summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/display/dc/spl/dc_spl.c
blob: 15f7eda903e648194bc855414aa6dbf9494474df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
// SPDX-License-Identifier: MIT
//
// Copyright 2024 Advanced Micro Devices, Inc.

#include "dc_spl.h"
#include "dc_spl_scl_filters.h"
#include "dc_spl_scl_easf_filters.h"
#include "dc_spl_isharp_filters.h"
#include "spl_debug.h"

#define IDENTITY_RATIO(ratio) (spl_fixpt_u2d19(ratio) == (1 << 19))
#define MIN_VIEWPORT_SIZE 12

static struct spl_rect intersect_rec(const struct spl_rect *r0, const struct spl_rect *r1)
{
	struct spl_rect rec;
	int r0_x_end = r0->x + r0->width;
	int r1_x_end = r1->x + r1->width;
	int r0_y_end = r0->y + r0->height;
	int r1_y_end = r1->y + r1->height;

	rec.x = r0->x > r1->x ? r0->x : r1->x;
	rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
	rec.y = r0->y > r1->y ? r0->y : r1->y;
	rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;

	/* in case that there is no intersection */
	if (rec.width < 0 || rec.height < 0)
		memset(&rec, 0, sizeof(rec));

	return rec;
}

static struct spl_rect shift_rec(const struct spl_rect *rec_in, int x, int y)
{
	struct spl_rect rec_out = *rec_in;

	rec_out.x += x;
	rec_out.y += y;

	return rec_out;
}

static struct spl_rect calculate_plane_rec_in_timing_active(
		struct spl_in *spl_in,
		const struct spl_rect *rec_in)
{
	/*
	 * The following diagram shows an example where we map a 1920x1200
	 * desktop to a 2560x1440 timing with a plane rect in the middle
	 * of the screen. To map a plane rect from Stream Source to Timing
	 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
	 * horizontal and 1440/1200 vertical) to the plane's x and y, then
	 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
	 * This will give us a plane rect's position in Timing Active. However
	 * we have to remove the fractional. The rule is that we find left/right
	 * and top/bottom positions and round the value to the adjacent integer.
	 *
	 * Stream Source Space
	 * ------------
	 *        __________________________________________________
	 *       |Stream Source (1920 x 1200) ^                     |
	 *       |                            y                     |
	 *       |         <------- w --------|>                    |
	 *       |          __________________V                     |
	 *       |<-- x -->|Plane//////////////| ^                  |
	 *       |         |(pre scale)////////| |                  |
	 *       |         |///////////////////| |                  |
	 *       |         |///////////////////| h                  |
	 *       |         |///////////////////| |                  |
	 *       |         |///////////////////| |                  |
	 *       |         |///////////////////| V                  |
	 *       |                                                  |
	 *       |                                                  |
	 *       |__________________________________________________|
	 *
	 *
	 * Timing Active Space
	 * ---------------------------------
	 *
	 *       Timing Active (2560 x 1440)
	 *        __________________________________________________
	 *       |*****|  Stteam Destination (2304 x 1440)    |*****|
	 *       |*****|                                      |*****|
	 *       |<128>|                                      |*****|
	 *       |*****|     __________________               |*****|
	 *       |*****|    |Plane/////////////|              |*****|
	 *       |*****|    |(post scale)//////|              |*****|
	 *       |*****|    |//////////////////|              |*****|
	 *       |*****|    |//////////////////|              |*****|
	 *       |*****|    |//////////////////|              |*****|
	 *       |*****|    |//////////////////|              |*****|
	 *       |*****|                                      |*****|
	 *       |*****|                                      |*****|
	 *       |*****|                                      |*****|
	 *       |*****|______________________________________|*****|
	 *
	 * So the resulting formulas are shown below:
	 *
	 * recout_x = 128 + round(plane_x * 2304 / 1920)
	 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
	 * recout_y = 0 + round(plane_y * 1440 / 1280)
	 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
	 *
	 * NOTE: fixed point division is not error free. To reduce errors
	 * introduced by fixed point division, we divide only after
	 * multiplication is complete.
	 */
	const struct spl_rect *stream_src = &spl_in->basic_out.src_rect;
	const struct spl_rect *stream_dst = &spl_in->basic_out.dst_rect;
	struct spl_rect rec_out = {0};
	struct spl_fixed31_32 temp;


	temp = spl_fixpt_from_fraction(rec_in->x * (long long)stream_dst->width,
			stream_src->width);
	rec_out.x = stream_dst->x + spl_fixpt_round(temp);

	temp = spl_fixpt_from_fraction(
			(rec_in->x + rec_in->width) * (long long)stream_dst->width,
			stream_src->width);
	rec_out.width = stream_dst->x + spl_fixpt_round(temp) - rec_out.x;

	temp = spl_fixpt_from_fraction(rec_in->y * (long long)stream_dst->height,
			stream_src->height);
	rec_out.y = stream_dst->y + spl_fixpt_round(temp);

	temp = spl_fixpt_from_fraction(
			(rec_in->y + rec_in->height) * (long long)stream_dst->height,
			stream_src->height);
	rec_out.height = stream_dst->y + spl_fixpt_round(temp) - rec_out.y;

	return rec_out;
}

static struct spl_rect calculate_mpc_slice_in_timing_active(
		struct spl_in *spl_in,
		struct spl_rect *plane_clip_rec)
{
	int mpc_slice_count = spl_in->basic_in.mpc_combine_h;
	int mpc_slice_idx = spl_in->basic_in.mpc_combine_v;
	int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
	struct spl_rect mpc_rec;

	mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
	mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
	mpc_rec.height = plane_clip_rec->height;
	mpc_rec.y = plane_clip_rec->y;
	SPL_ASSERT(mpc_slice_count == 1 ||
			spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE ||
			mpc_rec.width % 2 == 0);

	/* extra pixels in the division remainder need to go to pipes after
	 * the extra pixel index minus one(epimo) defined here as:
	 */
	if (mpc_slice_idx > epimo) {
		mpc_rec.x += mpc_slice_idx - epimo - 1;
		mpc_rec.width += 1;
	}

	if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM) {
		SPL_ASSERT(mpc_rec.height % 2 == 0);
		mpc_rec.height /= 2;
	}
	return mpc_rec;
}

static struct spl_rect calculate_odm_slice_in_timing_active(struct spl_in *spl_in)
{
	int odm_slice_count = spl_in->basic_out.odm_combine_factor;
	int odm_slice_idx = spl_in->odm_slice_index;
	bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
	int h_active = spl_in->basic_out.output_size.width;
	int v_active = spl_in->basic_out.output_size.height;
	int odm_slice_width;
	struct spl_rect odm_rec;

	if (spl_in->basic_out.odm_combine_factor > 0) {
		odm_slice_width = h_active / odm_slice_count;
		/*
		 * deprecated, caller must pass in odm slice rect i.e OPP input
		 * rect in timing active for the new interface.
		 */
		if (spl_in->basic_out.use_two_pixels_per_container && (odm_slice_width % 2))
			odm_slice_width++;

		odm_rec.x = odm_slice_width * odm_slice_idx;
		odm_rec.width = is_last_odm_slice ?
				/* last slice width is the reminder of h_active */
				h_active - odm_slice_width * (odm_slice_count - 1) :
				/* odm slice width is the floor of h_active / count */
				odm_slice_width;
		odm_rec.y = 0;
		odm_rec.height = v_active;

