == ratetbl_val_2wifirate(val)) return true; } } return false; } static unsigned int ratetbl2rateset(struct adapter *padapter, unsigned char *rateset) { int i; unsigned char rate; unsigned int len = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; for (i = 0; i < NumRates; i++) { rate = pmlmeext->datarate[i]; switch (rate) { case 0xff: return len; case 0xfe: continue; default: rate = ratetbl_val_2wifirate(rate); if (is_basicrate(padapter, rate)) rate |= IEEE80211_BASIC_RATE_MASK; rateset[len] = rate; len++; break; } } return len; } void get_rate_set(struct adapter *padapter, unsigned char *pbssrate, int *bssrate_len) { unsigned char supportedrates[NumRates]; memset(supportedrates, 0, NumRates); *bssrate_len = ratetbl2rateset(padapter, supportedrates); memcpy(pbssrate, supportedrates, *bssrate_len); } void UpdateBrateTbl(struct adapter *Adapter, u8 *mbrate) { u8 i; u8 rate; /* 1M, 2M, 5.5M, 11M, 6M, 12M, 24M are mandatory. */ for (i = 0; i < NDIS_802_11_LENGTH_RATES_EX; i++) { rate = mbrate[i] & 0x7f; switch (rate) { case IEEE80211_CCK_RATE_1MB: case IEEE80211_CCK_RATE_2MB: case IEEE80211_CCK_RATE_5MB: case IEEE80211_CCK_RATE_11MB: case IEEE80211_OFDM_RATE_6MB: case IEEE80211_OFDM_RATE_12MB: case IEEE80211_OFDM_RATE_24MB: mbrate[i] |= IEEE80211_BASIC_RATE_MASK; break; } } } void UpdateBrateTblForSoftAP(u8 *bssrateset, u32 bssratelen) { u8 i; u8 rate; for (i = 0; i < bssratelen; i++) { rate = bssrateset[i] & 0x7f; switch (rate) { case IEEE80211_CCK_RATE_1MB: case IEEE80211_CCK_RATE_2MB: case IEEE80211_CCK_RATE_5MB: case IEEE80211_CCK_RATE_11MB: bssrateset[i] |= IEEE80211_BASIC_RATE_MASK; break; } } } void Save_DM_Func_Flag(struct adapter *padapter) { struct hal_data_8188e *haldata = &padapter->haldata; struct odm_dm_struct *odmpriv = &haldata->odmpriv; odmpriv->BK_SupportAbility = odmpriv->SupportAbility; } void Restore_DM_Func_Flag(struct adapter *padapter) { struct hal_data_8188e *haldata = &padapter->haldata; struct odm_dm_struct *odmpriv = &haldata->odmpriv; odmpriv->SupportAbility = odmpriv->BK_SupportAbility; } void Set_MSR(struct adapter *padapter, u8 type) { u8 val8; int res; res = rtw_read8(padapter, MSR, &val8); if (res) return; val8 &= 0x0c; val8 |= type; rtw_write8(padapter, MSR, val8); } inline u8 rtw_get_oper_ch(struct adapter *adapter) { return adapter->mlmeextpriv.oper_channel; } inline void rtw_set_oper_ch(struct adapter *adapter, u8 ch) { adapter->mlmeextpriv.oper_channel = ch; } inline void rtw_set_oper_bw(struct adapter *adapter, u8 bw) { adapter->mlmeextpriv.oper_bwmode = bw; } inline void rtw_set_oper_choffset(struct adapter *adapter, u8 offset) { adapter->mlmeextpriv.oper_ch_offset = offset; } void SelectChannel(struct adapter *padapter, unsigned char channel) { /* saved channel info */ rtw_set_oper_ch(padapter, channel); PHY_SwChnl8188E(padapter, channel); } void SetBWMode(struct adapter *padapter, unsigned short bwmode, unsigned char channel_offset) { /* saved bw info */ rtw_set_oper_bw(padapter, bwmode); rtw_set_oper_choffset(padapter, channel_offset); PHY_SetBWMode8188E(padapter, (enum ht_channel_width)bwmode, channel_offset); } void set_channel_bwmode(struct adapter *padapter, unsigned char channel, unsigned char channel_offset, unsigned short bwmode) { u8 center_ch; if ((bwmode == HT_CHANNEL_WIDTH_20) || (channel_offset == HAL_PRIME_CHNL_OFFSET_DONT_CARE)) { /* SelectChannel(padapter, channel); */ center_ch = channel; } else { /* switch to the proper channel */ if (channel_offset == HAL_PRIME_CHNL_OFFSET_LOWER) { /* SelectChannel(padapter, channel + 2); */ center_ch = channel + 2; } else { /* SelectChannel(padapter, channel - 2); */ center_ch = channel - 2; } } /* set Channel */ /* saved channel/bw info */ rtw_set_oper_ch(padapter, channel); rtw_set_oper_bw(padapter, bwmode); rtw_set_oper_choffset(padapter, channel_offset); PHY_SwChnl8188E(padapter, center_ch); /* set center channel */ SetBWMode(padapter, bwmode, channel_offset); } __inline u8 *get_my_bssid(struct wlan_bssid_ex *pnetwork) { return pnetwork->MacAddress; } u16 get_beacon_interval(struct wlan_bssid_ex *bss) { __le16 val; memcpy((unsigned char *)&val, rtw_get_beacon_interval_from_ie(bss->IEs), 2); return