/* * SPDX-License-Identifier: GPL-2.0 * * Copyright(C) 2015-2018 Linaro Limited. * * Author: Tor Jeremiassen * Author: Mathieu Poirier */ #include #include #include #include #include #include #include "auxtrace.h" #include "color.h" #include "cs-etm.h" #include "debug.h" #include "evlist.h" #include "intlist.h" #include "machine.h" #include "map.h" #include "perf.h" #include "thread.h" #include "thread_map.h" #include "thread-stack.h" #include "util.h" #define MAX_TIMESTAMP (~0ULL) struct cs_etm_auxtrace { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; struct itrace_synth_opts synth_opts; struct perf_session *session; struct machine *machine; struct thread *unknown_thread; u8 timeless_decoding; u8 snapshot_mode; u8 data_queued; u8 sample_branches; int num_cpu; u32 auxtrace_type; u64 branches_sample_type; u64 branches_id; u64 **metadata; u64 kernel_start; unsigned int pmu_type; }; struct cs_etm_queue { struct cs_etm_auxtrace *etm; struct thread *thread; struct cs_etm_decoder *decoder; struct auxtrace_buffer *buffer; const struct cs_etm_state *state; union perf_event *event_buf; unsigned int queue_nr; pid_t pid, tid; int cpu; u64 time; u64 timestamp; u64 offset; }; static int cs_etm__flush_events(struct perf_session *session, struct perf_tool *tool) { (void) session; (void) tool; return 0; } static void cs_etm__free_queue(void *priv) { struct cs_etm_queue *etmq = priv; free(etmq); } static void cs_etm__free_events(struct perf_session *session) { unsigned int i; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); struct auxtrace_queues *queues = &aux->queues; for (i = 0; i < queues->nr_queues; i++) { cs_etm__free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } auxtrace_queues__free(queues); } static void cs_etm__free(struct perf_session *session) { int i; struct int_node *inode, *tmp; struct cs_etm_auxtrace *aux = container_of(session->auxtrace, struct cs_etm_auxtrace, auxtrace); cs_etm__free_events(session); session->auxtrace = NULL; /* First remove all traceID/CPU# nodes for the RB tree */ intlist__for_each_entry_safe(inode, tmp, traceid_list) intlist__remove(traceid_list, inode); /* Then the RB tree itself */ intlist__delete(traceid_list); for (i = 0; i < aux->num_cpu; i++) zfree(&aux->metadata[i]); zfree(&aux->metadata); zfree(&aux); } static int cs_etm__process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { (void) session; (void) event; (void) sample; (void) tool; return 0; } static int cs_etm__process_auxtrace_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool) { (void) session; (void) event; (void) tool; return 0; } static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm) { struct perf_evsel *evsel; struct perf_evlist *evlist = etm->session->evlist; bool timeless_decoding = true; /* * Circle through the list of event and complain if we find one * with the time bit set. */ evlist__for_each_entry(evlist, evsel) { if ((evsel->attr.sample_type & PERF_SAMPLE_TIME)) timeless_decoding = false; } return timeless_decoding; } static const char * const cs_etm_global_header_fmts[] = { [CS_HEADER_VERSION_0] = " Header version %llx\n", [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n", [CS_ETM_SNAPSHOT] = " Snapshot %llx\n", }; static const char * const cs_etm_priv_fmts[] = { [CS_ETM_MAGIC] = " Magic number %llx\n", [CS_ETM_CPU] = " CPU %lld\n", [CS_ETM_ETMCR] = " ETMCR %llx\n", [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n", [CS_ETM_ETMCCER] = " ETMCCER %llx\n", [CS_ETM_ETMIDR] = " ETMIDR %llx\n", }; static const char * const cs_etmv4_priv_fmts[] = { [CS_ETM_MAGIC] = " Magic number %llx\n", [CS_ETM_CPU] = " CPU %lld\n", [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n", [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n", [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n", [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n", [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n", [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n", [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n", }; static void cs_etm__print_auxtrace_info(u64 *val, int num) { int i, j, cpu = 0; for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) fprintf(stdout, cs_etm_global_header_fmts[i], val[i]); for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) { if (val[i] == __perf_cs_etmv3_magic) for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++) fprintf(stdout, cs_etm_priv_fmts[j], val[i]); else if (val[i] == __perf_cs_etmv4_magic) for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++) fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]); else /* failure.. return */ return; } } int