		return odm_rec;
	}

	return spl_in->basic_out.odm_slice_rect;
}

static void spl_calculate_recout(struct spl_in *spl_in, struct spl_scratch *spl_scratch, struct spl_out *spl_out)
{
	/*
	 * A plane clip represents the desired plane size and position in Stream
	 * Source Space. Stream Source is the destination where all planes are
	 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
	 * all planes associated with the current stream are drawn together.
	 * After Stream Source is completed, we will further scale and
	 * reposition the entire canvas of the stream source to Stream
	 * Destination in Timing Active Space. This could be due to display
	 * overscan adjustment where we will need to rescale and reposition all
	 * the planes so they can fit into a TV with overscan or downscale
	 * upscale features such as GPU scaling or VSR.
	 *
	 * This two step blending is a virtual procedure in software. In
	 * hardware there is no such thing as Stream Source. all planes are
	 * blended once in Timing Active Space. Software virtualizes a Stream
	 * Source space to decouple the math complicity so scaling param
	 * calculation focuses on one step at a time.
	 *
	 * In the following two diagrams, user applied 10% overscan adjustment
	 * so the Stream Source needs to be scaled down a little before mapping
	 * to Timing Active Space. As a result the Plane Clip is also scaled
	 * down by the same ratio, Plane Clip position (i.e. x and y) with
	 * respect to Stream Source is also scaled down. To map it in Timing
	 * Active Space additional x and y offsets from Stream Destination are
	 * added to Plane Clip as well.
	 *
	 * Stream Source Space
	 * ------------
	 *        __________________________________________________
	 *       |Stream Source (3840 x 2160) ^                     |
	 *       |                            y                     |
	 *       |                            |                     |
	 *       |          __________________V                     |
	 *       |<-- x -->|Plane Clip/////////|                    |
	 *       |         |(pre scale)////////|                    |
	 *       |         |///////////////////|                    |
	 *       |         |///////////////////|                    |
	 *       |         |///////////////////|                    |
	 *       |         |///////////////////|                    |
	 *       |         |///////////////////|                    |
	 *       |                                                  |
	 *       |                                                  |
	 *       |__________________________________________________|
	 *
	 *
	 * Timing Active Space (3840 x 2160)
	 * ---------------------------------
	 *
	 *       Timing Active
	 *        __________________________________________________
	 *       | y_____________________________________________   |
	 *       |x |Stream Destination (3456 x 1944)            |  |
	 *       |  |                                            |  |
	 *       |  |        __________________                  |  |
	 *       |  |       |Plane Clip////////|                 |  |
	 *       |  |       |(post scale)//////|                 |  |
	 *       |  |       |//////////////////|                 |  |
	 *       |  |       |//////////////////|                 |  |
	 *       |  |       |//////////////////|                 |  |
	 *       |  |       |//////////////////|                 |  |
	 *       |  |                                            |  |
	 *       |  |                                            |  |
	 *       |  |____________________________________________|  |
	 *       |__________________________________________________|
	 *
	 *
	 * In Timing Active Space a plane clip could be further sliced into
	 * pieces called MPC slices. Each Pipe Context is responsible for
	 * processing only one MPC slice so the plane processing workload can be
	 * distributed to multiple DPP Pipes. MPC slices could be blended
	 * together to a single ODM slice. Each ODM slice is responsible for
	 * processing a portion of Timing Active divided horizontally so the
	 * output pixel processing workload can be distributed to multiple OPP
	 * pipes. All ODM slices are mapped together in ODM block so all MPC
	 * slices belong to different ODM slices could be pieced together to
	 * form a single image in Timing Active. MPC slices must belong to
	 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
	 * needs to be divided into two MPC slices one for each ODM slice.
	 *
	 * In the following diagram the output pixel processing workload is
	 * divided horizontally into two ODM slices one for each OPP blend tree.
	 * OPP0 blend tree is responsible for processing left half of Timing
	 * Active, while OPP2 blend tree is responsible for processing right
	 * half.
	 *
	 * The plane has two MPC slices. However since the right MPC slice goes
	 * across ODM boundary, two DPP pipes are needed one for each OPP blend
	 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
	 *
	 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
	 * working on processing the plane in the diagram. We want to know the
	 * width and height of the shaded rectangle and its relative position
	 * with respect to the ODM slice0. This is called the recout of the pipe
	 * context.
	 *
	 * Planes can be at arbitrary size and position and there could be an
	 * arbitrary number of MPC and ODM slices. The algorithm needs to take
	 * all scenarios into account.
	 *
	 * Timing Active Space (3840 x 2160)
	 * ---------------------------------
	 *
	 *       Timing Active
	 *        __________________________________________________
	 *       |OPP0(ODM slice0)^        |OPP2(ODM slice1)        |
	 *       |                y        |                        |
	 *       |                |  <- w ->                        |
	 *       |           _____V________|____                    |
	 *       |          |DPP0 ^  |DPP1 |DPP2|                   |
	 *       |<------ x |-----|->|/////|    |                   |
	 *       |          |     |  |/////|    |                   |
	 *       |          |     h  |/////|    |                   |
	 *       |          |     |  |/////|    |                   |
	 *       |          |_____V__|/////|____|                   |
	 *       |                         |                        |
	 *       |                         |                        |
	 *       |                         |                        |
	 *       |_________________________|________________________|
	 *
	 *
	 */
	struct spl_rect plane_clip;
	struct spl_rect mpc_slice_of_plane_clip;
	struct spl_rect odm_slice;
	struct spl_rect overlapping_area;

	plane_clip = calculate_plane_rec_in_timing_active(spl_in,
			&spl_in->basic_in.clip_rect);
	/* guard plane clip from drawing beyond stream dst here */
	plane_clip = intersect_rec(&plane_clip,
				&spl_in->basic_out.dst_rect);
	mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
			spl_in, &plane_clip);
	odm_slice = calculate_odm_slice_in_timing_active(spl_in);
	overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);

	if (overlapping_area.height > 0 &&
			overlapping_area.width > 0) {
		/* shift the overlapping area so it is with respect to current
		 * ODM slice's position
		 */
		spl_scratch->scl_data.recout = shift_rec(
				&overlapping_area,
				-odm_slice.x, -odm_slice.y);
		spl_scratch->scl_data.recout.height -=
			spl_in->debug.visual_confirm_base_offset;
		spl_scratch->scl_data.recout.height -=
			spl_in->debug.visual_confirm_dpp_offset;
	} else
		/* if there is no overlap, zero recout */
		memset(&spl_scratch->scl_data.recout, 0,
				sizeof(struct spl_rect));
}

/* Calculate scaling ratios */
static void spl_calculate_scaling_ratios(struct spl_in *spl_in,
		struct spl_scratch *spl_scratch,
		struct spl_out *spl_out)
{
	const int in_w = spl_in->basic_out.src_rect.width;
	const int in_h = spl_in->basic_out.src_rect.height;
	const int out_w = spl_in->basic_out.dst_rect.width;
	const int out_h = spl_in->basic_out.dst_rect.height;
	struct spl_rect surf_src = spl_in->basic_in.src_rect;

	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
		spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270)
		spl_swap(surf_src.height, surf_src.width);

	spl_scratch->scl_data.ratios.horz = spl_fixpt_from_fraction(
					surf_src.width,
					spl_in->basic_in.dst_rect.width);
	spl_scratch->scl_data.ratios.vert = spl_fixpt_from_fraction(
					surf_src.height,
					spl_in->basic_in.dst_rect.height);

	if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
		spl_scratch->scl_data.ratios.horz.value *= 2;
	else if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
		spl_scratch->scl_data.ratios.vert.value *= 2;

	spl_scratch->scl_data.ratios.vert.value = spl_div64_s64(
		spl_scratch->scl_data.ratios.vert.value * in_h, out_h);
	spl_scratch->scl_data.ratios.horz.value = spl_div64_s64(
		spl_scratch->scl_data.ratios.horz.value * in_w, out_w);

	spl_scratch->scl_data.ratios.horz_c = spl_scratch->scl_data.ratios.horz;
	spl_scratch->scl_data.ratios.vert_c = spl_scratch->scl_data.ratios.vert;

	if (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) {
		spl_scratch->scl_data.ratios.horz_c.value /= 2;
		spl_scratch->scl_data.ratios.vert_c.value /= 2;
	}
	spl_scratch->scl_data.ratios.horz = spl_fixpt_truncate(
			spl_scratch->scl_data.ratios.horz, 19);
	spl_scratch->scl_data.ratios.vert = spl_fixpt_truncate(
			spl_scratch->scl_data.ratios.vert, 19);
	spl_scratch->scl_data.ratios.horz_c = spl_fixpt_truncate(
			spl_scratch->scl_data.ratios.horz_c, 19);
	spl_scratch->scl_data.ratios.vert_c = spl_fixpt_truncate(
			spl_scratch->scl_data.ratios.vert_c, 19);

	/*
	 * Coefficient table and some registers are different based on ratio
	 * that is output/input.  Currently we calculate input/output
	 * Store 1/ratio in recip_ratio for those lookups
	 */
	spl_scratch->scl_data.recip_ratios.horz = spl_fixpt_recip(
			spl_scratch->scl_data.ratios.horz);
	spl_scratch->scl_data.recip_ratios.vert = spl_fixpt_recip(
			spl_scratch->scl_data.ratios.vert);
	spl_scratch->scl_data.recip_ratios.horz_c = spl_fixpt_recip(
			spl_scratch->scl_data.ratios.horz_c);
	spl_scratch->scl_data.recip_ratios.vert_c = spl_fixpt_recip(
			spl_scratch->scl_data.ratios.vert_c);
}

/* Calculate Viewport size */
static void spl_calculate_viewport_size(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
{
	spl_scratch->scl_data.viewport.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz,
							spl_scratch->scl_data.recout.width));
	spl_scratch->scl_data.viewport.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert,
							spl_scratch->scl_data.recout.height));
	spl_scratch->scl_data.viewport_c.width = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.horz_c,
						spl_scratch->scl_data.recout.width));
	spl_scratch->scl_data.viewport_c.height = spl_fixpt_ceil(spl_fixpt_mul_int(spl_scratch->scl_data.ratios.vert_c,
						spl_scratch->scl_data.recout.height));
	if (spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_90 ||
			spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_270) {
		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
	}
}

static void spl_get_vp_scan_direction(enum spl_rotation_angle rotation,
			   bool horizontal_mirror,
			   bool *orthogonal_rotation,
			   bool *flip_vert_scan_dir,
			   bool *flip_horz_scan_dir)
{
	*orthogonal_rotation = false;
	*flip_vert_scan_dir = false;
	*flip_horz_scan_dir = false;
	if (rotation == SPL_ROTATION_ANGLE_180) {
		*flip_vert_scan_dir = true;
		*flip_horz_scan_dir = true;
	} else if (rotation == SPL_ROTATION_ANGLE_90) {
		*orthogonal_rotation = true;
		*flip_horz_scan_dir = true;
	} else if (rotation == SPL_ROTATION_ANGLE_270) {
		*orthogonal_rotation = true;
		*flip_vert_scan_dir = true;
	}

	if (horizontal_mirror)
		*flip_horz_scan_dir = !*flip_horz_scan_dir;
}

/*
 * We completely calculate vp offset, size and inits here based entirely on scaling
 * ratios and recout for pixel perfect pipe combine.
 */
static void spl_calculate_init_and_vp(bool flip_scan_dir,
				int recout_offset_within_recout_full,
				int recout_size,
				int src_size,
				int taps,
				struct spl_fixed31_32 ratio,
				struct spl_fixed31_32 init_adj,
				struct spl_fixed31_32 *init,
				int *vp_offset,
				int *vp_size)
{
	struct spl_fixed31_32 temp;
	int int_part;

	/*
	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
	 * All following calculations are based on this logic.
	 *
	 * Init calculated according to formula:
	 * init = (scaling_ratio + number_of_taps + 1) / 2
	 * init_bot = init + scaling_ratio
	 * to get pixel perfect combine add the fraction from calculating vp offset
	 */
	temp = spl_fixpt_mul_int(ratio, recout_offset_within_recout_full);
	*vp_offset = spl_fixpt_floor(temp);
	temp.value &= 0xffffffff;
	*init = spl_fixpt_add(spl_fixpt_div_int(spl_fixpt_add_int(ratio, taps + 1), 2), temp);
	*init = spl_fixpt_add(*init, init_adj);
	*init = spl_fixpt_truncate(*init, 19);