le16_to_cpu(val); } int is_client_associated_to_ap(struct adapter *padapter) { struct mlme_ext_priv *pmlmeext; struct mlme_ext_info *pmlmeinfo; if (!padapter) return _FAIL; pmlmeext = &padapter->mlmeextpriv; pmlmeinfo = &pmlmeext->mlmext_info; if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state & 0x03) == WIFI_FW_STATION_STATE)) return true; else return _FAIL; } int is_client_associated_to_ibss(struct adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if ((pmlmeinfo->state & WIFI_FW_ASSOC_SUCCESS) && ((pmlmeinfo->state & 0x03) == WIFI_FW_ADHOC_STATE)) return true; else return _FAIL; } int is_IBSS_empty(struct adapter *padapter) { unsigned int i; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; for (i = IBSS_START_MAC_ID; i < NUM_STA; i++) { if (pmlmeinfo->FW_sta_info[i].status == 1) return _FAIL; } return true; } unsigned int decide_wait_for_beacon_timeout(unsigned int bcn_interval) { if ((bcn_interval << 2) < WAIT_FOR_BCN_TO_MIN) return WAIT_FOR_BCN_TO_MIN; else if ((bcn_interval << 2) > WAIT_FOR_BCN_TO_MAX) return WAIT_FOR_BCN_TO_MAX; else return bcn_interval << 2; } void invalidate_cam_all(struct adapter *padapter) { rtw_write32(padapter, RWCAM, BIT(31) | BIT(30)); } void write_cam(struct adapter *padapter, u8 entry, u16 ctrl, u8 *mac, u8 *key) { unsigned int i, val, addr; int j; u32 cam_val[2]; addr = entry << 3; for (j = 5; j >= 0; j--) { switch (j) { case 0: val = (ctrl | (mac[0] << 16) | (mac[1] << 24)); break; case 1: val = (mac[2] | (mac[3] << 8) | (mac[4] << 16) | (mac[5] << 24)); break; default: i = (j - 2) << 2; val = (key[i] | (key[i + 1] << 8) | (key[i + 2] << 16) | (key[i + 3] << 24)); break; } cam_val[0] = val; cam_val[1] = addr + (unsigned int)j; rtw_write32(padapter, WCAMI, cam_val[0]); rtw_write32(padapter, RWCAM, CAM_POLLINIG | CAM_WRITE | cam_val[1]); } } void clear_cam_entry(struct adapter *padapter, u8 entry) { unsigned char null_sta[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned char null_key[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; write_cam(padapter, entry, 0, null_sta, null_key); } int allocate_fw_sta_entry(struct adapter *padapter) { unsigned int mac_id; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; for (mac_id = IBSS_START_MAC_ID; mac_id < NUM_STA; mac_id++) { if (pmlmeinfo->FW_sta_info[mac_id].status == 0) { pmlmeinfo->FW_sta_info[mac_id].status = 1; pmlmeinfo->FW_sta_info[mac_id].retry = 0; break; } } return mac_id; } void flush_all_cam_entry(struct adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; rtw_write32(padapter, RWCAM, BIT(31) | BIT(30)); memset((u8 *)(pmlmeinfo->FW_sta_info), 0, sizeof(pmlmeinfo->FW_sta_info)); } int WMM_param_handler(struct adapter *padapter, struct ndis_802_11_var_ie *pIE) { /* struct registry_priv *pregpriv = &padapter->registrypriv; */ struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if (pmlmepriv->qospriv.qos_option == 0) { pmlmeinfo->WMM_enable = 0; return _FAIL; } pmlmeinfo->WMM_enable = 1; memcpy(&pmlmeinfo->WMM_param, pIE->data + 6, sizeof(struct WMM_para_element)); return true; } static void set_acm_ctrl(struct adapter *adapter, u8 acm_mask) { u8 acmctrl; int res = rtw_read8(adapter, REG_ACMHWCTRL, &acmctrl); if (res) return; if (acm_mask > 1) acmctrl = acmctrl | 0x1; if (acm_mask & BIT(3)) acmctrl |= ACMHW_VOQEN; else acmctrl &= (~ACMHW_VOQEN); if (acm_mask & BIT(2)) acmctrl |= ACMHW_VIQEN; else acmctrl &= (~ACMHW_VIQEN); if (acm_mask & BIT(1)) acmctrl |= ACMHW_BEQEN; else acmctrl &= (~ACMHW_BEQEN); rtw_write8(adapter, REG_ACMHWCTRL, acmctrl); } void WMMOnAssocRsp(struct adapter *padapter) { u8 ACI, ACM, AIFS, ECWMin, ECWMax, aSifsTime; u8 acm_mask; u16 TXOP; u32 acParm, i; u32 edca[4], inx[4]; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; struct registry_priv *pregpriv = &padapter->registrypriv; struct hal_data_8188e *haldata = &padapter->haldata; if (pmlmeinfo->WMM_enable == 0) { padapter->mlmepriv.acm_mask = 0; return; } acm_mask = 0; if (pmlmeext->cur_wireless_mode == WIRELESS_11B) aSifsTime = 10; else aSifsTime = 16; for (i = 0; i < 4; i++) { ACI = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 5) & 0x03; ACM = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN >> 4) & 0x01; /* AIFS = AIFSN * slot time + SIFS - r2t phy delay */ AIFS = (pmlmeinfo->WMM_param.ac_param[i].ACI_AIFSN & 0x0f) * pmlmeinfo->slotTime + aSifsTime; ECWMin = (pmlmeinfo->WMM_param.ac_param[i].CW & 0x0f); ECWMax = (pmlmeinfo->WMM_param.ac_param[i].CW & 0xf0) >> 4; TXOP = le16_to_cpu(pmlmeinfo->WMM_param.ac_param[i].TXOP_limit); acParm = AIFS | (ECWMin << 8) | (ECWMax << 12) | (TXOP << 16); switch (ACI) { case 0x0: haldata->AcParam_BE = acParm; rtw_write32(padapter, REG_EDCA_BE_PARAM, acParm); acm_mask |= (ACM ? BIT(1) : 0); edca[XMIT_BE_QUEUE] = acParm; break; case 0x1: rtw_write32(padapter, REG_EDCA_BK_PARAM, acParm); edca[XMIT_BK_QUEUE] = acParm; break; case 0x2: rtw_write32(padapter, REG_EDCA_VI_PARAM, acParm); acm_mask |= (ACM ? BIT(2) : 0); edca[XMIT_VI_QUEUE] = acParm; break; case 0x3: rtw_write32(padapter, REG_EDCA_VO_PARAM, acParm); acm_mask |= (ACM ? BIT(3) : 0); edca[XMIT_VO_QUEUE] = acParm; break; } } if (padapter->registrypriv.acm_method == 1) set_acm_ctrl(padapter, acm_mask); else padapter->mlmepriv.acm_mask = acm_mask; inx[0] = 0; inx[1] = 1; inx[2] = 2; inx[3] = 3; if (pregpriv->wifi_spec == 1) { u32 j, change_inx = false; /* entry indx: 0->vo, 1->vi, 2->be, 3->bk. */ for (i = 0; i < 4; i++) { for (j = i + 1; j < 4; j++) { /* compare CW and AIFS */ if ((edca[j] & 0xFFFF) < (edca[i] & 0xFFFF)) { change_inx = true; } else if ((edca[j] & 0xFFFF) == (edca[i] & 0xFFFF)) { /* compare TXOP */ if ((edca[j] >> 16) > (edca[i] >> 16)) change_inx = true; } if (change_inx) { swap(edca[i], edca[j]); swap(inx[i], inx[j]); change_inx = false; } } } } for (i = 0; i < 4; i++) pxmitpriv->wmm_para_seq[i] = inx[i]; } static void bwmode_update_check(struct adapter *padapter, struct ndis_802_11_var_ie *pIE) { unsigned char new_bwmode; unsigned char new_ch_offset; struct HT_info_element *pHT_info; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct registry_priv *pregistrypriv = &padapter->registrypriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; if (!pIE) return; if (!phtpriv) return; if (pIE->Length > sizeof(struct HT_info_element)) return; pHT_info = (struct HT_info_element *)pIE->data; if ((pHT_info->infos[0] & BIT(2)) && pregistrypriv->cbw40_enable) { new_bwmode = HT_CHANNEL_WIDTH_40; switch (pHT_info->infos[0] & 0x3) { case 1: new_ch_offset = HAL_PRIME_CHNL_OFFSET_LOWER; break; case 3: new_ch_offset = HAL_PRIME_CHNL_OFFSET_UPPER; break; default: new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; break; } } else { new_bwmode = HT_CHANNEL_WIDTH_20; new_ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; } if ((new_bwmode != pmlmeext->cur_bwmode) || (new_ch_offset != pmlmeext->cur_ch_offset)) { pmlmeinfo->bwmode_updated = true; pmlmeext->cur_bwmode = new_bwmode; pmlmeext->cur_ch_offset = new_ch_offset; /* update HT info also */ HT_info_handler(padapter, pIE); } else { pmlmeinfo->bwmode_updated = false; } if (pmlmeinfo->bwmode_updated) { struct sta_info *psta; struct wlan_bssid_ex *cur_network = &pmlmeinfo->network; struct sta_priv *pstapriv = &padapter->stapriv; /* set_channel_bwmode(padapter, pmlmeext->cur_channel, pmlmeext->cur_ch_offset, pmlmeext->cur_bwmode); */ /* update ap's stainfo */ psta = rtw_get_stainfo(pstapriv, cur_network->MacAddress); if (psta) { struct ht_priv *phtpriv_sta = &psta->htpriv; if (phtpriv_sta->ht_option) { /* bwmode */ phtpriv_sta->bwmode = pmlmeext->cur_bwmode; phtpriv_sta->ch_offset = pmlmeext->cur_ch_offset; } else { phtpriv_sta->bwmode = HT_CHANNEL_WIDTH_20; phtpriv_sta->ch_offset = HAL_PRIME_CHNL_OFFSET_DONT_CARE; } } } } void HT_caps_handler(struct adapter *padapter, struct ndis_802_11_var_ie *pIE) { unsigned int i; u8 max_AMPDU_len, min_MPDU_spacing; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; if (!pIE) return; if (!phtpriv->ht_option) return; pmlmeinfo->HT_caps_enable = 1; for (i = 0; i < (pIE->Length); i++) { if (i != 2) { /* Got the endian issue here. */ pmlmeinfo->HT_caps.u.HT_cap[i] &= (pIE->data[i]); } else { /* modify from fw by Thomas 2010/11/17 */ max_AMPDU_len = min(pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x3, pIE->data[i] & 0x3); min_MPDU_spacing = max(pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c, pIE->data[i] & 