summaryrefslogtreecommitdiff
path: root/drivers/char/tpm/tpm2-sessions.c
blob: 1c8d50a501d71a13608a0478d5567498cbf4c3dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright (C) 2018 James.Bottomley@HansenPartnership.com
 *
 * Cryptographic helper routines for handling TPM2 sessions for
 * authorization HMAC and request response encryption.
 *
 * The idea is to ensure that every TPM command is HMAC protected by a
 * session, meaning in-flight tampering would be detected and in
 * addition all sensitive inputs and responses should be encrypted.
 *
 * The basic way this works is to use a TPM feature called salted
 * sessions where a random secret used in session construction is
 * encrypted to the public part of a known TPM key.  The problem is we
 * have no known keys, so initially a primary Elliptic Curve key is
 * derived from the NULL seed (we use EC because most TPMs generate
 * these keys much faster than RSA ones).  The curve used is NIST_P256
 * because that's now mandated to be present in 'TCG TPM v2.0
 * Provisioning Guidance'
 *
 * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
 * be) session protected, so a clever Man in the Middle could return a
 * public key they control to this command and from there intercept
 * and decode all subsequent session based transactions.  The kernel
 * cannot mitigate this threat but, after boot, userspace can get
 * proof this has not happened by asking the TPM to certify the NULL
 * key.  This certification would chain back to the TPM Endorsement
 * Certificate and prove the NULL seed primary had not been tampered
 * with and thus all sessions must have been cryptographically secure.
 * To assist with this, the initial NULL seed public key name is made
 * available in a sysfs file.
 *
 * Use of these functions:
 *
 * The design is all the crypto, hash and hmac gunk is confined in this
 * file and never needs to be seen even by the kernel internal user.  To
 * the user there's an init function tpm2_sessions_init() that needs to
 * be called once per TPM which generates the NULL seed primary key.
 *
 * These are the usage functions:
 *
 * tpm2_start_auth_session() which allocates the opaque auth structure
 *	and gets a session from the TPM.  This must be called before
 *	any of the following functions.  The session is protected by a
 *	session_key which is derived from a random salt value
 *	encrypted to the NULL seed.
 * tpm2_end_auth_session() kills the session and frees the resources.
 *	Under normal operation this function is done by
 *	tpm_buf_check_hmac_response(), so this is only to be used on
 *	error legs where the latter is not executed.
 */

#include "tpm.h"
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <asm/unaligned.h>
#include <crypto/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/hash.h>
#include <crypto/hmac.h>

/*
 * This is the structure that carries all the auth information (like
 * session handle, nonces, session key and auth) from use to use it is
 * designed to be opaque to anything outside.
 */
struct tpm2_auth {
	u32 handle;
	/*
	 * This has two meanings: before tpm_buf_fill_hmac_session()
	 * it marks the offset in the buffer of the start of the
	 * sessions (i.e. after all the handles).  Once the buffer has
	 * been filled it markes the session number of our auth
	 * session so we can find it again in the response buffer.
	 *
	 * The two cases are distinguished because the first offset
	 * must always be greater than TPM_HEADER_SIZE and the second
	 * must be less than or equal to 5.
	 */
	u32 session;
	/*
	 * the size here is variable and set by the size of our_nonce
	 * which must be between 16 and the name hash length. we set
	 * the maximum sha256 size for the greatest protection
	 */
	u8 our_nonce[SHA256_DIGEST_SIZE];
	u8 tpm_nonce[SHA256_DIGEST_SIZE];
	/*
	 * the salt is only used across the session command/response
	 * after that it can be used as a scratch area
	 */
	union {
		u8 salt[EC_PT_SZ];
		/* scratch for key + IV */
		u8 scratch[AES_KEY_BYTES + AES_BLOCK_SIZE];
	};
	u8 session_key[SHA256_DIGEST_SIZE];
};