	/*
	 * If viewport has non 0 offset and there are more taps than covered by init then
	 * we should decrease the offset and increase init so we are never sampling
	 * outside of viewport.
	 */
	int_part = spl_fixpt_floor(*init);
	if (int_part < taps) {
		int_part = taps - int_part;
		if (int_part > *vp_offset)
			int_part = *vp_offset;
		*vp_offset -= int_part;
		*init = spl_fixpt_add_int(*init, int_part);
	}
	/*
	 * If taps are sampling outside of viewport at end of recout and there are more pixels
	 * available in the surface we should increase the viewport size, regardless set vp to
	 * only what is used.
	 */
	temp = spl_fixpt_add(*init, spl_fixpt_mul_int(ratio, recout_size - 1));
	*vp_size = spl_fixpt_floor(temp);
	if (*vp_size + *vp_offset > src_size)
		*vp_size = src_size - *vp_offset;

	/* We did all the math assuming we are scanning same direction as display does,
	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
	 * is flipped we simply need to calculate offset from the other side of plane.
	 * Note that outside of viewport all scaling hardware works in recout space.
	 */
	if (flip_scan_dir)
		*vp_offset = src_size - *vp_offset - *vp_size;
}

static bool spl_is_yuv420(enum spl_pixel_format format)
{
	if ((format >= SPL_PIXEL_FORMAT_420BPP8) &&
		(format <= SPL_PIXEL_FORMAT_420BPP10))
		return true;

	return false;
}

static bool spl_is_rgb8(enum spl_pixel_format format)
{
	if (format == SPL_PIXEL_FORMAT_ARGB8888)
		return true;

	return false;
}

/*Calculate inits and viewport */
static void spl_calculate_inits_and_viewports(struct spl_in *spl_in,
		struct spl_scratch *spl_scratch)
{
	struct spl_rect src = spl_in->basic_in.src_rect;
	struct spl_rect recout_dst_in_active_timing;
	struct spl_rect recout_clip_in_active_timing;
	struct spl_rect recout_clip_in_recout_dst;
	struct spl_rect overlap_in_active_timing;
	struct spl_rect odm_slice = calculate_odm_slice_in_timing_active(spl_in);
	int vpc_div = (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8
			|| spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10) ? 2 : 1;
	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
	struct spl_fixed31_32 init_adj_h = spl_fixpt_zero;
	struct spl_fixed31_32 init_adj_v = spl_fixpt_zero;

	recout_clip_in_active_timing = shift_rec(
			&spl_scratch->scl_data.recout, odm_slice.x, odm_slice.y);
	recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
			spl_in, &spl_in->basic_in.dst_rect);
	overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
			&recout_dst_in_active_timing);
	if (overlap_in_active_timing.width > 0 &&
			overlap_in_active_timing.height > 0)
		recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
				-recout_dst_in_active_timing.x,
				-recout_dst_in_active_timing.y);
	else
		memset(&recout_clip_in_recout_dst, 0, sizeof(struct spl_rect));
	/*
	 * Work in recout rotation since that requires less transformations
	 */
	spl_get_vp_scan_direction(
			spl_in->basic_in.rotation,
			spl_in->basic_in.horizontal_mirror,
			&orthogonal_rotation,
			&flip_vert_scan_dir,
			&flip_horz_scan_dir);

	if (orthogonal_rotation) {
		spl_swap(src.width, src.height);
		spl_swap(flip_vert_scan_dir, flip_horz_scan_dir);
	}

	if (spl_is_yuv420(spl_in->basic_in.format)) {
		/* this gives the direction of the cositing (negative will move
		 * left, right otherwise)
		 */
		int sign = 1;

		switch (spl_in->basic_in.cositing) {

		case CHROMA_COSITING_LEFT:
			init_adj_h = spl_fixpt_zero;
			init_adj_v = spl_fixpt_from_fraction(sign, 4);
			break;
		case CHROMA_COSITING_NONE:
			init_adj_h = spl_fixpt_from_fraction(sign, 4);
			init_adj_v = spl_fixpt_from_fraction(sign, 4);
			break;
		case CHROMA_COSITING_TOPLEFT:
		default:
			init_adj_h = spl_fixpt_zero;
			init_adj_v = spl_fixpt_zero;
			break;
		}
	}

	spl_calculate_init_and_vp(
			flip_horz_scan_dir,
			recout_clip_in_recout_dst.x,
			spl_scratch->scl_data.recout.width,
			src.width,
			spl_scratch->scl_data.taps.h_taps,
			spl_scratch->scl_data.ratios.horz,
			spl_fixpt_zero,
			&spl_scratch->scl_data.inits.h,
			&spl_scratch->scl_data.viewport.x,
			&spl_scratch->scl_data.viewport.width);
	spl_calculate_init_and_vp(
			flip_horz_scan_dir,
			recout_clip_in_recout_dst.x,
			spl_scratch->scl_data.recout.width,
			src.width / vpc_div,
			spl_scratch->scl_data.taps.h_taps_c,
			spl_scratch->scl_data.ratios.horz_c,
			init_adj_h,
			&spl_scratch->scl_data.inits.h_c,
			&spl_scratch->scl_data.viewport_c.x,
			&spl_scratch->scl_data.viewport_c.width);
	spl_calculate_init_and_vp(
			flip_vert_scan_dir,
			recout_clip_in_recout_dst.y,
			spl_scratch->scl_data.recout.height,
			src.height,
			spl_scratch->scl_data.taps.v_taps,
			spl_scratch->scl_data.ratios.vert,
			spl_fixpt_zero,
			&spl_scratch->scl_data.inits.v,
			&spl_scratch->scl_data.viewport.y,
			&spl_scratch->scl_data.viewport.height);
	spl_calculate_init_and_vp(
			flip_vert_scan_dir,
			recout_clip_in_recout_dst.y,
			spl_scratch->scl_data.recout.height,
			src.height / vpc_div,
			spl_scratch->scl_data.taps.v_taps_c,
			spl_scratch->scl_data.ratios.vert_c,
			init_adj_v,
			&spl_scratch->scl_data.inits.v_c,
			&spl_scratch->scl_data.viewport_c.y,
			&spl_scratch->scl_data.viewport_c.height);
	if (orthogonal_rotation) {
		spl_swap(spl_scratch->scl_data.viewport.x, spl_scratch->scl_data.viewport.y);
		spl_swap(spl_scratch->scl_data.viewport.width, spl_scratch->scl_data.viewport.height);
		spl_swap(spl_scratch->scl_data.viewport_c.x, spl_scratch->scl_data.viewport_c.y);
		spl_swap(spl_scratch->scl_data.viewport_c.width, spl_scratch->scl_data.viewport_c.height);
	}
	spl_scratch->scl_data.viewport.x += src.x;
	spl_scratch->scl_data.viewport.y += src.y;
	SPL_ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
	spl_scratch->scl_data.viewport_c.x += src.x / vpc_div;
	spl_scratch->scl_data.viewport_c.y += src.y / vpc_div;
}

static void spl_handle_3d_recout(struct spl_in *spl_in, struct spl_rect *recout)
{
	/*
	 * Handle side by side and top bottom 3d recout offsets after vp calculation
	 * since 3d is special and needs to calculate vp as if there is no recout offset
	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
	 */
	if (spl_in->basic_in.mpc_combine_v) {
		SPL_ASSERT(spl_in->basic_in.rotation == SPL_ROTATION_ANGLE_0 ||
			(spl_in->basic_out.view_format != SPL_VIEW_3D_TOP_AND_BOTTOM &&
					spl_in->basic_out.view_format != SPL_VIEW_3D_SIDE_BY_SIDE));
		if (spl_in->basic_out.view_format == SPL_VIEW_3D_TOP_AND_BOTTOM)
			recout->y += recout->height;
		else if (spl_in->basic_out.view_format == SPL_VIEW_3D_SIDE_BY_SIDE)
			recout->x += recout->width;
	}
}

static void spl_clamp_viewport(struct spl_rect *viewport)
{
	/* Clamp minimum viewport size */
	if (viewport->height < MIN_VIEWPORT_SIZE)
		viewport->height = MIN_VIEWPORT_SIZE;
	if (viewport->width < MIN_VIEWPORT_SIZE)
		viewport->width = MIN_VIEWPORT_SIZE;
}

static bool spl_dscl_is_420_format(enum spl_pixel_format format)
{
	if (format == SPL_PIXEL_FORMAT_420BPP8 ||
			format == SPL_PIXEL_FORMAT_420BPP10)
		return true;
	else
		return false;
}

static bool spl_dscl_is_video_format(enum spl_pixel_format format)
{
	if (format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
			&& format <= SPL_PIXEL_FORMAT_VIDEO_END)
		return true;
	else
		return false;
}

static enum scl_mode spl_get_dscl_mode(const struct spl_in *spl_in,
				const struct spl_scaler_data *data,
				bool enable_isharp, bool enable_easf)
{
	const long long one = spl_fixpt_one.value;
	enum spl_pixel_format pixel_format = spl_in->basic_in.format;

	/* Bypass if ratio is 1:1 with no ISHARP or force scale on */
	if (data->ratios.horz.value == one
			&& data->ratios.vert.value == one
			&& data->ratios.horz_c.value == one
			&& data->ratios.vert_c.value == one
			&& !spl_in->basic_out.always_scale
			&& !enable_isharp)
		return SCL_MODE_SCALING_444_BYPASS;

	if (!spl_dscl_is_420_format(pixel_format)) {
		if (spl_dscl_is_video_format(pixel_format))
			return SCL_MODE_SCALING_444_YCBCR_ENABLE;
		else
			return SCL_MODE_SCALING_444_RGB_ENABLE;
	}