0x1c); pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para = max_AMPDU_len | min_MPDU_spacing; } } /* update the MCS rates */ for (i = 0; i < 16; i++) pmlmeinfo->HT_caps.u.HT_cap_element.MCS_rate[i] &= MCS_rate_1R[i]; } void HT_info_handler(struct adapter *padapter, struct ndis_802_11_var_ie *pIE) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct mlme_priv *pmlmepriv = &padapter->mlmepriv; struct ht_priv *phtpriv = &pmlmepriv->htpriv; if (!pIE) return; if (!phtpriv->ht_option) return; if (pIE->Length > sizeof(struct HT_info_element)) return; pmlmeinfo->HT_info_enable = 1; memcpy(&pmlmeinfo->HT_info, pIE->data, pIE->Length); } static void set_min_ampdu_spacing(struct adapter *adapter, u8 spacing) { u8 sec_spacing; int res; if (spacing <= 7) { switch (adapter->securitypriv.dot11PrivacyAlgrthm) { case _NO_PRIVACY_: case _AES_: sec_spacing = 0; break; case _WEP40_: case _WEP104_: case _TKIP_: case _TKIP_WTMIC_: sec_spacing = 6; break; default: sec_spacing = 7; break; } if (spacing < sec_spacing) spacing = sec_spacing; res = rtw_read8(adapter, REG_AMPDU_MIN_SPACE, &sec_spacing); if (res) return; rtw_write8(adapter, REG_AMPDU_MIN_SPACE, (sec_spacing & 0xf8) | spacing); } } static void set_ampdu_factor(struct adapter *adapter, u8 factor) { u8 RegToSet_Normal[4] = {0x41, 0xa8, 0x72, 0xb9}; u8 FactorToSet; u8 *pRegToSet; u8 index = 0; pRegToSet = RegToSet_Normal; /* 0xb972a841; */ FactorToSet = factor; if (FactorToSet <= 3) { FactorToSet = (1 << (FactorToSet + 2)); if (FactorToSet > 0xf) FactorToSet = 0xf; for (index = 0; index < 4; index++) { if ((pRegToSet[index] & 0xf0) > (FactorToSet << 4)) pRegToSet[index] = (pRegToSet[index] & 0x0f) | (FactorToSet << 4); if ((pRegToSet[index] & 0x0f) > FactorToSet) pRegToSet[index] = (pRegToSet[index] & 0xf0) | (FactorToSet); rtw_write8(adapter, (REG_AGGLEN_LMT + index), pRegToSet[index]); } } } void HTOnAssocRsp(struct adapter *padapter) { unsigned char max_AMPDU_len; unsigned char min_MPDU_spacing; /* struct registry_priv *pregpriv = &padapter->registrypriv; */ struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable)) { pmlmeinfo->HT_enable = 1; } else { pmlmeinfo->HT_enable = 0; return; } /* handle A-MPDU parameter field */ /* AMPDU_para [1:0]:Max AMPDU Len => 0:8k , 1:16k, 2:32k, 3:64k AMPDU_para [4:2]:Min MPDU Start Spacing */ max_AMPDU_len = pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x03; min_MPDU_spacing = (pmlmeinfo->HT_caps.u.HT_cap_element.AMPDU_para & 0x1c) >> 2; set_min_ampdu_spacing(padapter, min_MPDU_spacing); set_ampdu_factor(padapter, max_AMPDU_len); } void ERP_IE_handler(struct adapter *padapter, struct ndis_802_11_var_ie *pIE) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if (pIE->Length > 1) return; pmlmeinfo->ERP_enable = 1; memcpy(&pmlmeinfo->ERP_IE, pIE->data, pIE->Length); } void VCS_update(struct adapter *padapter, struct sta_info *psta) { struct registry_priv *pregpriv = &padapter->registrypriv; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; switch (pregpriv->vrtl_carrier_sense) { /* 0:off 1:on 2:auto */ case 0: /* off */ psta->rtsen = 0; psta->cts2self = 0; break; case 1: /* on */ if (pregpriv->vcs_type == 1) { /* 1:RTS/CTS 2:CTS to self */ psta->rtsen = 1; psta->cts2self = 0; } else { psta->rtsen = 0; psta->cts2self = 1; } break; case 2: /* auto */ default: if ((pmlmeinfo->ERP_enable) && (pmlmeinfo->ERP_IE & BIT(1))) { if (pregpriv->vcs_type == 1) { psta->rtsen = 1; psta->cts2self = 0; } else { psta->rtsen = 0; psta->cts2self = 1; } } else { psta->rtsen = 0; psta->cts2self = 0; } break; } } int rtw_check_bcn_info(struct adapter *Adapter, u8 *pframe, u32 packet_len) { unsigned int len; unsigned char *p; unsigned short val16, subtype; struct wlan_network *cur_network = &Adapter->mlmepriv.cur_network; /* u8 wpa_ie[255], rsn_ie[255]; */ u16 wpa_len = 0, rsn_len = 0; u8 encryp_protocol = 0; struct wlan_bssid_ex *bssid; int group_cipher = 0, pairwise_cipher = 0, is_8021x = 0; unsigned char *pbuf; u32 wpa_ielen = 0; u8 *pbssid = GetAddr3Ptr(pframe); u32 hidden_ssid = 0; struct HT_info_element *pht_info = NULL; struct ieee80211_ht_cap *pht_cap = NULL; u32 bcn_channel; unsigned