summaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-07-03 23:08:04 +0300
committerLinus Torvalds <torvalds@linux-foundation.org>2017-07-03 23:08:04 +0300
commit9bd42183b951051f73de121f7ee17091e7d26fbb (patch)
treec85c680126a0548a3c5f083e35f5b1cadce636f6 /kernel/sched/fair.c
parent7447d56217e215e50317f308aee1ed293ac4f749 (diff)
parent72298e5c92c50edd8cb7cfda4519483ce65fa166 (diff)
downloadlinux-9bd42183b951051f73de121f7ee17091e7d26fbb.tar.xz
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - Add the SYSTEM_SCHEDULING bootup state to move various scheduler debug checks earlier into the bootup. This turns silent and sporadically deadly bugs into nice, deterministic splats. Fix some of the splats that triggered. (Thomas Gleixner) - A round of restructuring and refactoring of the load-balancing and topology code (Peter Zijlstra) - Another round of consolidating ~20 of incremental scheduler code history: this time in terms of wait-queue nomenclature. (I didn't get much feedback on these renaming patches, and we can still easily change any names I might have misplaced, so if anyone hates a new name, please holler and I'll fix it.) (Ingo Molnar) - sched/numa improvements, fixes and updates (Rik van Riel) - Another round of x86/tsc scheduler clock code improvements, in hope of making it more robust (Peter Zijlstra) - Improve NOHZ behavior (Frederic Weisbecker) - Deadline scheduler improvements and fixes (Luca Abeni, Daniel Bristot de Oliveira) - Simplify and optimize the topology setup code (Lauro Ramos Venancio) - Debloat and decouple scheduler code some more (Nicolas Pitre) - Simplify code by making better use of llist primitives (Byungchul Park) - ... plus other fixes and improvements" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits) sched/cputime: Refactor the cputime_adjust() code sched/debug: Expose the number of RT/DL tasks that can migrate sched/numa: Hide numa_wake_affine() from UP build sched/fair: Remove effective_load() sched/numa: Implement NUMA node level wake_affine() sched/fair: Simplify wake_affine() for the single socket case sched/numa: Override part of migrate_degrades_locality() when idle balancing sched/rt: Move RT related code from sched/core.c to sched/rt.c sched/deadline: Move DL related code from sched/core.c to sched/deadline.c sched/cpuset: Only offer CONFIG_CPUSETS if SMP is enabled sched/fair: Spare idle load balancing on nohz_full CPUs nohz: Move idle balancer registration to the idle path sched/loadavg: Generalize "_idle" naming to "_nohz" sched/core: Drop the unused try_get_task_struct() helper function sched/fair: WARN() and refuse to set buddy when !se->on_rq sched/debug: Fix SCHED_WARN_ON() to return a value on !CONFIG_SCHED_DEBUG as well sched/wait: Disambiguate wq_entry->task_list and wq_head->task_list naming sched/wait: Move bit_wait_table[] and related functionality from sched/core.c to sched/wait_bit.c sched/wait: Split out the wait_bit*() APIs from <linux/wait.h> into <linux/wait_bit.h> sched/wait: Re-adjust macro line continuation backslashes in <linux/wait.h> ...
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c451
1 files changed, 193 insertions, 258 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c77e4b1d51c0..008c514dc241 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -369,8 +369,9 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
}
/* Iterate thr' all leaf cfs_rq's on a runqueue */
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
- list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
+#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
+ list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
+ leaf_cfs_rq_list)
/* Do the two (enqueued) entities belong to the same group ? */
static inline struct cfs_rq *
@@ -463,8 +464,8 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}
-#define for_each_leaf_cfs_rq(rq, cfs_rq) \
- for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
+#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
+ for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
@@ -1381,7 +1382,6 @@ static unsigned long weighted_cpuload(const int cpu);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long capacity_of(int cpu);
-static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
/* Cached statistics for all CPUs within a node */
struct numa_stats {
@@ -2469,7 +2469,8 @@ void task_numa_work(struct callback_head *work)
return;
- down_read(&mm->mmap_sem);
+ if (!down_read_trylock(&mm->mmap_sem))
+ return;
vma = find_vma(mm, start);
if (!vma) {
reset_ptenuma_scan(p);
@@ -2584,6 +2585,60 @@ void task_tick_numa(struct rq *rq, struct task_struct *curr)
}
}
}
+
+/*
+ * Can a task be moved from prev_cpu to this_cpu without causing a load
+ * imbalance that would trigger the load balancer?