	/* Bypass YUV if at 1:1 with no ISHARP or if doing 2:1 YUV
	 *  downscale without EASF
	 */
	if ((!enable_isharp) && (!enable_easf)) {
		if (data->ratios.horz.value == one && data->ratios.vert.value == one)
			return SCL_MODE_SCALING_420_LUMA_BYPASS;
		if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
			return SCL_MODE_SCALING_420_CHROMA_BYPASS;
	}

	return SCL_MODE_SCALING_420_YCBCR_ENABLE;
}

static bool spl_choose_lls_policy(enum spl_pixel_format format,
	enum spl_transfer_func_type tf_type,
	enum spl_transfer_func_predefined tf_predefined_type,
	enum linear_light_scaling *lls_pref)
{
	if (spl_is_yuv420(format)) {
		*lls_pref = LLS_PREF_NO;
		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
			(tf_type == SPL_TF_TYPE_DISTRIBUTED_POINTS))
			return true;
	} else { /* RGB or YUV444 */
		if ((tf_type == SPL_TF_TYPE_PREDEFINED) ||
			(tf_type == SPL_TF_TYPE_BYPASS)) {
			*lls_pref = LLS_PREF_YES;
			return true;
		}
	}
	*lls_pref = LLS_PREF_NO;
	return false;
}

/* Enable EASF ?*/
static bool enable_easf(struct spl_in *spl_in, struct spl_scratch *spl_scratch)
{
	int vratio = 0;
	int hratio = 0;
	bool skip_easf = false;
	bool lls_enable_easf = true;

	if (spl_in->disable_easf)
		skip_easf = true;

	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);

	/*
	 * No EASF support for downscaling > 2:1
	 * EASF support for upscaling or downscaling up to 2:1
	 */
	if ((vratio > 2) || (hratio > 2))
		skip_easf = true;

	/*
	 * If lls_pref is LLS_PREF_DONT_CARE, then use pixel format and transfer
	 *  function to determine whether to use LINEAR or NONLINEAR scaling
	 */
	if (spl_in->lls_pref == LLS_PREF_DONT_CARE)
		lls_enable_easf = spl_choose_lls_policy(spl_in->basic_in.format,
			spl_in->basic_in.tf_type, spl_in->basic_in.tf_predefined_type,
			&spl_in->lls_pref);

	if (!lls_enable_easf)
		skip_easf = true;

	/* Check for linear scaling or EASF preferred */
	if (spl_in->lls_pref != LLS_PREF_YES && !spl_in->prefer_easf)
		skip_easf = true;

	return skip_easf;
}

static bool spl_get_isharp_en(struct spl_in *spl_in,
	struct spl_scratch *spl_scratch)
{
	bool enable_isharp = false;
	int vratio = 0;
	int hratio = 0;
	struct spl_taps taps = spl_scratch->scl_data.taps;

	/* Return if adaptive sharpness is disabled */
	if (spl_in->adaptive_sharpness.enable == false)
		return enable_isharp;

	vratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
	hratio = spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz);

	/* No iSHARP support for downscaling */
	if (vratio > 1 || hratio > 1)
		return enable_isharp;

	// Scaling is up to 1:1 (no scaling) or upscaling

	/*
	 * Apply sharpness to all RGB surfaces and to
	 *  NV12/P010 surfaces
	 */

	/*
	 * Apply sharpness if supports horizontal taps 4,6 AND
	 *  vertical taps 3, 4, 6
	 */
	if ((taps.h_taps == 4 || taps.h_taps == 6) &&
		(taps.v_taps == 3 || taps.v_taps == 4 || taps.v_taps == 6))
		enable_isharp = true;

	return enable_isharp;
}

/* Calculate optimal number of taps */
static bool spl_get_optimal_number_of_taps(
	  int max_downscale_src_width, struct spl_in *spl_in, struct spl_scratch *spl_scratch,
	  const struct spl_taps *in_taps, bool *enable_easf_v, bool *enable_easf_h,
	  bool *enable_isharp)
{
	int num_part_y, num_part_c;
	int max_taps_y, max_taps_c;
	int min_taps_y, min_taps_c;
	enum lb_memory_config lb_config;
	bool skip_easf = false;

	if (spl_scratch->scl_data.viewport.width > spl_scratch->scl_data.h_active &&
		max_downscale_src_width != 0 &&
		spl_scratch->scl_data.viewport.width > max_downscale_src_width)
		return false;

	/* Check if we are using EASF or not */
	skip_easf = enable_easf(spl_in, spl_scratch);

	/*
	 * Set default taps if none are provided
	 * From programming guide: taps = min{ ceil(2*H_RATIO,1), 8} for downscaling
	 * taps = 4 for upscaling
	 */
	if (skip_easf) {
		if (in_taps->h_taps == 0) {
			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz) > 1)
				spl_scratch->scl_data.taps.h_taps = spl_min(2 * spl_fixpt_ceil(
					spl_scratch->scl_data.ratios.horz), 8);
			else
				spl_scratch->scl_data.taps.h_taps = 4;
		} else
			spl_scratch->scl_data.taps.h_taps = in_taps->h_taps;
		if (in_taps->v_taps == 0) {
			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 1)
				spl_scratch->scl_data.taps.v_taps = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
					spl_scratch->scl_data.ratios.vert, 2)), 8);
			else
				spl_scratch->scl_data.taps.v_taps = 4;
		} else
			spl_scratch->scl_data.taps.v_taps = in_taps->v_taps;
		if (in_taps->v_taps_c == 0) {
			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 1)
				spl_scratch->scl_data.taps.v_taps_c = spl_min(spl_fixpt_ceil(spl_fixpt_mul_int(
					spl_scratch->scl_data.ratios.vert_c, 2)), 8);
			else
				spl_scratch->scl_data.taps.v_taps_c = 4;
		} else
			spl_scratch->scl_data.taps.v_taps_c = in_taps->v_taps_c;
		if (in_taps->h_taps_c == 0) {
			if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.horz_c) > 1)
				spl_scratch->scl_data.taps.h_taps_c = spl_min(2 * spl_fixpt_ceil(
					spl_scratch->scl_data.ratios.horz_c), 8);
			else
				spl_scratch->scl_data.taps.h_taps_c = 4;
		} else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
			/* Only 1 and even h_taps_c are supported by hw */
			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c - 1;
		else
			spl_scratch->scl_data.taps.h_taps_c = in_taps->h_taps_c;
	} else {
		if (spl_is_yuv420(spl_in->basic_in.format)) {
			spl_scratch->scl_data.taps.h_taps = 6;
			spl_scratch->scl_data.taps.v_taps = 6;
			spl_scratch->scl_data.taps.h_taps_c = 4;
			spl_scratch->scl_data.taps.v_taps_c = 4;
		} else { /* RGB */
			spl_scratch->scl_data.taps.h_taps = 6;
			spl_scratch->scl_data.taps.v_taps = 6;
			spl_scratch->scl_data.taps.h_taps_c = 6;
			spl_scratch->scl_data.taps.v_taps_c = 6;
		}
	}

	/*Ensure we can support the requested number of vtaps*/
	min_taps_y = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert);
	min_taps_c = spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c);

	/* Use LB_MEMORY_CONFIG_3 for 4:2:0 */
	if ((spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP8)
		|| (spl_in->basic_in.format == SPL_PIXEL_FORMAT_420BPP10))
		lb_config = LB_MEMORY_CONFIG_3;
	else
		lb_config = LB_MEMORY_CONFIG_0;
	// Determine max vtap support by calculating how much line buffer can fit
	spl_in->funcs->spl_calc_lb_num_partitions(spl_in->basic_out.alpha_en, &spl_scratch->scl_data,
			lb_config, &num_part_y, &num_part_c);
	/* MAX_V_TAPS = MIN (NUM_LINES - MAX(CEILING(V_RATIO,1)-2, 0), 8) */
	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) > 2)
		max_taps_y = num_part_y - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert) - 2);
	else
		max_taps_y = num_part_y;

	if (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) > 2)
		max_taps_c = num_part_c - (spl_fixpt_ceil(spl_scratch->scl_data.ratios.vert_c) - 2);
	else
		max_taps_c = num_part_c;

	if (max_taps_y < min_taps_y)
		return false;
	else if (max_taps_c < min_taps_c)
		return false;

	if (spl_scratch->scl_data.taps.v_taps > max_taps_y)
		spl_scratch->scl_data.taps.v_taps = max_taps_y;

	if (spl_scratch->scl_data.taps.v_taps_c > max_taps_c)
		spl_scratch->scl_data.taps.v_taps_c = max_taps_c;

	if (!skip_easf) {
		/*
		 * RGB ( L + NL ) and Linear HDR support 6x6, 6x4, 6x3, 4x4, 4x3
		 * NL YUV420 only supports 6x6, 6x4 for Y and 4x4 for UV
		 *
		 * If LB does not support 3, 4, or 6 taps, then disable EASF_V
		 *  and only enable EASF_H.  So for RGB, support 6x2, 4x2
		 *  and for NL YUV420, support 6x2 for Y and 4x2 for UV
		 *
		 * All other cases, have to disable EASF_V and EASF_H
		 *
		 * If optimal no of taps is 5, then set it to 4
		 * If optimal no of taps is 7 or 8, then fine since max tap is 6
		 *
		 */
		if (spl_scratch->scl_data.taps.v_taps == 5)
			spl_scratch->scl_data.taps.v_taps = 4;

		if (spl_scratch->scl_data.taps.v_taps_c == 5)
			spl_scratch->scl_data.taps.v_taps_c = 4;

		if (spl_scratch->scl_data.taps.h_taps == 5)
			spl_scratch->scl_data.taps.h_taps = 4;