short ht_cap_info; unsigned char ht_info_infos_0; if (!is_client_associated_to_ap(Adapter)) return true; len = packet_len - sizeof(struct ieee80211_hdr_3addr); if (len > MAX_IE_SZ) return _FAIL; if (memcmp(cur_network->network.MacAddress, pbssid, 6)) return true; bssid = kzalloc(sizeof(struct wlan_bssid_ex), GFP_ATOMIC); if (!bssid) return _FAIL; subtype = GetFrameSubType(pframe) >> 4; if (subtype == WIFI_BEACON) bssid->Reserved[0] = 1; bssid->Length = sizeof(struct wlan_bssid_ex) - MAX_IE_SZ + len; /* below is to copy the information element */ bssid->IELength = len; memcpy(bssid->IEs, (pframe + sizeof(struct ieee80211_hdr_3addr)), bssid->IELength); /* check bw and channel offset */ /* parsing HT_CAP_IE */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_CAPABILITY_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (p && len > 0) { pht_cap = (struct ieee80211_ht_cap *)(p + 2); ht_cap_info = le16_to_cpu(pht_cap->cap_info); } else { ht_cap_info = 0; } /* parsing HT_INFO_IE */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (p && len > 0) { pht_info = (struct HT_info_element *)(p + 2); ht_info_infos_0 = pht_info->infos[0]; } else { ht_info_infos_0 = 0; } if (ht_cap_info != cur_network->BcnInfo.ht_cap_info || ((ht_info_infos_0 & 0x03) != (cur_network->BcnInfo.ht_info_infos_0 & 0x03))) { /* bcn_info_update */ cur_network->BcnInfo.ht_cap_info = ht_cap_info; cur_network->BcnInfo.ht_info_infos_0 = ht_info_infos_0; /* to do : need to check that whether modify related register of BB or not */ /* goto _mismatch; */ } /* Checking for channel */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _DSSET_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (p) { bcn_channel = *(p + 2); } else {/* In 5G, some ap do not have DSSET IE checking HT info for channel */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _HT_ADD_INFO_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (pht_info) bcn_channel = pht_info->primary_channel; else /* we don't find channel IE, so don't check it */ bcn_channel = Adapter->mlmeextpriv.cur_channel; } if (bcn_channel != Adapter->mlmeextpriv.cur_channel) goto _mismatch; /* checking SSID */ p = rtw_get_ie(bssid->IEs + _FIXED_IE_LENGTH_, _SSID_IE_, &len, bssid->IELength - _FIXED_IE_LENGTH_); if (!p) hidden_ssid = true; else hidden_ssid = false; if (p && (!hidden_ssid && (*(p + 1)))) { memcpy(bssid->Ssid.Ssid, (p + 2), *(p + 1)); bssid->Ssid.SsidLength = *(p + 1); } else { bssid->Ssid.SsidLength = 0; bssid->Ssid.Ssid[0] = '\0'; } if (memcmp(bssid->Ssid.Ssid, cur_network->network.Ssid.Ssid, 32) || bssid->Ssid.SsidLength != cur_network->network.Ssid.SsidLength) { /* not hidden ssid */ if (bssid->Ssid.Ssid[0] != '\0' && bssid->Ssid.SsidLength != 0) goto _mismatch; } /* check encryption info */ val16 = rtw_get_capability((struct wlan_bssid_ex *)bssid); if (val16 & BIT(4)) bssid->Privacy = 1; else bssid->Privacy = 0; if (cur_network->network.Privacy != bssid->Privacy) goto _mismatch; rtw_get_sec_ie(bssid->IEs, bssid->IELength, NULL, &rsn_len, NULL, &wpa_len); if (rsn_len > 0) { encryp_protocol = ENCRYP_PROTOCOL_WPA2; } else if (wpa_len > 0) { encryp_protocol = ENCRYP_PROTOCOL_WPA; } else { if (bssid->Privacy) encryp_protocol = ENCRYP_PROTOCOL_WEP; } if (cur_network->BcnInfo.encryp_protocol != encryp_protocol) goto _mismatch; if (encryp_protocol == ENCRYP_PROTOCOL_WPA || encryp_protocol == ENCRYP_PROTOCOL_WPA2) { pbuf = rtw_get_wpa_ie(&bssid->IEs[12], &wpa_ielen, bssid->IELength - 12); if (pbuf && (wpa_ielen > 0)) { rtw_parse_wpa_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is_8021x); } else { pbuf = rtw_get_wpa2_ie(&bssid->IEs[12], &wpa_ielen, bssid->IELength - 12); if (pbuf && (wpa_ielen > 0)) rtw_parse_wpa2_ie(pbuf, wpa_ielen + 2, &group_cipher, &pairwise_cipher, &is_8021x); } if (pairwise_cipher != cur_network->BcnInfo.pairwise_cipher || group_cipher != cur_network->BcnInfo.group_cipher) goto _mismatch; if (is_8021x != cur_network->BcnInfo.is_8021x) goto _mismatch; } kfree(bssid); return _SUCCESS; _mismatch: kfree(bssid); return _FAIL; } void update_beacon_info(struct adapter *padapter, u8 *pframe, uint pkt_len, struct sta_info *psta) { unsigned int i; unsigned int