+ */
+static inline bool numa_wake_affine(struct sched_domain *sd,
+ struct task_struct *p, int this_cpu,
+ int prev_cpu, int sync)
+{
+ struct numa_stats prev_load, this_load;
+ s64 this_eff_load, prev_eff_load;
+
+ update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
+ update_numa_stats(&this_load, cpu_to_node(this_cpu));
+
+ /*
+ * If sync wakeup then subtract the (maximum possible)
+ * effect of the currently running task from the load
+ * of the current CPU:
+ */
+ if (sync) {
+ unsigned long current_load = task_h_load(current);
+
+ if (this_load.load > current_load)
+ this_load.load -= current_load;
+ else
+ this_load.load = 0;
+ }
+
+ /*
+ * In low-load situations, where this_cpu's node is idle due to the
+ * sync cause above having dropped this_load.load to 0, move the task.
+ * Moving to an idle socket will not create a bad imbalance.
+ *
+ * Otherwise check if the nodes are near enough in load to allow this
+ * task to be woken on this_cpu's node.
+ */
+ if (this_load.load > 0) {
+ unsigned long task_load = task_h_load(p);
+
+ this_eff_load = 100;
+ this_eff_load *= prev_load.compute_capacity;
+
+ prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
+ prev_eff_load *= this_load.compute_capacity;
+
+ this_eff_load *= this_load.load + task_load;
+ prev_eff_load *= prev_load.load - task_load;
+
+ return this_eff_load <= prev_eff_load;
+ }
+
+ return true;
+}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
@@ -2596,6 +2651,15 @@ static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
+
+#ifdef CONFIG_SMP
+static inline bool numa_wake_affine(struct sched_domain *sd,
+ struct task_struct *p, int this_cpu,
+ int prev_cpu, int sync)
+{
+ return true;
+}
+#endif /* !SMP */
#endif /* CONFIG_NUMA_BALANCING */
static void
@@ -2916,12 +2980,12 @@ ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
/*
* Step 2: update *_avg.
*/
- sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
+ sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
if (cfs_rq) {
cfs_rq->runnable_load_avg =
- div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
+ div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
}
- sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
+ sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
return 1;
}
@@ -2982,8 +3046,7 @@ __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
* differential update where we store the last value we propagated. This in
* turn allows skipping updates if the differential is 'small'.
*
- * Updating tg's load_avg is necessary before update_cfs_share() (which is
- * done) and effective_load() (which is not done because it is too costly).
+ * Updating tg's load_avg is necessary before update_cfs_share().
*/
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
@@ -4642,24 +4705,43 @@ static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
hrtimer_cancel(&cfs_b->slack_timer);
}
+/*
+ * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
+ *
+ * The race is harmless, since modifying bandwidth settings of unhooked group
+ * bits doesn't do much.
+ */
+
+/* cpu online calback */
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
- struct cfs_rq *cfs_rq;
+ struct task_group *tg;
- for_each_leaf_cfs_rq(rq, cfs_rq) {
- struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
+ lockdep_assert_held(&rq->lock);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(tg, &task_groups, list) {
+ struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
raw_spin_lock(&cfs_b->lock);
cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
raw_spin_unlock(&cfs_b->lock);
}
+ rcu_read_unlock();
}
+/* cpu offline callback */
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
{
- struct cfs_rq *cfs_rq;
+ struct task_group *tg;
+
+ lockdep_assert_held(&rq->lock);
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(tg, &task_groups, list) {
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- for_each_leaf_cfs_rq(rq, cfs_rq) {
if (!cfs_rq->runtime_enabled)
continue;
@@ -4677,6 +4759,7 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
}
+ rcu_read_unlock();
}
#else /* CONFIG_CFS_BANDWIDTH */
@@ -5215,126 +5298,6 @@ static unsigned long cpu_avg_load_per_task(int cpu)
return 0;
}
-#ifdef CONFIG_FAIR_GROUP_SCHED
-/*
- * effective_load() calculates the load change as seen from the root_task_group
- *
- * Adding load to a group doesn't make a group heavier, but can cause movement
- * of group shares between cpus. Assuming the shares were perfectly aligned one
- * can calculate the shift in shares.