		if (spl_scratch->scl_data.taps.h_taps_c == 5)
			spl_scratch->scl_data.taps.h_taps_c = 4;

		if (spl_is_yuv420(spl_in->basic_in.format)) {
			if ((spl_scratch->scl_data.taps.h_taps <= 4) ||
				(spl_scratch->scl_data.taps.h_taps_c <= 3)) {
				*enable_easf_v = false;
				*enable_easf_h = false;
			} else if ((spl_scratch->scl_data.taps.v_taps <= 3) ||
				(spl_scratch->scl_data.taps.v_taps_c <= 3)) {
				*enable_easf_v = false;
				*enable_easf_h = true;
			} else {
				*enable_easf_v = true;
				*enable_easf_h = true;
			}
			SPL_ASSERT((spl_scratch->scl_data.taps.v_taps > 1) &&
				(spl_scratch->scl_data.taps.v_taps_c > 1));
		} else { /* RGB */
			if (spl_scratch->scl_data.taps.h_taps <= 3) {
				*enable_easf_v = false;
				*enable_easf_h = false;
			} else if (spl_scratch->scl_data.taps.v_taps < 3) {
				*enable_easf_v = false;
				*enable_easf_h = true;
			} else {
				*enable_easf_v = true;
				*enable_easf_h = true;
			}
			SPL_ASSERT(spl_scratch->scl_data.taps.v_taps > 1);
		}
	} else {
		*enable_easf_v = false;
		*enable_easf_h = false;
	} // end of if prefer_easf

	/* Sharpener requires scaler to be enabled, including for 1:1
	 * Check if ISHARP can be enabled
	 * If ISHARP is not enabled, for 1:1, set taps to 1 and disable
	 *  EASF
	 * For case of 2:1 YUV where chroma is 1:1, set taps to 1 if
	 *  EASF is not enabled
	 */

	*enable_isharp = spl_get_isharp_en(spl_in, spl_scratch);
	if (!*enable_isharp && !spl_in->basic_out.always_scale)	{
		if ((IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz)) &&
			(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert))) {
			spl_scratch->scl_data.taps.h_taps = 1;
			spl_scratch->scl_data.taps.v_taps = 1;

			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c))
				spl_scratch->scl_data.taps.h_taps_c = 1;

			if (IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c))
				spl_scratch->scl_data.taps.v_taps_c = 1;

			*enable_easf_v = false;
			*enable_easf_h = false;
		} else {
			if ((!*enable_easf_h) &&
				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.horz_c)))
				spl_scratch->scl_data.taps.h_taps_c = 1;

			if ((!*enable_easf_v) &&
				(IDENTITY_RATIO(spl_scratch->scl_data.ratios.vert_c)))
				spl_scratch->scl_data.taps.v_taps_c = 1;
		}
	}
	return true;
}

static void spl_set_black_color_data(enum spl_pixel_format format,
			struct scl_black_color *scl_black_color)
{
	bool ycbcr = format >= SPL_PIXEL_FORMAT_VIDEO_BEGIN
					&& format <= SPL_PIXEL_FORMAT_VIDEO_END;
	if (ycbcr)	{
		scl_black_color->offset_rgb_y = BLACK_OFFSET_RGB_Y;
		scl_black_color->offset_rgb_cbcr = BLACK_OFFSET_CBCR;
	}	else {
		scl_black_color->offset_rgb_y = 0x0;
		scl_black_color->offset_rgb_cbcr = 0x0;
	}
}

static void spl_set_manual_ratio_init_data(struct dscl_prog_data *dscl_prog_data,
		const struct spl_scaler_data *scl_data)
{
	struct spl_fixed31_32 bot;

	dscl_prog_data->ratios.h_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.horz) << 5;
	dscl_prog_data->ratios.v_scale_ratio = spl_fixpt_u3d19(scl_data->ratios.vert) << 5;
	dscl_prog_data->ratios.h_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.horz_c) << 5;
	dscl_prog_data->ratios.v_scale_ratio_c = spl_fixpt_u3d19(scl_data->ratios.vert_c) << 5;
	/*
	 * 0.24 format for fraction, first five bits zeroed
	 */
	dscl_prog_data->init.h_filter_init_frac =
			spl_fixpt_u0d19(scl_data->inits.h) << 5;
	dscl_prog_data->init.h_filter_init_int =
			spl_fixpt_floor(scl_data->inits.h);
	dscl_prog_data->init.h_filter_init_frac_c =
			spl_fixpt_u0d19(scl_data->inits.h_c) << 5;
	dscl_prog_data->init.h_filter_init_int_c =
			spl_fixpt_floor(scl_data->inits.h_c);
	dscl_prog_data->init.v_filter_init_frac =
			spl_fixpt_u0d19(scl_data->inits.v) << 5;
	dscl_prog_data->init.v_filter_init_int =
			spl_fixpt_floor(scl_data->inits.v);
	dscl_prog_data->init.v_filter_init_frac_c =
			spl_fixpt_u0d19(scl_data->inits.v_c) << 5;
	dscl_prog_data->init.v_filter_init_int_c =
			spl_fixpt_floor(scl_data->inits.v_c);

	bot = spl_fixpt_add(scl_data->inits.v, scl_data->ratios.vert);
	dscl_prog_data->init.v_filter_init_bot_frac = spl_fixpt_u0d19(bot) << 5;
	dscl_prog_data->init.v_filter_init_bot_int = spl_fixpt_floor(bot);
	bot = spl_fixpt_add(scl_data->inits.v_c, scl_data->ratios.vert_c);
	dscl_prog_data->init.v_filter_init_bot_frac_c = spl_fixpt_u0d19(bot) << 5;
	dscl_prog_data->init.v_filter_init_bot_int_c = spl_fixpt_floor(bot);
}

static void spl_set_taps_data(struct dscl_prog_data *dscl_prog_data,
		const struct spl_scaler_data *scl_data)
{
	dscl_prog_data->taps.v_taps = scl_data->taps.v_taps - 1;
	dscl_prog_data->taps.h_taps = scl_data->taps.h_taps - 1;
	dscl_prog_data->taps.v_taps_c = scl_data->taps.v_taps_c - 1;
	dscl_prog_data->taps.h_taps_c = scl_data->taps.h_taps_c - 1;
}

/* Populate dscl prog data structure from scaler data calculated by SPL */
static void spl_set_dscl_prog_data(struct spl_in *spl_in, struct spl_scratch *spl_scratch,
	struct spl_out *spl_out, bool enable_easf_v, bool enable_easf_h, bool enable_isharp)
{
	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;

	const struct spl_scaler_data *data = &spl_scratch->scl_data;

	struct scl_black_color *scl_black_color = &dscl_prog_data->scl_black_color;

	bool enable_easf = enable_easf_v || enable_easf_h;

	// Set values for recout
	dscl_prog_data->recout = spl_scratch->scl_data.recout;
	// Set values for MPC Size
	dscl_prog_data->mpc_size.width = spl_scratch->scl_data.h_active;
	dscl_prog_data->mpc_size.height = spl_scratch->scl_data.v_active;

	// SCL_MODE - Set SCL_MODE data
	dscl_prog_data->dscl_mode = spl_get_dscl_mode(spl_in, data, enable_isharp,
		enable_easf);

	// SCL_BLACK_COLOR
	spl_set_black_color_data(spl_in->basic_in.format, scl_black_color);

	/* Manually calculate scale ratio and init values */
	spl_set_manual_ratio_init_data(dscl_prog_data, data);

	// Set HTaps/VTaps
	spl_set_taps_data(dscl_prog_data, data);
	// Set viewport
	dscl_prog_data->viewport = spl_scratch->scl_data.viewport;
	// Set viewport_c
	dscl_prog_data->viewport_c = spl_scratch->scl_data.viewport_c;
	// Set filters data
	spl_set_filters_data(dscl_prog_data, data, enable_easf_v, enable_easf_h);
}

/* Calculate C0-C3 coefficients based on HDR_mult */
static void spl_calculate_c0_c3_hdr(struct dscl_prog_data *dscl_prog_data, uint32_t hdr_multx100)
{
	struct spl_fixed31_32 hdr_mult, c0_mult, c1_mult, c2_mult;
	struct spl_fixed31_32 c0_calc, c1_calc, c2_calc;
	struct spl_custom_float_format fmt;

	SPL_ASSERT(hdr_multx100);
	hdr_mult = spl_fixpt_from_fraction((long long)hdr_multx100, 100LL);
	c0_mult = spl_fixpt_from_fraction(2126LL, 10000LL);
	c1_mult = spl_fixpt_from_fraction(7152LL, 10000LL);
	c2_mult = spl_fixpt_from_fraction(722LL, 10000LL);

	c0_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c0_mult, spl_fixpt_from_fraction(
		16384LL, 125LL)));
	c1_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c1_mult, spl_fixpt_from_fraction(
		16384LL, 125LL)));
	c2_calc = spl_fixpt_mul(hdr_mult, spl_fixpt_mul(c2_mult, spl_fixpt_from_fraction(
		16384LL, 125LL)));

	fmt.exponenta_bits = 5;
	fmt.mantissa_bits = 10;
	fmt.sign = true;

	// fp1.5.10, C0 coefficient (LN_rec709:  HDR_MULT * 0.212600 * 2^14/125)
	spl_convert_to_custom_float_format(c0_calc, &fmt, &dscl_prog_data->easf_matrix_c0);
	// fp1.5.10, C1 coefficient (LN_rec709:  HDR_MULT * 0.715200 * 2^14/125)
	spl_convert_to_custom_float_format(c1_calc, &fmt, &dscl_prog_data->easf_matrix_c1);
	// fp1.5.10, C2 coefficient (LN_rec709:  HDR_MULT * 0.072200 * 2^14/125)
	spl_convert_to_custom_float_format(c2_calc, &fmt, &dscl_prog_data->easf_matrix_c2);
	dscl_prog_data->easf_matrix_c3 = 0x0; // fp1.5.10, C3 coefficient
}