len; struct ndis_802_11_var_ie *pIE; len = pkt_len - (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN); for (i = 0; i < len;) { pIE = (struct ndis_802_11_var_ie *)(pframe + (_BEACON_IE_OFFSET_ + WLAN_HDR_A3_LEN) + i); switch (pIE->ElementID) { case _HT_EXTRA_INFO_IE_: /* HT info */ /* HT_info_handler(padapter, pIE); */ bwmode_update_check(padapter, pIE); break; case _ERPINFO_IE_: ERP_IE_handler(padapter, pIE); VCS_update(padapter, psta); break; default: break; } i += (pIE->Length + 2); } } bool is_ap_in_tkip(struct adapter *padapter) { u32 i; struct ndis_802_11_var_ie *pIE; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct wlan_bssid_ex *cur_network = &pmlmeinfo->network; if (rtw_get_capability((struct wlan_bssid_ex *)cur_network) & WLAN_CAPABILITY_PRIVACY) { for (i = sizeof(struct ndis_802_11_fixed_ie); i < pmlmeinfo->network.IELength;) { pIE = (struct ndis_802_11_var_ie *)(pmlmeinfo->network.IEs + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if ((!memcmp(pIE->data, RTW_WPA_OUI, 4)) && (!memcmp((pIE->data + 12), WPA_TKIP_CIPHER, 4))) return true; break; case _RSN_IE_2_: if (!memcmp((pIE->data + 8), RSN_TKIP_CIPHER, 4)) return true; break; default: break; } i += (pIE->Length + 2); } return false; } else { return false; } } int wifirate2_ratetbl_inx(unsigned char rate) { int inx = 0; rate = rate & 0x7f; switch (rate) { case 54 * 2: inx = 11; break; case 48 * 2: inx = 10; break; case 36 * 2: inx = 9; break; case 24 * 2: inx = 8; break; case 18 * 2: inx = 7; break; case 12 * 2: inx = 6; break; case 9 * 2: inx = 5; break; case 6 * 2: inx = 4; break; case 11 * 2: inx = 3; break; case 11: inx = 2; break; case 2 * 2: inx = 1; break; case 1 * 2: inx = 0; break; } return inx; } unsigned int update_basic_rate(unsigned char *ptn, unsigned int ptn_sz) { unsigned int i, num_of_rate; unsigned int mask = 0; num_of_rate = (ptn_sz > NumRates) ? NumRates : ptn_sz; for (i = 0; i < num_of_rate; i++) { if ((*(ptn + i)) & 0x80) mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i)); } return mask; } unsigned int update_supported_rate(unsigned char *ptn, unsigned int ptn_sz) { unsigned int i, num_of_rate; unsigned int mask = 0; num_of_rate = (ptn_sz > NumRates) ? NumRates : ptn_sz; for (i = 0; i < num_of_rate; i++) mask |= 0x1 << wifirate2_ratetbl_inx(*(ptn + i)); return mask; } unsigned int update_MSC_rate(struct HT_caps_element *pHT_caps) { unsigned int mask = 0; mask = ((pHT_caps->u.HT_cap_element.MCS_rate[0] << 12) | (pHT_caps->u.HT_cap_element.MCS_rate[1] << 20)); return mask; } int support_short_GI(struct adapter *padapter, struct HT_caps_element *pHT_caps) { unsigned char bit_offset; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if (!(pmlmeinfo->HT_enable)) return _FAIL; if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_RALINK) return _FAIL; bit_offset = (pmlmeext->cur_bwmode & HT_CHANNEL_WIDTH_40) ? 6 : 5; if (__le16_to_cpu(pHT_caps->u.HT_cap_element.HT_caps_info) & (0x1 << bit_offset)) return _SUCCESS; else return _FAIL; } unsigned char get_highest_rate_idx(u32 mask) { int i; unsigned char rate_idx = 0; for (i = 27; i >= 0; i--) { if (mask & BIT(i)) { rate_idx = i; break; } } return rate_idx; } void Update_RA_Entry(struct adapter *padapter, u32 mac_id) { rtw_hal_update_ra_mask(padapter, mac_id, 0); } static void enable_rate_adaptive(struct adapter *padapter, u32 mac_id) { Update_RA_Entry(padapter, mac_id); } void set_sta_rate(struct adapter *padapter, struct sta_info *psta) { /* rate adaptive */ enable_rate_adaptive(padapter, psta->mac_id); } void rtw_set_basic_rate(struct adapter *adapter, u8 *rates) { u16 BrateCfg = 0; u8 RateIndex = 0; int res; u8 reg; /* 2007.01.16, by Emily */ /* Select RRSR (in Legacy-OFDM and CCK) */ /* For 8190, we select only 24M, 12M, 6M, 11M, 5.5M, 2M, and 1M from the Basic rate. */ /* We do not use other rates. */ HalSetBrateCfg(adapter, rates, &BrateCfg); /* 2011.03.30 add by Luke Lee */ /* CCK 2M ACK should be disabled for some BCM and Atheros AP IOT */ /* because CCK 2M has poor TXEVM */ /* CCK 5.5M & 11M ACK should be enabled for better performance */ BrateCfg = (BrateCfg | 0xd) & 0x15d; BrateCfg |= 0x01; /* default enable 1M ACK rate */ /* Set RRSR