/*
 * It turns out the crypto hmac(sha256) is hard for us to consume
 * because it assumes a fixed key and the TPM seems to change the key
 * on every operation, so we weld the hmac init and final functions in
 * here to give it the same usage characteristics as a regular hash
 */
static void tpm2_hmac_init(struct sha256_state *sctx, u8 *key, u32 key_len)
{
	u8 pad[SHA256_BLOCK_SIZE];
	int i;

	sha256_init(sctx);
	for (i = 0; i < sizeof(pad); i++) {
		if (i < key_len)
			pad[i] = key[i];
		else
			pad[i] = 0;
		pad[i] ^= HMAC_IPAD_VALUE;
	}
	sha256_update(sctx, pad, sizeof(pad));
}

static void tpm2_hmac_final(struct sha256_state *sctx, u8 *key, u32 key_len,
			    u8 *out)
{
	u8 pad[SHA256_BLOCK_SIZE];
	int i;

	for (i = 0; i < sizeof(pad); i++) {
		if (i < key_len)
			pad[i] = key[i];
		else
			pad[i] = 0;
		pad[i] ^= HMAC_OPAD_VALUE;
	}

	/* collect the final hash;  use out as temporary storage */
	sha256_final(sctx, out);

	sha256_init(sctx);
	sha256_update(sctx, pad, sizeof(pad));
	sha256_update(sctx, out, SHA256_DIGEST_SIZE);
	sha256_final(sctx, out);
}

/*
 * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
 * otherwise standard tpm2_KDFa.  Note output is in bytes not bits.
 */
static void tpm2_KDFa(u8 *key, u32 key_len, const char *label, u8 *u,
		      u8 *v, u32 bytes, u8 *out)
{
	u32 counter = 1;
	const __be32 bits = cpu_to_be32(bytes * 8);

	while (bytes > 0) {
		struct sha256_state sctx;
		__be32 c = cpu_to_be32(counter);

		tpm2_hmac_init(&sctx, key, key_len);
		sha256_update(&sctx, (u8 *)&c, sizeof(c));
		sha256_update(&sctx, label, strlen(label)+1);
		sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
		sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
		sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
		tpm2_hmac_final(&sctx, key, key_len, out);

		bytes -= SHA256_DIGEST_SIZE;
		counter++;
		out += SHA256_DIGEST_SIZE;
	}
}

/*
 * Somewhat of a bastardization of the real KDFe.  We're assuming
 * we're working with known point sizes for the input parameters and
 * the hash algorithm is fixed at sha256.  Because we know that the
 * point size is 32 bytes like the hash size, there's no need to loop
 * in this KDF.
 */
static void tpm2_KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
		      u8 *out)
{
	struct sha256_state sctx;
	/*
	 * this should be an iterative counter, but because we know
	 *  we're only taking 32 bytes for the point using a sha256
	 *  hash which is also 32 bytes, there's only one loop
	 */
	__be32 c = cpu_to_be32(1);

	sha256_init(&sctx);
	/* counter (BE) */
	sha256_update(&sctx, (u8 *)&c, sizeof(c));
	/* secret value */
	sha256_update(&sctx, z, EC_PT_SZ);
	/* string including trailing zero */
	sha256_update(&sctx, str, strlen(str)+1);
	sha256_update(&sctx, pt_u, EC_PT_SZ);
	sha256_update(&sctx, pt_v, EC_PT_SZ);
	sha256_final(&sctx, out);
}

static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
{
	struct crypto_kpp *kpp;
	struct kpp_request *req;
	struct scatterlist s[2], d[1];
	struct ecdh p = {0};
	u8 encoded_key[EC_PT_SZ], *x, *y;
	unsigned int buf_len;