- *
- * Calculate the effective load difference if @wl is added (subtracted) to @tg
- * on this @cpu and results in a total addition (subtraction) of @wg to the
- * total group weight.
- *
- * Given a runqueue weight distribution (rw_i) we can compute a shares
- * distribution (s_i) using:
- *
- * s_i = rw_i / \Sum rw_j (1)
- *
- * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
- * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
- * shares distribution (s_i):
- *
- * rw_i = { 2, 4, 1, 0 }
- * s_i = { 2/7, 4/7, 1/7, 0 }
- *
- * As per wake_affine() we're interested in the load of two CPUs (the CPU the
- * task used to run on and the CPU the waker is running on), we need to
- * compute the effect of waking a task on either CPU and, in case of a sync
- * wakeup, compute the effect of the current task going to sleep.
- *
- * So for a change of @wl to the local @cpu with an overall group weight change
- * of @wl we can compute the new shares distribution (s'_i) using:
- *
- * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
- *
- * Suppose we're interested in CPUs 0 and 1, and want to compute the load
- * differences in waking a task to CPU 0. The additional task changes the
- * weight and shares distributions like:
- *
- * rw'_i = { 3, 4, 1, 0 }
- * s'_i = { 3/8, 4/8, 1/8, 0 }
- *
- * We can then compute the difference in effective weight by using:
- *
- * dw_i = S * (s'_i - s_i) (3)
- *
- * Where 'S' is the group weight as seen by its parent.
- *
- * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
- * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
- * 4/7) times the weight of the group.
- */
-static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
-{
- struct sched_entity *se = tg->se[cpu];
-
- if (!tg->parent) /* the trivial, non-cgroup case */
- return wl;
-
- for_each_sched_entity(se) {
- struct cfs_rq *cfs_rq = se->my_q;
- long W, w = cfs_rq_load_avg(cfs_rq);
-
- tg = cfs_rq->tg;
-
- /*
- * W = @wg + \Sum rw_j
- */
- W = wg + atomic_long_read(&tg->load_avg);
-
- /* Ensure \Sum rw_j >= rw_i */
- W -= cfs_rq->tg_load_avg_contrib;
- W += w;
-
- /*
- * w = rw_i + @wl
- */
- w += wl;
-
- /*
- * wl = S * s'_i; see (2)
- */
- if (W > 0 && w < W)
- wl = (w * (long)scale_load_down(tg->shares)) / W;
- else
- wl = scale_load_down(tg->shares);
-
- /*
- * Per the above, wl is the new se->load.weight value; since
- * those are clipped to [MIN_SHARES, ...) do so now. See
- * calc_cfs_shares().
- */
- if (wl < MIN_SHARES)
- wl = MIN_SHARES;
-
- /*
- * wl = dw_i = S * (s'_i - s_i); see (3)
- */
- wl -= se->avg.load_avg;
-
- /*
- * Recursively apply this logic to all parent groups to compute
- * the final effective load change on the root group. Since
- * only the @tg group gets extra weight, all parent groups can
- * only redistribute existing shares. @wl is the shift in shares
- * resulting from this level per the above.