rate table. */ rtw_write8(adapter, REG_RRSR, BrateCfg & 0xff); rtw_write8(adapter, REG_RRSR + 1, (BrateCfg >> 8) & 0xff); res = rtw_read8(adapter, REG_RRSR + 2, ®); if (res) return; rtw_write8(adapter, REG_RRSR + 2, reg & 0xf0); /* Set RTS initial rate */ while (BrateCfg > 0x1) { BrateCfg = (BrateCfg >> 1); RateIndex++; } /* Ziv - Check */ rtw_write8(adapter, REG_INIRTS_RATE_SEL, RateIndex); } /* Update RRSR and Rate for USERATE */ void update_tx_basic_rate(struct adapter *padapter, u8 wirelessmode) { unsigned char supported_rates[NDIS_802_11_LENGTH_RATES_EX]; struct wifidirect_info *pwdinfo = &padapter->wdinfo; /* Added by Albert 2011/03/22 */ /* In the P2P mode, the driver should not support the b mode. */ /* So, the Tx packet shouldn't use the CCK rate */ if (!rtw_p2p_chk_state(pwdinfo, P2P_STATE_NONE)) return; memset(supported_rates, 0, NDIS_802_11_LENGTH_RATES_EX); if ((wirelessmode & WIRELESS_11B) && (wirelessmode == WIRELESS_11B)) memcpy(supported_rates, rtw_basic_rate_cck, 4); else if (wirelessmode & WIRELESS_11B) memcpy(supported_rates, rtw_basic_rate_mix, 7); else memcpy(supported_rates, rtw_basic_rate_ofdm, 3); if (wirelessmode & WIRELESS_11B) update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB); else update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB); rtw_set_basic_rate(padapter, supported_rates); } unsigned char check_assoc_AP(u8 *pframe, uint len) { unsigned int i; struct ndis_802_11_var_ie *pIE; u8 epigram_vendor_flag; u8 ralink_vendor_flag; epigram_vendor_flag = 0; ralink_vendor_flag = 0; for (i = sizeof(struct ndis_802_11_fixed_ie); i < len;) { pIE = (struct ndis_802_11_var_ie *)(pframe + i); switch (pIE->ElementID) { case _VENDOR_SPECIFIC_IE_: if ((!memcmp(pIE->data, ARTHEROS_OUI1, 3)) || (!memcmp(pIE->data, ARTHEROS_OUI2, 3))) { return HT_IOT_PEER_ATHEROS; } else if ((!memcmp(pIE->data, BROADCOM_OUI1, 3)) || (!memcmp(pIE->data, BROADCOM_OUI2, 3))) { return HT_IOT_PEER_BROADCOM; } else if (!memcmp(pIE->data, MARVELL_OUI, 3)) { return HT_IOT_PEER_MARVELL; } else if (!memcmp(pIE->data, RALINK_OUI, 3)) { if (!ralink_vendor_flag) { ralink_vendor_flag = 1; } else { return HT_IOT_PEER_RALINK; } } else if (!memcmp(pIE->data, CISCO_OUI, 3)) { return HT_IOT_PEER_CISCO; } else if (!memcmp(pIE->data, REALTEK_OUI, 3)) { return HT_IOT_PEER_REALTEK; } else if (!memcmp(pIE->data, AIRGOCAP_OUI, 3)) { return HT_IOT_PEER_AIRGO; } else if (!memcmp(pIE->data, EPIGRAM_OUI, 3)) { epigram_vendor_flag = 1; if (ralink_vendor_flag) return HT_IOT_PEER_TENDA; } else { break; } break; default: break; } i += (pIE->Length + 2); } if (ralink_vendor_flag && !epigram_vendor_flag) return HT_IOT_PEER_RALINK; else if (ralink_vendor_flag && epigram_vendor_flag) return HT_IOT_PEER_TENDA; else return HT_IOT_PEER_UNKNOWN; } void update_IOT_info(struct adapter *padapter) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; switch (pmlmeinfo->assoc_AP_vendor) { case HT_IOT_PEER_MARVELL: pmlmeinfo->turboMode_cts2self = 1; pmlmeinfo->turboMode_rtsen = 0; break; case HT_IOT_PEER_RALINK: pmlmeinfo->turboMode_cts2self = 0; pmlmeinfo->turboMode_rtsen = 1; break; case HT_IOT_PEER_REALTEK: /* rtw_write16(padapter, 0x4cc, 0xffff); */ /* rtw_write16(padapter, 0x546, 0x01c0); */ break; default: pmlmeinfo->turboMode_cts2self = 0; pmlmeinfo->turboMode_rtsen = 1; break; } } static void set_ack_preamble(struct adapter *adapter, bool short_preamble) { struct hal_data_8188e *haldata = &adapter->haldata; u8 val8; /* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */ val8 = haldata->nCur40MhzPrimeSC << 5; if (short_preamble) val8 |= 0x80; rtw_write8(adapter, REG_RRSR + 2, val8); }; static void set_slot_time(struct adapter *adapter, u8 slot_time) { u8 u1bAIFS, aSifsTime; struct mlme_ext_priv *pmlmeext = &adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; rtw_write8(adapter, REG_SLOT, slot_time); if (pmlmeinfo->WMM_enable == 0) { if (pmlmeext->cur_wireless_mode == WIRELESS_11B) aSifsTime = 10; else aSifsTime = 16; u1bAIFS = aSifsTime + (2 * pmlmeinfo->slotTime); /* Temporary removed, 2008.06.20. */ rtw_write8(adapter, REG_EDCA_VO_PARAM, u1bAIFS); rtw_write8(adapter, REG_EDCA_VI_PARAM, u1bAIFS); rtw_write8(adapter, REG_EDCA_BE_PARAM, u1bAIFS); rtw_write8(adapter, REG_EDCA_BK_PARAM, u1bAIFS); } } void