	/* secret is two sized points */
	tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
	/*
	 * we cheat here and append uninitialized data to form
	 * the points.  All we care about is getting the two
	 * co-ordinate pointers, which will be used to overwrite
	 * the uninitialized data
	 */
	tpm_buf_append_u16(buf, EC_PT_SZ);
	x = &buf->data[tpm_buf_length(buf)];
	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
	tpm_buf_append_u16(buf, EC_PT_SZ);
	y = &buf->data[tpm_buf_length(buf)];
	tpm_buf_append(buf, encoded_key, EC_PT_SZ);
	sg_init_table(s, 2);
	sg_set_buf(&s[0], x, EC_PT_SZ);
	sg_set_buf(&s[1], y, EC_PT_SZ);

	kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
	if (IS_ERR(kpp)) {
		dev_err(&chip->dev, "crypto ecdh allocation failed\n");
		return;
	}

	buf_len = crypto_ecdh_key_len(&p);
	if (sizeof(encoded_key) < buf_len) {
		dev_err(&chip->dev, "salt buffer too small needs %d\n",
			buf_len);
		goto out;
	}
	crypto_ecdh_encode_key(encoded_key, buf_len, &p);
	/* this generates a random private key */
	crypto_kpp_set_secret(kpp, encoded_key, buf_len);

	/* salt is now the public point of this private key */
	req = kpp_request_alloc(kpp, GFP_KERNEL);
	if (!req)
		goto out;
	kpp_request_set_input(req, NULL, 0);
	kpp_request_set_output(req, s, EC_PT_SZ*2);
	crypto_kpp_generate_public_key(req);
	/*
	 * we're not done: now we have to compute the shared secret
	 * which is our private key multiplied by the tpm_key public
	 * point, we actually only take the x point and discard the y
	 * point and feed it through KDFe to get the final secret salt
	 */
	sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
	sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
	kpp_request_set_input(req, s, EC_PT_SZ*2);
	sg_init_one(d, chip->auth->salt, EC_PT_SZ);
	kpp_request_set_output(req, d, EC_PT_SZ);
	crypto_kpp_compute_shared_secret(req);
	kpp_request_free(req);

	/*
	 * pass the shared secret through KDFe for salt. Note salt
	 * area is used both for input shared secret and output salt.
	 * This works because KDFe fully consumes the secret before it
	 * writes the salt
	 */
	tpm2_KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
		  chip->auth->salt);

 out:
	crypto_free_kpp(kpp);
}
/**
 * tpm2_end_auth_session() - kill the allocated auth session
 * @chip: the TPM chip structure
 *
 * ends the session started by tpm2_start_auth_session and frees all
 * the resources.  Under normal conditions,
 * tpm_buf_check_hmac_response() will correctly end the session if
 * required, so this function is only for use in error legs that will
 * bypass the normal invocation of tpm_buf_check_hmac_response().
 */
void tpm2_end_auth_session(struct tpm_chip *chip)
{
	tpm2_flush_context(chip, chip->auth->handle);
	memzero_explicit(chip->auth, sizeof(*chip->auth));
}
EXPORT_SYMBOL(tpm2_end_auth_session);

static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
					 struct tpm_buf *buf)
{
	struct tpm_header *head = (struct tpm_header *)buf->data;
	u32 tot_len = be32_to_cpu(head->length);
	off_t offset = TPM_HEADER_SIZE;
	u32 val;

	/* we're starting after the header so adjust the length */
	tot_len -= TPM_HEADER_SIZE;

	/* should have handle plus nonce */
	if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
		return -EINVAL;

	auth->handle = tpm_buf_read_u32(buf, &offset);
	val = tpm_buf_read_u16(buf, &offset);
	if (val != sizeof(auth->tpm_nonce))
		return -EINVAL;
	memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
	/* now compute the session key from the nonces */
	tpm2_KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
		  auth->our_nonce, sizeof(auth->session_key),
		  auth->session_key);

	return 0;
}

/**
 * tpm2_start_auth_session() - create a HMAC authentication session with the TPM
 * @chip: the TPM chip structure to create the session with
 *
 * This function loads the NULL seed from its saved context and starts
 * an authentication session on the null seed, fills in the
 * @chip->auth structure to contain all the session details necessary
 * for performing the HMAC, encrypt and decrypt operations and
 * returns.  The NULL seed is flushed before this function returns.
 *
 * Return: zero on success or actual error encountered.
 */
int tpm2_start_auth_session(struct tpm_chip *chip)
{
	struct tpm_buf buf;
	struct tpm2_auth *auth = chip->auth;
	int rc;
	/* null seed context has no offset, but we must provide one */
	unsigned int offset = 0;
	u32 nullkey;