/* Set EASF data */
static void spl_set_easf_data(struct spl_scratch *spl_scratch, struct spl_out *spl_out, bool enable_easf_v,
	bool enable_easf_h, enum linear_light_scaling lls_pref,
	enum spl_pixel_format format, enum system_setup setup,
	uint32_t hdr_multx100)
{
	struct dscl_prog_data *dscl_prog_data = spl_out->dscl_prog_data;
	if (enable_easf_v) {
		dscl_prog_data->easf_v_en = true;
		dscl_prog_data->easf_v_ring = 0;
		dscl_prog_data->easf_v_sharp_factor = 0;
		dscl_prog_data->easf_v_bf1_en = 1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
		dscl_prog_data->easf_v_bf2_mode = 0xF;	// 4-bit, BF2 calculation mode
		/* 2-bit, BF3 chroma mode correction calculation mode */
		dscl_prog_data->easf_v_bf3_mode = spl_get_v_bf3_mode(
			spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ minCoef ]*/
		dscl_prog_data->easf_v_ringest_3tap_dntilt_uptilt =
			spl_get_3tap_dntilt_uptilt_offset(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ upTiltMaxVal ]*/
		dscl_prog_data->easf_v_ringest_3tap_uptilt_max =
			spl_get_3tap_uptilt_maxval(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ dnTiltSlope ]*/
		dscl_prog_data->easf_v_ringest_3tap_dntilt_slope =
			spl_get_3tap_dntilt_slope(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ upTilt1Slope ]*/
		dscl_prog_data->easf_v_ringest_3tap_uptilt1_slope =
			spl_get_3tap_uptilt1_slope(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ upTilt2Slope ]*/
		dscl_prog_data->easf_v_ringest_3tap_uptilt2_slope =
			spl_get_3tap_uptilt2_slope(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10 [ upTilt2Offset ]*/
		dscl_prog_data->easf_v_ringest_3tap_uptilt2_offset =
			spl_get_3tap_uptilt2_offset(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
		dscl_prog_data->easf_v_ringest_eventap_reduceg1 =
			spl_get_reducer_gain4(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
		dscl_prog_data->easf_v_ringest_eventap_reduceg2 =
			spl_get_reducer_gain6(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
		dscl_prog_data->easf_v_ringest_eventap_gain1 =
			spl_get_gainRing4(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
		dscl_prog_data->easf_v_ringest_eventap_gain2 =
			spl_get_gainRing6(spl_scratch->scl_data.taps.v_taps,
				spl_scratch->scl_data.recip_ratios.vert);
		dscl_prog_data->easf_v_bf_maxa = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 0
		dscl_prog_data->easf_v_bf_maxb = 63; //Vertical Max BF value A in U0.6 format.Selected if V_FCNTL == 1
		dscl_prog_data->easf_v_bf_mina = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 0
		dscl_prog_data->easf_v_bf_minb = 0;	//Vertical Min BF value A in U0.6 format.Selected if V_FCNTL == 1
		if (lls_pref == LLS_PREF_YES)	{
			dscl_prog_data->easf_v_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
			dscl_prog_data->easf_v_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
			dscl_prog_data->easf_v_bf2_roc_gain = 4;	// U2.2, Rate Of Change control

			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7

			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
				0x0B37; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
			dscl_prog_data->easf_v_bf3_pwl_slope_set1 =
				0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
			dscl_prog_data->easf_v_bf3_pwl_slope_set2 =
				0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
				0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
			dscl_prog_data->easf_v_bf3_pwl_slope_set4 =
				0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
		}	else	{
			dscl_prog_data->easf_v_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
			dscl_prog_data->easf_v_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
			dscl_prog_data->easf_v_bf2_roc_gain = 14;	// U2.2, Rate Of Change control

			dscl_prog_data->easf_v_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
			dscl_prog_data->easf_v_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
			dscl_prog_data->easf_v_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
			dscl_prog_data->easf_v_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
			dscl_prog_data->easf_v_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
			dscl_prog_data->easf_v_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
			dscl_prog_data->easf_v_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
			dscl_prog_data->easf_v_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
			dscl_prog_data->easf_v_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
			dscl_prog_data->easf_v_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
			dscl_prog_data->easf_v_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
			dscl_prog_data->easf_v_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
			dscl_prog_data->easf_v_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
			dscl_prog_data->easf_v_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
			dscl_prog_data->easf_v_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
			dscl_prog_data->easf_v_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
			dscl_prog_data->easf_v_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
			dscl_prog_data->easf_v_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
			dscl_prog_data->easf_v_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
			dscl_prog_data->easf_v_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
			dscl_prog_data->easf_v_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7

			dscl_prog_data->easf_v_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
			dscl_prog_data->easf_v_bf3_pwl_in_set1 =
				0x06C0; // FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
			dscl_prog_data->easf_v_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
			dscl_prog_data->easf_v_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
			dscl_prog_data->easf_v_bf3_pwl_in_set2 =
				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
			dscl_prog_data->easf_v_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
			dscl_prog_data->easf_v_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
			dscl_prog_data->easf_v_bf3_pwl_in_set3 =
				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
			dscl_prog_data->easf_v_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
			dscl_prog_data->easf_v_bf3_pwl_slope_set3 =
				0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
			dscl_prog_data->easf_v_bf3_pwl_in_set4 =
				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
			dscl_prog_data->easf_v_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
			dscl_prog_data->easf_v_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
			dscl_prog_data->easf_v_bf3_pwl_in_set5 =
				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
			dscl_prog_data->easf_v_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
		}
	} else
		dscl_prog_data->easf_v_en = false;

	if (enable_easf_h) {
		dscl_prog_data->easf_h_en = true;
		dscl_prog_data->easf_h_ring = 0;
		dscl_prog_data->easf_h_sharp_factor = 0;
		dscl_prog_data->easf_h_bf1_en =
			1;	// 1-bit, BF1 calculation enable, 0=disable, 1=enable
		dscl_prog_data->easf_h_bf2_mode =
			0xF;	// 4-bit, BF2 calculation mode
		/* 2-bit, BF3 chroma mode correction calculation mode */
		dscl_prog_data->easf_h_bf3_mode = spl_get_h_bf3_mode(
			spl_scratch->scl_data.recip_ratios.horz);
		/* FP1.5.10; (2.0) Ring reducer gain for 4 or 6-tap mode [H_REDUCER_GAIN4] */
		dscl_prog_data->easf_h_ringest_eventap_reduceg1 =
			spl_get_reducer_gain4(spl_scratch->scl_data.taps.h_taps,
				spl_scratch->scl_data.recip_ratios.horz);
		/* FP1.5.10; (2.5) Ring reducer gain for 6-tap mode [V_REDUCER_GAIN6] */
		dscl_prog_data->easf_h_ringest_eventap_reduceg2 =
			spl_get_reducer_gain6(spl_scratch->scl_data.taps.h_taps,
				spl_scratch->scl_data.recip_ratios.horz);
		/* FP1.5.10; (-0.135742) Ring gain for 6-tap set to -139/1024 */
		dscl_prog_data->easf_h_ringest_eventap_gain1 =
			spl_get_gainRing4(spl_scratch->scl_data.taps.h_taps,
				spl_scratch->scl_data.recip_ratios.horz);
		/* FP1.5.10; (-0.024414) Ring gain for 6-tap set to -25/1024 */
		dscl_prog_data->easf_h_ringest_eventap_gain2 =
			spl_get_gainRing6(spl_scratch->scl_data.taps.h_taps,
				spl_scratch->scl_data.recip_ratios.horz);
		dscl_prog_data->easf_h_bf_maxa = 63; //Horz Max BF value A in U0.6 format.Selected if H_FCNTL==0
		dscl_prog_data->easf_h_bf_maxb = 63; //Horz Max BF value B in U0.6 format.Selected if H_FCNTL==1
		dscl_prog_data->easf_h_bf_mina = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==0
		dscl_prog_data->easf_h_bf_minb = 0;	//Horz Min BF value B in U0.6 format.Selected if H_FCNTL==1
		if (lls_pref == LLS_PREF_YES)	{
			dscl_prog_data->easf_h_bf2_flat1_gain = 4;	// U1.3, BF2 Flat1 Gain control
			dscl_prog_data->easf_h_bf2_flat2_gain = 8;	// U4.0, BF2 Flat2 Gain control
			dscl_prog_data->easf_h_bf2_roc_gain = 4;	// U2.2, Rate Of Change control

			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x600;	// S0.10, BF1 PWL Segment 0 = -512
			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 3;	// S7.3, BF1 Slope PWL Segment 0
			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7EC;	// S0.10, BF1 PWL Segment 1 = -20
			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 326;	// S7.3, BF1 Slope PWL Segment 1
			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 16;	// S0.10, BF1 PWL Segment 3
			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7C8;	// S7.3, BF1 Slope PWL Segment 3 = -56
			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 32;	// S0.10, BF1 PWL Segment 4
			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7D0;	// S7.3, BF1 Slope PWL Segment 4 = -48
			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 48;	// S0.10, BF1 PWL Segment 5
			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x710;	// S7.3, BF1 Slope PWL Segment 5 = -240
			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 64;	// S0.10, BF1 PWL Segment 6
			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x760;	// S7.3, BF1 Slope PWL Segment 6 = -160
			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 80;	// S0.10, BF1 PWL Segment 7
			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7