cs_etm__process_auxtrace_info(union perf_event *event, struct perf_session *session) { struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; struct cs_etm_auxtrace *etm = NULL; struct int_node *inode; unsigned int pmu_type; int event_header_size = sizeof(struct perf_event_header); int info_header_size; int total_size = auxtrace_info->header.size; int priv_size = 0; int num_cpu; int err = 0, idx = -1; int i, j, k; u64 *ptr, *hdr = NULL; u64 **metadata = NULL; /* * sizeof(auxtrace_info_event::type) + * sizeof(auxtrace_info_event::reserved) == 8 */ info_header_size = 8; if (total_size < (event_header_size + info_header_size)) return -EINVAL; priv_size = total_size - event_header_size - info_header_size; /* First the global part */ ptr = (u64 *) auxtrace_info->priv; /* Look for version '0' of the header */ if (ptr[0] != 0) return -EINVAL; hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX); if (!hdr) return -ENOMEM; /* Extract header information - see cs-etm.h for format */ for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++) hdr[i] = ptr[i]; num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff; pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) & 0xffffffff); /* * Create an RB tree for traceID-CPU# tuple. Since the conversion has * to be made for each packet that gets decoded, optimizing access in * anything other than a sequential array is worth doing. */ traceid_list = intlist__new(NULL); if (!traceid_list) { err = -ENOMEM; goto err_free_hdr; } metadata = zalloc(sizeof(*metadata) * num_cpu); if (!metadata) { err = -ENOMEM; goto err_free_traceid_list; } /* * The metadata is stored in the auxtrace_info section and encodes * the configuration of the ARM embedded trace macrocell which is * required by the trace decoder to properly decode the trace due * to its highly compressed nature. */ for (j = 0; j < num_cpu; j++) { if (ptr[i] == __perf_cs_etmv3_magic) { metadata[j] = zalloc(sizeof(*metadata[j]) * CS_ETM_PRIV_MAX); if (!metadata[j]) { err = -ENOMEM; goto err_free_metadata; } for (k = 0; k < CS_ETM_PRIV_MAX; k++) metadata[j][k] = ptr[i + k]; /* The traceID is our handle */ idx = metadata[j][CS_ETM_ETMTRACEIDR]; i += CS_ETM_PRIV_MAX; } else if (ptr[i] == __perf_cs_etmv4_magic) { metadata[j] = zalloc(sizeof(*metadata[j]) * CS_ETMV4_PRIV_MAX); if (!metadata[j]) { err = -ENOMEM; goto err_free_metadata; } for (k = 0; k < CS_ETMV4_PRIV_MAX; k++) metadata[j][k] = ptr[i + k]; /* The traceID is our handle */ idx = metadata[j][CS_ETMV4_TRCTRACEIDR]; i += CS_ETMV4_PRIV_MAX; } /* Get an RB node for this CPU */ inode = intlist__findnew(traceid_list, idx); /* Something went wrong, no need to continue */ if (!inode) { err = PTR_ERR(inode); goto err_free_metadata; } /* * The node for that CPU should not be taken. * Back out if that's the case. */ if (inode->priv) { err = -EINVAL; goto err_free_metadata; } /* All good, associate the traceID with the CPU# */ inode->priv = &metadata[j][CS_ETM_CPU]; } /* * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and * CS_ETMV4_PRIV_MAX mark how many double words are in the * global metadata, and each cpu's metadata respectively. * The following tests if the correct number of double words was * present in the auxtrace info section. */ if (i * 8 != priv_size) { err = -EINVAL; goto err_free_metadata; } etm = zalloc(sizeof(*etm)); if (!etm) { err = -ENOMEM; goto err_free_metadata; } err = auxtrace_queues__init(&etm->queues); if (err) goto err_free_etm; etm->session = session; etm->machine = &session->machines.host; etm->num_cpu = num_cpu; etm->pmu_type = pmu_type; etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0); etm->metadata = metadata; etm->auxtrace_type = auxtrace_info->type; etm->timeless_decoding = cs_etm__is_timeless_decoding(etm); etm->auxtrace.process_event = cs_etm__process_event; etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event; etm->auxtrace.flush_events = cs_etm__flush_events; etm->auxtrace.free_events = cs_etm__free_events; etm->auxtrace.free = cs_etm__free; session->auxtrace = &etm->auxtrace; if (dump_trace) { cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu); return 0; } err = auxtrace_queues__process_index(&etm->queues, session); if (err) goto err_free_queues; etm->data_queued = etm->queues.populated; return 0; err_free_queues: auxtrace_queues__free(&etm->queues); session->auxtrace = NULL; err_free_etm: zfree(&etm); err_free_metadata: /* No need to check @metadata[j], free(NULL) is supported */ for (j = 0; j < num_cpu; j++) free(metadata[j]); zfree(&metadata); err_free_traceid_list: intlist__delete(traceid_list); err_free_hdr: zfree(&hdr); return -EINVAL; }