	rc = tpm2_load_context(chip, chip->null_key_context, &offset,
			       &nullkey);
	if (rc)
		goto out;

	auth->session = TPM_HEADER_SIZE;

	rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
	if (rc)
		goto out;

	/* salt key handle */
	tpm_buf_append_u32(&buf, nullkey);
	/* bind key handle */
	tpm_buf_append_u32(&buf, TPM2_RH_NULL);
	/* nonce caller */
	get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
	tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
	tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));

	/* append encrypted salt and squirrel away unencrypted in auth */
	tpm_buf_append_salt(&buf, chip);
	/* session type (HMAC, audit or policy) */
	tpm_buf_append_u8(&buf, TPM2_SE_HMAC);

	/* symmetric encryption parameters */
	/* symmetric algorithm */
	tpm_buf_append_u16(&buf, TPM_ALG_AES);
	/* bits for symmetric algorithm */
	tpm_buf_append_u16(&buf, AES_KEY_BITS);
	/* symmetric algorithm mode (must be CFB) */
	tpm_buf_append_u16(&buf, TPM_ALG_CFB);
	/* hash algorithm for session */
	tpm_buf_append_u16(&buf, TPM_ALG_SHA256);

	rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
	tpm2_flush_context(chip, nullkey);

	if (rc == TPM2_RC_SUCCESS)
		rc = tpm2_parse_start_auth_session(auth, &buf);

	tpm_buf_destroy(&buf);

	if (rc)
		goto out;

 out:
	return rc;
}
EXPORT_SYMBOL(tpm2_start_auth_session);

/**
 * tpm2_parse_create_primary() - parse the data returned from TPM_CC_CREATE_PRIMARY
 *
 * @chip:	The TPM the primary was created under
 * @buf:	The response buffer from the chip
 * @handle:	pointer to be filled in with the return handle of the primary
 * @hierarchy:	The hierarchy the primary was created for
 *
 * Return:
 * * 0		- OK
 * * -errno	- A system error
 * * TPM_RC	- A TPM error
 */
static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf *buf,
				     u32 *handle, u32 hierarchy)
{
	struct tpm_header *head = (struct tpm_header *)buf->data;
	off_t offset_r = TPM_HEADER_SIZE, offset_t;
	u16 len = TPM_HEADER_SIZE;
	u32 total_len = be32_to_cpu(head->length);
	u32 val, param_len;

	*handle = tpm_buf_read_u32(buf, &offset_r);
	param_len = tpm_buf_read_u32(buf, &offset_r);
	/*
	 * param_len doesn't include the header, but all the other
	 * lengths and offsets do, so add it to parm len to make
	 * the comparisons easier
	 */
	param_len += TPM_HEADER_SIZE;

	if (param_len + 8 > total_len)
		return -EINVAL;
	len = tpm_buf_read_u16(buf, &offset_r);
	offset_t = offset_r;
	/* now we have the public area, compute the name of the object */
	put_unaligned_be16(TPM_ALG_SHA256, chip->null_key_name);
	sha256(&buf->data[offset_r], len, chip->null_key_name + 2);

	/* validate the public key */
	val = tpm_buf_read_u16(buf, &offset_t);

	/* key type (must be what we asked for) */
	if (val != TPM_ALG_ECC)
		return -EINVAL;
	val = tpm_buf_read_u16(buf, &offset_t);

	/* name algorithm */
	if (val != TPM_ALG_SHA256)
		return -EINVAL;
	val = tpm_buf_read_u32(buf, &offset_t);

	/* object properties */
	if (val != TPM2_OA_TMPL)
		return -EINVAL;