			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x12C5;	// FP1.6.6, BF3 Slope PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
				0x0B37;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0078125 * 125^3)
			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 62;	// S0.6, BF3 Base PWL Segment 1
			dscl_prog_data->easf_h_bf3_pwl_slope_set1 =	0x13B8;	// FP1.6.6, BF3 Slope PWL Segment 1
			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
				0x0BB7;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.03125 * 125^3)
			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
			dscl_prog_data->easf_h_bf3_pwl_slope_set2 =	0x1356;	// FP1.6.6, BF3 Slope PWL Segment 2
			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
				0x0BF7;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.0625 * 125^3)
			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
			dscl_prog_data->easf_h_bf3_pwl_slope_set3 =	0x136B;	// FP1.6.6, BF3 Slope PWL Segment 3
			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
				0x0C37;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.125 * 125^3)
			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x4E;	// S0.6, BF3 Base PWL Segment 4 = -50
			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1200;	// FP1.6.6, BF3 Slope PWL Segment 4
			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
				0x0CF7;	// FP0.6.6, BF3 Input value PWL Segment 5 (1.0 * 125^3)
			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
		} else {
			dscl_prog_data->easf_h_bf2_flat1_gain = 13;	// U1.3, BF2 Flat1 Gain control
			dscl_prog_data->easf_h_bf2_flat2_gain = 15;	// U4.0, BF2 Flat2 Gain control
			dscl_prog_data->easf_h_bf2_roc_gain = 14;	// U2.2, Rate Of Change control

			dscl_prog_data->easf_h_bf1_pwl_in_seg0 = 0x440;	// S0.10, BF1 PWL Segment 0 = -960
			dscl_prog_data->easf_h_bf1_pwl_base_seg0 = 0;	// U0.6, BF1 Base PWL Segment 0
			dscl_prog_data->easf_h_bf1_pwl_slope_seg0 = 2;	// S7.3, BF1 Slope PWL Segment 0
			dscl_prog_data->easf_h_bf1_pwl_in_seg1 = 0x7C4;	// S0.10, BF1 PWL Segment 1 = -60
			dscl_prog_data->easf_h_bf1_pwl_base_seg1 = 12;	// U0.6, BF1 Base PWL Segment 1
			dscl_prog_data->easf_h_bf1_pwl_slope_seg1 = 109;	// S7.3, BF1 Slope PWL Segment 1
			dscl_prog_data->easf_h_bf1_pwl_in_seg2 = 0;	// S0.10, BF1 PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_base_seg2 = 63;	// U0.6, BF1 Base PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_slope_seg2 = 0;	// S7.3, BF1 Slope PWL Segment 2
			dscl_prog_data->easf_h_bf1_pwl_in_seg3 = 48;	// S0.10, BF1 PWL Segment 3
			dscl_prog_data->easf_h_bf1_pwl_base_seg3 = 63;	// U0.6, BF1 Base PWL Segment 3
			dscl_prog_data->easf_h_bf1_pwl_slope_seg3 = 0x7ED;	// S7.3, BF1 Slope PWL Segment 3 = -19
			dscl_prog_data->easf_h_bf1_pwl_in_seg4 = 96;	// S0.10, BF1 PWL Segment 4
			dscl_prog_data->easf_h_bf1_pwl_base_seg4 = 56;	// U0.6, BF1 Base PWL Segment 4
			dscl_prog_data->easf_h_bf1_pwl_slope_seg4 = 0x7F0;	// S7.3, BF1 Slope PWL Segment 4 = -16
			dscl_prog_data->easf_h_bf1_pwl_in_seg5 = 144;	// S0.10, BF1 PWL Segment 5
			dscl_prog_data->easf_h_bf1_pwl_base_seg5 = 50;	// U0.6, BF1 Base PWL Segment 5
			dscl_prog_data->easf_h_bf1_pwl_slope_seg5 = 0x7B0;	// S7.3, BF1 Slope PWL Segment 5 = -80
			dscl_prog_data->easf_h_bf1_pwl_in_seg6 = 192;	// S0.10, BF1 PWL Segment 6
			dscl_prog_data->easf_h_bf1_pwl_base_seg6 = 20;	// U0.6, BF1 Base PWL Segment 6
			dscl_prog_data->easf_h_bf1_pwl_slope_seg6 = 0x7CB;	// S7.3, BF1 Slope PWL Segment 6 = -53
			dscl_prog_data->easf_h_bf1_pwl_in_seg7 = 240;	// S0.10, BF1 PWL Segment 7
			dscl_prog_data->easf_h_bf1_pwl_base_seg7 = 0;	// U0.6, BF1 Base PWL Segment 7

			dscl_prog_data->easf_h_bf3_pwl_in_set0 = 0x000;	// FP0.6.6, BF3 Input value PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_base_set0 = 63;	// S0.6, BF3 Base PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_slope_set0 = 0x0000;	// FP1.6.6, BF3 Slope PWL Segment 0
			dscl_prog_data->easf_h_bf3_pwl_in_set1 =
				0x06C0;	// FP0.6.6, BF3 Input value PWL Segment 1 (0.0625)
			dscl_prog_data->easf_h_bf3_pwl_base_set1 = 63;	// S0.6, BF3 Base PWL Segment 1
			dscl_prog_data->easf_h_bf3_pwl_slope_set1 = 0x1896;	// FP1.6.6, BF3 Slope PWL Segment 1
			dscl_prog_data->easf_h_bf3_pwl_in_set2 =
				0x0700;	// FP0.6.6, BF3 Input value PWL Segment 2 (0.125)
			dscl_prog_data->easf_h_bf3_pwl_base_set2 = 20;	// S0.6, BF3 Base PWL Segment 2
			dscl_prog_data->easf_h_bf3_pwl_slope_set2 = 0x1810;	// FP1.6.6, BF3 Slope PWL Segment 2
			dscl_prog_data->easf_h_bf3_pwl_in_set3 =
				0x0740;	// FP0.6.6, BF3 Input value PWL Segment 3 (0.25)
			dscl_prog_data->easf_h_bf3_pwl_base_set3 = 0;	// S0.6, BF3 Base PWL Segment 3
			dscl_prog_data->easf_h_bf3_pwl_slope_set3 = 0x1878;	// FP1.6.6, BF3 Slope PWL Segment 3
			dscl_prog_data->easf_h_bf3_pwl_in_set4 =
				0x0761;	// FP0.6.6, BF3 Input value PWL Segment 4 (0.375)
			dscl_prog_data->easf_h_bf3_pwl_base_set4 = 0x44;	// S0.6, BF3 Base PWL Segment 4 = -60
			dscl_prog_data->easf_h_bf3_pwl_slope_set4 = 0x1760;	// FP1.6.6, BF3 Slope PWL Segment 4
			dscl_prog_data->easf_h_bf3_pwl_in_set5 =
				0x0780;	// FP0.6.6, BF3 Input value PWL Segment 5 (0.5)
			dscl_prog_data->easf_h_bf3_pwl_base_set5 = 0x41;	// S0.6, BF3 Base PWL Segment 5 = -63
		} // if (lls_pref == LLS_PREF_YES)
	} else
		dscl_prog_data->easf_h_en = false;

	if (lls_pref == LLS_PREF_YES)	{
		dscl_prog_data->easf_ltonl_en = 1;	// Linear input
		if ((setup == HDR_L) && (spl_is_rgb8(format))) {
			/* Calculate C0-C3 coefficients based on HDR multiplier */
			spl_calculate_c0_c3_hdr(dscl_prog_data, hdr_multx100);
		} else { // HDR_L ( DWM ) and SDR_L
			dscl_prog_data->easf_matrix_c0 =
				0x4EF7;	// fp1.5.10, C0 coefficient (LN_rec709:  0.2126 * (2^14)/125 = 27.86590720)
			dscl_prog_data->easf_matrix_c1 =
				0x55DC;	// fp1.5.10, C1 coefficient (LN_rec709:  0.7152 * (2^14)/125 = 93.74269440)
			dscl_prog_data->easf_matrix_c2 =
				0x48BB;	// fp1.5.10, C2 coefficient (LN_rec709:  0.0722 * (2^14)/125 = 9.46339840)
			dscl_prog_data->easf_matrix_c3 =
				0x0;	// fp1.5.10, C3 coefficient
		}
	}	else	{
		dscl_prog_data->easf_ltonl_en = 0;	// Non-Linear input
		dscl_prog_data->easf_matrix_c0 =
			0x3434;	// fp1.5.10, C0 coefficient (LN_BT2020:  0.262695312500000)
		dscl_prog_data->easf_matrix_c1 =
			0x396D;	// fp1.5.10, C1 coefficient (LN_BT2020:  0.678222656250000)
		dscl_prog_data->easf_matrix_c2 =
			0x2B97;	// fp1.5.10, C2 coefficient (LN_BT2020:  0.059295654296875)
		dscl_prog_data->easf_matrix_c3 =
			0x0;	// fp1.5.10, C3 coefficient
	}

	if (spl_is_yuv420(format)) { /* TODO: 0 = RGB, 1 = YUV */
		dscl_prog_data->easf_matrix_mode = 1;
		/*
		 * 2-bit, BF3 chroma mode correction calculation mode
		 * Needs to be disabled for YUV420 mode
		 * Override lookup value
		 */
		dscl_prog_data->easf_v_bf3_mode = 0;
		dscl_prog_data->easf_h_bf3_mode = 0;
	} else
		dscl_prog_data->easf_matrix_mode = 0;