update_capinfo(struct adapter *Adapter, u16 updateCap) { struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; /* Check preamble mode, 2005.01.06, by rcnjko. */ /* Mark to update preamble value forever, 2008.03.18 by lanhsin */ if (updateCap & cShortPreamble) { /* Short Preamble */ if (pmlmeinfo->preamble_mode != PREAMBLE_SHORT) { /* PREAMBLE_LONG or PREAMBLE_AUTO */ pmlmeinfo->preamble_mode = PREAMBLE_SHORT; set_ack_preamble(Adapter, true); } } else { /* Long Preamble */ if (pmlmeinfo->preamble_mode != PREAMBLE_LONG) { /* PREAMBLE_SHORT or PREAMBLE_AUTO */ pmlmeinfo->preamble_mode = PREAMBLE_LONG; set_ack_preamble(Adapter, false); } } if (updateCap & cIBSS) { /* Filen: See 802.11-2007 p.91 */ pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } else { /* Filen: See 802.11-2007 p.90 */ if (pmlmeext->cur_wireless_mode & (WIRELESS_11G | WIRELESS_11_24N)) { if (updateCap & cShortSlotTime) { /* Short Slot Time */ if (pmlmeinfo->slotTime != SHORT_SLOT_TIME) pmlmeinfo->slotTime = SHORT_SLOT_TIME; } else { /* Long Slot Time */ if (pmlmeinfo->slotTime != NON_SHORT_SLOT_TIME) pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } } else { /* B Mode */ pmlmeinfo->slotTime = NON_SHORT_SLOT_TIME; } } set_slot_time(Adapter, pmlmeinfo->slotTime); } void update_wireless_mode(struct adapter *padapter) { int ratelen, network_type = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; struct wlan_bssid_ex *cur_network = &pmlmeinfo->network; unsigned char *rate = cur_network->SupportedRates; ratelen = rtw_get_rateset_len(cur_network->SupportedRates); if ((pmlmeinfo->HT_info_enable) && (pmlmeinfo->HT_caps_enable)) pmlmeinfo->HT_enable = 1; if (pmlmeext->cur_channel > 14) { network_type |= WIRELESS_INVALID; } else { if (pmlmeinfo->HT_enable) network_type = WIRELESS_11_24N; if (cckratesonly_included(rate, ratelen)) network_type |= WIRELESS_11B; else if (cckrates_included(rate, ratelen)) network_type |= WIRELESS_11BG; else network_type |= WIRELESS_11G; } pmlmeext->cur_wireless_mode = network_type & padapter->registrypriv.wireless_mode; /* RESP_SIFS for CCK */ rtw_write8(padapter, REG_R2T_SIFS, 0x08); rtw_write8(padapter, REG_R2T_SIFS + 1, 0x08); /* RESP_SIFS for OFDM */ rtw_write8(padapter, REG_T2T_SIFS, 0x0a); rtw_write8(padapter, REG_T2T_SIFS + 1, 0x0a); if (pmlmeext->cur_wireless_mode & WIRELESS_11B) update_mgnt_tx_rate(padapter, IEEE80211_CCK_RATE_1MB); else update_mgnt_tx_rate(padapter, IEEE80211_OFDM_RATE_6MB); } void update_bmc_sta_support_rate(struct adapter *padapter, u32 mac_id) { struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; if (pmlmeext->cur_wireless_mode & WIRELESS_11B) { /* Only B, B/G, and B/G/N AP could use CCK rate */ memcpy((pmlmeinfo->FW_sta_info[mac_id].SupportedRates), rtw_basic_rate_cck, 4); } else { memcpy((pmlmeinfo->FW_sta_info[mac_id].SupportedRates), rtw_basic_rate_ofdm, 3); } } int update_sta_support_rate(struct adapter *padapter, u8 *pvar_ie, uint var_ie_len, int cam_idx) { unsigned int ie_len; struct ndis_802_11_var_ie *pIE; int supportRateNum = 0; struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv; struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info; pIE = (struct ndis_802_11_var_ie *)rtw_get_ie(pvar_ie, _SUPPORTEDRATES_IE_, &ie_len, var_ie_len); if (!pIE) return _FAIL; memcpy(pmlmeinfo->FW_sta_info[cam_idx].SupportedRates, pIE->data, ie_len); supportRateNum = ie_len; pIE = (struct ndis_802_11_var_ie *)rtw_get_ie(pvar_ie, _EXT_SUPPORTEDRATES_IE_, &ie_len, var_ie_len); if (pIE) memcpy((pmlmeinfo->FW_sta_info[cam_idx].SupportedRates + supportRateNum), pIE->data, ie_len); return _SUCCESS; } void beacon_timing_control(struct adapter *padapter) { SetBeaconRelatedRegisters8188EUsb(padapter); } static struct adapter *pbuddy_padapter; int rtw_handle_dualmac(struct adapter *adapter, bool init) { int status = _SUCCESS; if (init) { if (!pbuddy_padapter) { pbuddy_padapter = adapter; } else { adapter->pbuddy_adapter = pbuddy_padapter; pbuddy_padapter->pbuddy_adapter = adapter; /* clear global value */ pbuddy_padapter = NULL; } } else { pbuddy_padapter = NULL; } return status; }