	/* auth policy (empty) */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != 0)
		return -EINVAL;

	/* symmetric key parameters */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != TPM_ALG_AES)
		return -EINVAL;

	/* symmetric key length */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != AES_KEY_BITS)
		return -EINVAL;

	/* symmetric encryption scheme */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != TPM_ALG_CFB)
		return -EINVAL;

	/* signing scheme */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != TPM_ALG_NULL)
		return -EINVAL;

	/* ECC Curve */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != TPM2_ECC_NIST_P256)
		return -EINVAL;

	/* KDF Scheme */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != TPM_ALG_NULL)
		return -EINVAL;

	/* extract public key (x and y points) */
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != EC_PT_SZ)
		return -EINVAL;
	memcpy(chip->null_ec_key_x, &buf->data[offset_t], val);
	offset_t += val;
	val = tpm_buf_read_u16(buf, &offset_t);
	if (val != EC_PT_SZ)
		return -EINVAL;
	memcpy(chip->null_ec_key_y, &buf->data[offset_t], val);
	offset_t += val;

	/* original length of the whole TPM2B */
	offset_r += len;

	/* should have exactly consumed the TPM2B public structure */
	if (offset_t != offset_r)
		return -EINVAL;
	if (offset_r > param_len)
		return -EINVAL;

	/* creation data (skip) */
	len = tpm_buf_read_u16(buf, &offset_r);
	offset_r += len;
	if (offset_r > param_len)
		return -EINVAL;

	/* creation digest (must be sha256) */
	len = tpm_buf_read_u16(buf, &offset_r);
	offset_r += len;
	if (len != SHA256_DIGEST_SIZE || offset_r > param_len)
		return -EINVAL;

	/* TPMT_TK_CREATION follows */
	/* tag, must be TPM_ST_CREATION (0x8021) */
	val = tpm_buf_read_u16(buf, &offset_r);
	if (val != TPM2_ST_CREATION || offset_r > param_len)
		return -EINVAL;

	/* hierarchy */
	val = tpm_buf_read_u32(buf, &offset_r);
	if (val != hierarchy || offset_r > param_len)
		return -EINVAL;

	/* the ticket digest HMAC (might not be sha256) */
	len = tpm_buf_read_u16(buf, &offset_r);
	offset_r += len;
	if (offset_r > param_len)
		return -EINVAL;

	/*
	 * finally we have the name, which is a sha256 digest plus a 2
	 * byte algorithm type
	 */
	len = tpm_buf_read_u16(buf, &offset_r);
	if (offset_r + len != param_len + 8)
		return -EINVAL;
	if (len != SHA256_DIGEST_SIZE + 2)
		return -EINVAL;

	if (memcmp(chip->null_key_name, &buf->data[offset_r],
		   SHA256_DIGEST_SIZE + 2) != 0) {
		dev_err(&chip->dev, "NULL Seed name comparison failed\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * tpm2_create_primary() - create a primary key using a fixed P-256 template
 *
 * @chip:      the TPM chip to create under
 * @hierarchy: The hierarchy handle to create under
 * @handle:    The returned volatile handle on success
 *
 * For platforms that might not have a persistent primary, this can be
 * used to create one quickly on the fly (it uses Elliptic Curve not
 * RSA, so even slow TPMs can create one fast).  The template uses the
 * TCG mandated H one for non-endorsement ECC primaries, i.e. P-256
 * elliptic curve (the only current one all TPM2s are required to
 * have) a sha256 name hash and no policy.
 *
 * Return:
 * * 0		- OK
 * * -errno	- A system error
 * * TPM_RC	- A TPM error
 */
static int tpm2_create_primary(struct tpm_chip *chip, u32 hierarchy,
			       u32 *handle)
{
	int rc;
	struct tpm_buf buf;
	struct tpm_buf template;

	rc = tpm_buf_init(&buf, TPM2_ST_SESSIONS, TPM2_CC_CREATE_PRIMARY);
	if (rc)
		return rc;

	rc = tpm_buf_init_sized(&template);
	if (rc) {
		tpm_buf_destroy(&buf);
		return rc;
	}