}

/*Set isharp noise detection */
static void spl_set_isharp_noise_det_mode(struct dscl_prog_data *dscl_prog_data,
	const struct spl_scaler_data *data)
{
	// ISHARP_NOISEDET_MODE
	// 0: 3x5 as VxH
	// 1: 4x5 as VxH
	// 2:
	// 3: 5x5 as VxH
	if (data->taps.v_taps == 6)
		dscl_prog_data->isharp_noise_det.mode = 3;
	else if (data->taps.v_taps == 4)
		dscl_prog_data->isharp_noise_det.mode = 1;
	else if (data->taps.v_taps == 3)
		dscl_prog_data->isharp_noise_det.mode = 0;
};
/* Set Sharpener data */
static void spl_set_isharp_data(struct dscl_prog_data *dscl_prog_data,
		struct adaptive_sharpness adp_sharpness, bool enable_isharp,
		enum linear_light_scaling lls_pref, enum spl_pixel_format format,
		const struct spl_scaler_data *data, struct spl_fixed31_32 ratio,
		enum system_setup setup)
{
	/* Turn off sharpener if not required */
	if (!enable_isharp) {
		dscl_prog_data->isharp_en = 0;
		return;
	}

	dscl_prog_data->isharp_en = 1;	// ISHARP_EN
	// Set ISHARP_NOISEDET_MODE if htaps = 6-tap
	if (data->taps.h_taps == 6) {
		dscl_prog_data->isharp_noise_det.enable = 1;	/* ISHARP_NOISEDET_EN */
		spl_set_isharp_noise_det_mode(dscl_prog_data, data);	/* ISHARP_NOISEDET_MODE */
	} else
		dscl_prog_data->isharp_noise_det.enable = 0;	// ISHARP_NOISEDET_EN
	// Program noise detection threshold
	dscl_prog_data->isharp_noise_det.uthreshold = 24;	// ISHARP_NOISEDET_UTHRE
	dscl_prog_data->isharp_noise_det.dthreshold = 4;	// ISHARP_NOISEDET_DTHRE
	// Program noise detection gain
	dscl_prog_data->isharp_noise_det.pwl_start_in = 3;	// ISHARP_NOISEDET_PWL_START_IN
	dscl_prog_data->isharp_noise_det.pwl_end_in = 13;	// ISHARP_NOISEDET_PWL_END_IN
	dscl_prog_data->isharp_noise_det.pwl_slope = 1623;	// ISHARP_NOISEDET_PWL_SLOPE

	if (lls_pref == LLS_PREF_NO) /* ISHARP_FMT_MODE */
		dscl_prog_data->isharp_fmt.mode = 1;
	else
		dscl_prog_data->isharp_fmt.mode = 0;

	dscl_prog_data->isharp_fmt.norm = 0x3C00;	// ISHARP_FMT_NORM
	dscl_prog_data->isharp_lba.mode = 0;	// ISHARP_LBA_MODE

	if (setup == SDR_L) {
		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[0] = 62;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
		dscl_prog_data->isharp_lba.in_seg[1] = 130;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
		dscl_prog_data->isharp_lba.in_seg[2] = 450; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[2] = 0x18D; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -115
		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
		dscl_prog_data->isharp_lba.in_seg[3] = 520; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
		dscl_prog_data->isharp_lba.in_seg[4] = 520; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
		dscl_prog_data->isharp_lba.in_seg[5] = 520; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
	} else if (setup == HDR_L) {
		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[0] = 32;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
		dscl_prog_data->isharp_lba.in_seg[1] = 254;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
		dscl_prog_data->isharp_lba.in_seg[2] = 559; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[2] = 0x10C; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -244
		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
		dscl_prog_data->isharp_lba.in_seg[3] = 592; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
	} else {
		// ISHARP_LBA_PWL_SEG0: ISHARP Local Brightness Adjustment PWL Segment 0
		dscl_prog_data->isharp_lba.in_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[0] = 0;	// ISHARP LBA PWL for Seg 0. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[0] = 40;	// ISHARP LBA for Seg 0. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG1: ISHARP LBA PWL Segment 1
		dscl_prog_data->isharp_lba.in_seg[1] = 204;	// ISHARP LBA PWL for Seg 1. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[1] = 63; // ISHARP LBA PWL for Seg 1. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[1] = 0; // ISHARP LBA for Seg 1. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG2: ISHARP LBA PWL Segment 2
		dscl_prog_data->isharp_lba.in_seg[2] = 818; // ISHARP LBA PWL for Seg 2. INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[2] = 63; // ISHARP LBA PWL for Seg 2. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[2] = 0x1D9; // ISHARP LBA for Seg 2. SLOPE value in S5.3 format = -39
		// ISHARP_LBA_PWL_SEG3: ISHARP LBA PWL Segment 3
		dscl_prog_data->isharp_lba.in_seg[3] = 1023; // ISHARP LBA PWL for Seg 3.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[3] = 0; // ISHARP LBA PWL for Seg 3. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[3] = 0; // ISHARP LBA for Seg 3. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG4: ISHARP LBA PWL Segment 4
		dscl_prog_data->isharp_lba.in_seg[4] = 1023; // ISHARP LBA PWL for Seg 4.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[4] = 0; // ISHARP LBA PWL for Seg 4. BASE value in U0.6 format
		dscl_prog_data->isharp_lba.slope_seg[4] = 0; // ISHARP LBA for Seg 4. SLOPE value in S5.3 format
		// ISHARP_LBA_PWL_SEG5: ISHARP LBA PWL Segment 5
		dscl_prog_data->isharp_lba.in_seg[5] = 1023; // ISHARP LBA PWL for Seg 5.INPUT value in U0.10 format
		dscl_prog_data->isharp_lba.base_seg[5] = 0;	// ISHARP LBA PWL for Seg 5. BASE value in U0.6 format
	}


	spl_build_isharp_1dlut_from_reference_curve(ratio, setup, adp_sharpness);
	dscl_prog_data->isharp_delta = spl_get_pregen_filter_isharp_1D_lut(setup);
	dscl_prog_data->sharpness_level = adp_sharpness.sharpness_level;

	// Program the nldelta soft clip values
	if (lls_pref == LLS_PREF_YES) {
		dscl_prog_data->isharp_nldelta_sclip.enable_p = 0;	/* ISHARP_NLDELTA_SCLIP_EN_P */
		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 0;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
		dscl_prog_data->isharp_nldelta_sclip.slope_p = 0;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 71;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
		dscl_prog_data->isharp_nldelta_sclip.slope_n = 16;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
	} else {
		dscl_prog_data->isharp_nldelta_sclip.enable_p = 1;	/* ISHARP_NLDELTA_SCLIP_EN_P */
		dscl_prog_data->isharp_nldelta_sclip.pivot_p = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_P */
		dscl_prog_data->isharp_nldelta_sclip.slope_p = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_P */
		dscl_prog_data->isharp_nldelta_sclip.enable_n = 1;	/* ISHARP_NLDELTA_SCLIP_EN_N */
		dscl_prog_data->isharp_nldelta_sclip.pivot_n = 70;	/* ISHARP_NLDELTA_SCLIP_PIVOT_N */
		dscl_prog_data->isharp_nldelta_sclip.slope_n = 24;	/* ISHARP_NLDELTA_SCLIP_SLOPE_N */
	}

	// Set the values as per lookup table
	spl_set_blur_scale_data(dscl_prog_data, data);
}

/* Calculate scaler parameters */
bool spl_calculate_scaler_params(struct spl_in *spl_in, struct spl_out *spl_out)
{
	bool res = false;
	bool enable_easf_v = false;
	bool enable_easf_h = false;
	int vratio = 0;
	int hratio = 0;
	struct spl_scratch spl_scratch;
	struct spl_fixed31_32 isharp_scale_ratio;
	enum system_setup setup;
	bool enable_isharp = false;
	const struct spl_scaler_data *data = &spl_scratch.scl_data;

	memset(&spl_scratch, 0, sizeof(struct spl_scratch));
	spl_scratch.scl_data.h_active = spl_in->h_active;
	spl_scratch.scl_data.v_active = spl_in->v_active;

	// All SPL calls
	/* recout calculation */
	/* depends on h_active */
	spl_calculate_recout(spl_in, &spl_scratch, spl_out);
	/* depends on pixel format */
	spl_calculate_scaling_ratios(spl_in, &spl_scratch, spl_out);
	/* depends on scaling ratios and recout, does not calculate offset yet */
	spl_calculate_viewport_size(spl_in, &spl_scratch);

	res = spl_get_optimal_number_of_taps(
			  spl_in->basic_out.max_downscale_src_width, spl_in,
			  &spl_scratch, &spl_in->scaling_quality, &enable_easf_v,
			  &enable_easf_h, &enable_isharp);
	/*
	 * Depends on recout, scaling ratios, h_active and taps
	 * May need to re-check lb size after this in some obscure scenario
	 */
	if (res)
		spl_calculate_inits_and_viewports(spl_in, &spl_scratch);
	// Handle 3d recout
	spl_handle_3d_recout(spl_in, &spl_scratch.scl_data.recout);
	// Clamp
	spl_clamp_viewport(&spl_scratch.scl_data.viewport);

	if (!res)
		return res;

	// Save all calculated parameters in dscl_prog_data structure to program hw registers
	spl_set_dscl_prog_data(spl_in, &spl_scratch, spl_out, enable_easf_v, enable_easf_h, enable_isharp);

	if (spl_in->lls_pref == LLS_PREF_YES) {
		if (spl_in->is_hdr_on)
			setup = HDR_L;
		else
			setup = SDR_L;
	} else {
		if (spl_in->is_hdr_on)
			setup = HDR_NL;
		else
			setup = SDR_NL;
	}

	// Set EASF
	spl_set_easf_data(&spl_scratch, spl_out, enable_easf_v, enable_easf_h, spl_in->lls_pref,
		spl_in->basic_in.format, setup, spl_in->hdr_multx100);

	// Set iSHARP
	vratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.vert);
	hratio = spl_fixpt_ceil(spl_scratch.scl_data.ratios.horz);
	if (vratio <= hratio)
		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.vert;
	else
		isharp_scale_ratio = spl_scratch.scl_data.recip_ratios.horz;

	spl_set_isharp_data(spl_out->dscl_prog_data, spl_in->adaptive_sharpness, enable_isharp,
		spl_in->lls_pref, spl_in->basic_in.format, data, isharp_scale_ratio, setup);

	return res;
}