summaryrefslogtreecommitdiff
path: root/kernel/bpf
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-04-25 22:39:01 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2023-04-25 22:39:01 +0300
commitdf45da57cbd35715d590a36a12968a94508ccd1f (patch)
treef001218ffbd01d42f829be275df5542b1b454f2d /kernel/bpf
parent53b5e72b9d89853b7e622239676163ede52acffe (diff)
parenteeb3557cc188e42ae7f7bef2d6dc5bf0e078412e (diff)
downloadlinux-df45da57cbd35715d590a36a12968a94508ccd1f.tar.xz
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon: "ACPI: - Improve error reporting when failing to manage SDEI on AGDI device removal Assembly routines: - Improve register constraints so that the compiler can make use of the zero register instead of moving an immediate #0 into a GPR - Allow the compiler to allocate the registers used for CAS instructions CPU features and system registers: - Cleanups to the way in which CPU features are identified from the ID register fields - Extend system register definition generation to handle Enum types when defining shared register fields - Generate definitions for new _EL2 registers and add new fields for ID_AA64PFR1_EL1 - Allow SVE to be disabled separately from SME on the kernel command-line Tracing: - Support for "direct calls" in ftrace, which enables BPF tracing for arm64 Kdump: - Don't bother unmapping the crashkernel from the linear mapping, which then allows us to use huge (block) mappings and reduce TLB pressure when a crashkernel is loaded. Memory management: - Try again to remove data cache invalidation from the coherent DMA allocation path - Simplify the fixmap code by mapping at page granularity - Allow the kfence pool to be allocated early, preventing the rest of the linear mapping from being forced to page granularity Perf and PMU: - Move CPU PMU code out to drivers/perf/ where it can be reused by the 32-bit ARM architecture when running on ARMv8 CPUs - Fix race between CPU PMU probing and pKVM host de-privilege - Add support for Apple M2 CPU PMU - Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event dynamically, depending on what the CPU actually supports - Minor fixes and cleanups to system PMU drivers Stack tracing: - Use the XPACLRI instruction to strip PAC from pointers, rather than rolling our own function in C - Remove redundant PAC removal for toolchains that handle this in their builtins - Make backtracing more resilient in the face of instrumentation Miscellaneous: - Fix single-step with KGDB - Remove harmless warning when 'nokaslr' is passed on the kernel command-line - Minor fixes and cleanups across the board" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits) KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege arm64: kexec: include reboot.h arm64: delete dead code in this_cpu_set_vectors() arm64/cpufeature: Use helper macro to specify ID register for capabilites drivers/perf: hisi: add NULL check for name drivers/perf: hisi: Remove redundant initialized of pmu->name arm64/cpufeature: Consistently use symbolic constants for min_field_value arm64/cpufeature: Pull out helper for CPUID register definitions arm64/sysreg: Convert HFGITR_EL2 to automatic generation ACPI: AGDI: Improve error reporting for problems during .remove() arm64: kernel: Fix kernel warning when nokaslr is passed to commandline perf/arm-cmn: Fix port detection for CMN-700 arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step arm64: move PAC masks to <asm/pointer_auth.h> arm64: use XPACLRI to strip PAC arm64: avoid redundant PAC stripping in __builtin_return_address() arm64/sme: Fix some comments of ARM SME arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2() arm64/signal: Use system_supports_tpidr2() to check TPIDR2 arm64/idreg: Don't disable SME when disabling SVE ...
Diffstat (limited to 'kernel/bpf')
-rw-r--r--kernel/bpf/trampoline.c12
1 files changed, 6 insertions, 6 deletions
diff --git a/kernel/bpf/trampoline.c b/kernel/bpf/trampoline.c
index d0ed7d6f5eec..a14d0af534b3 100644
--- a/kernel/bpf/trampoline.c
+++ b/kernel/bpf/trampoline.c
@@ -45,8 +45,8 @@ static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd
lockdep_assert_held_once(&tr->mutex);
/* Instead of updating the trampoline here, we propagate
- * -EAGAIN to register_ftrace_direct_multi(). Then we can
- * retry register_ftrace_direct_multi() after updating the
+ * -EAGAIN to register_ftrace_direct(). Then we can
+ * retry register_ftrace_direct() after updating the
* trampoline.
*/
if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
@@ -198,7 +198,7 @@ static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
int ret;
if (tr->func.ftrace_managed)
- ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr);
+ ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false);
else
ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
@@ -215,9 +215,9 @@ static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_ad
if (tr->func.ftrace_managed) {
if (lock_direct_mutex)
- ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr);
+ ret = modify_ftrace_direct(tr->fops, (long)new_addr);
else
- ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr);
+ ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr);
} else {
ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
}
@@ -243,7 +243,7 @@ static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
if (tr->func.ftrace_managed) {
ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
- ret = register_ftrace_direct_multi(tr->fops, (long)new_addr);
+ ret = register_ftrace_direct(tr->fops, (long)new_addr);
} else {
ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
}