	/*
	 * create the template.  Note: in order for userspace to
	 * verify the security of the system, it will have to create
	 * and certify this NULL primary, meaning all the template
	 * parameters will have to be identical, so conform exactly to
	 * the TCG TPM v2.0 Provisioning Guidance for the SRK ECC
	 * key H template (H has zero size unique points)
	 */

	/* key type */
	tpm_buf_append_u16(&template, TPM_ALG_ECC);

	/* name algorithm */
	tpm_buf_append_u16(&template, TPM_ALG_SHA256);

	/* object properties */
	tpm_buf_append_u32(&template, TPM2_OA_TMPL);

	/* sauth policy (empty) */
	tpm_buf_append_u16(&template, 0);

	/* BEGIN parameters: key specific; for ECC*/

	/* symmetric algorithm */
	tpm_buf_append_u16(&template, TPM_ALG_AES);

	/* bits for symmetric algorithm */
	tpm_buf_append_u16(&template, AES_KEY_BITS);

	/* algorithm mode (must be CFB) */
	tpm_buf_append_u16(&template, TPM_ALG_CFB);

	/* scheme (NULL means any scheme) */
	tpm_buf_append_u16(&template, TPM_ALG_NULL);

	/* ECC Curve ID */
	tpm_buf_append_u16(&template, TPM2_ECC_NIST_P256);

	/* KDF Scheme */
	tpm_buf_append_u16(&template, TPM_ALG_NULL);

	/* unique: key specific; for ECC it is two zero size points */
	tpm_buf_append_u16(&template, 0);
	tpm_buf_append_u16(&template, 0);

	/* END parameters */

	/* primary handle */
	tpm_buf_append_u32(&buf, hierarchy);
	tpm_buf_append_empty_auth(&buf, TPM2_RS_PW);

	/* sensitive create size is 4 for two empty buffers */
	tpm_buf_append_u16(&buf, 4);

	/* sensitive create auth data (empty) */
	tpm_buf_append_u16(&buf, 0);

	/* sensitive create sensitive data (empty) */
	tpm_buf_append_u16(&buf, 0);

	/* the public template */
	tpm_buf_append(&buf, template.data, template.length);
	tpm_buf_destroy(&template);

	/* outside info (empty) */
	tpm_buf_append_u16(&buf, 0);

	/* creation PCR (none) */
	tpm_buf_append_u32(&buf, 0);

	rc = tpm_transmit_cmd(chip, &buf, 0,
			      "attempting to create NULL primary");

	if (rc == TPM2_RC_SUCCESS)
		rc = tpm2_parse_create_primary(chip, &buf, handle, hierarchy);

	tpm_buf_destroy(&buf);

	return rc;
}

static int tpm2_create_null_primary(struct tpm_chip *chip)
{
	u32 null_key;
	int rc;

	rc = tpm2_create_primary(chip, TPM2_RH_NULL, &null_key);

	if (rc == TPM2_RC_SUCCESS) {
		unsigned int offset = 0; /* dummy offset for null key context */

		rc = tpm2_save_context(chip, null_key, chip->null_key_context,
				       sizeof(chip->null_key_context), &offset);
		tpm2_flush_context(chip, null_key);
	}

	return rc;
}

/**
 * tpm2_sessions_init() - start of day initialization for the sessions code
 * @chip: TPM chip
 *
 * Derive and context save the null primary and allocate memory in the
 * struct tpm_chip for the authorizations.
 */
int tpm2_sessions_init(struct tpm_chip *chip)
{
	int rc;

	rc = tpm2_create_null_primary(chip);
	if (rc)
		dev_err(&chip->dev, "TPM: security failed (NULL seed derivation): %d\n", rc);

	chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
	if (!chip->auth)
		return -ENOMEM;

	return rc;
}