- */
- wg = 0;
- }
-
- return wl;
-}
-#else
-
-static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
-{
- return wl;
-}
-
-#endif
-
static void record_wakee(struct task_struct *p)
{
/*
@@ -5385,67 +5348,25 @@ static int wake_wide(struct task_struct *p)
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
int prev_cpu, int sync)
{
- s64 this_load, load;
- s64 this_eff_load, prev_eff_load;
- int idx, this_cpu;
- struct task_group *tg;
- unsigned long weight;
- int balanced;
-
- idx = sd->wake_idx;
- this_cpu = smp_processor_id();
- load = source_load(prev_cpu, idx);
- this_load = target_load(this_cpu, idx);
-
- /*
- * If sync wakeup then subtract the (maximum possible)
- * effect of the currently running task from the load
- * of the current CPU:
- */
- if (sync) {
- tg = task_group(current);
- weight = current->se.avg.load_avg;
-
- this_load += effective_load(tg, this_cpu, -weight, -weight);
- load += effective_load(tg, prev_cpu, 0, -weight);
- }
-
- tg = task_group(p);
- weight = p->se.avg.load_avg;
+ int this_cpu = smp_processor_id();
+ bool affine = false;
/*
- * In low-load situations, where prev_cpu is idle and this_cpu is idle
- * due to the sync cause above having dropped this_load to 0, we'll
- * always have an imbalance, but there's really nothing you can do
- * about that, so that's good too.
- *
- * Otherwise check if either cpus are near enough in load to allow this
- * task to be woken on this_cpu.
+ * Common case: CPUs are in the same socket, and select_idle_sibling()
+ * will do its thing regardless of what we return:
*/
- this_eff_load = 100;
- this_eff_load *= capacity_of(prev_cpu);
-
- prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
- prev_eff_load *= capacity_of(this_cpu);
-
- if (this_load > 0) {
- this_eff_load *= this_load +
- effective_load(tg, this_cpu, weight, weight);
-
- prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
- }
-
- balanced = this_eff_load <= prev_eff_load;
+ if (cpus_share_cache(prev_cpu, this_cpu))
+ affine = true;
+ else
+ affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
+ if (affine) {
+ schedstat_inc(sd->ttwu_move_affine);
+ schedstat_inc(p->se.statistics.nr_wakeups_affine);
+ }
- if (!balanced)
- return 0;
-
- schedstat_inc(sd->ttwu_move_affine);
- schedstat_inc(p->se.statistics.nr_wakeups_affine);
-
- return 1;
+ return affine;
}
static inline int task_util(struct task_struct *p);
@@ -5484,12 +5405,12 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
int i;
/* Skip over this group if it has no CPUs allowed */
- if (!cpumask_intersects(sched_group_cpus(group),
+ if (!cpumask_intersects(sched_group_span(group),
&p->cpus_allowed))
continue;
local_group = cpumask_test_cpu(this_cpu,
- sched_group_cpus(group));
+ sched_group_span(group));
/*
* Tally up the load of all CPUs in the group and find
@@ -5499,7 +5420,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
runnable_load = 0;
max_spare_cap = 0;
- for_each_cpu(i, sched_group_cpus(group)) {
+ for_each_cpu(i, sched_group_span(group)) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
@@ -5602,10 +5523,10 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
/* Check if we have any choice: */
if (group->group_weight == 1)
- return cpumask_first(sched_group_cpus(group));
+ return cpumask_first(sched_group_span(group));
/* Traverse only the allowed CPUs */
- for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
+ for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
if (idle_cpu(i)) {
struct rq *rq = cpu_rq(i);
struct cpuidle_state *idle = idle_get_state(rq);
@@ -5640,43 +5561,6 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
-/*
- * Implement a for_each_cpu() variant that starts the scan at a given cpu
- * (@start), and wraps around.
- *
- * This is used to scan for idle CPUs; such that not all CPUs looking for an
- * idle CPU find the same CPU. The down-side is that tasks tend to cycle
- * through the LLC domain.
- *
- * Especially tbench is found sensitive to this.
- */
-
-static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
-{
- int next;
-
-again:
- next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
-
- if (*wrapped) {
- if (next >= start)
- return nr_cpumask_bits;
- } else {
- if (next >= nr_cpumask_bits) {
- *wrapped = 1;
- n = -1;
- goto again;
- }
- }
-
- return next;
-}
-
-#define for_each_cpu_wrap(cpu, mask, start, wrap) \
- for ((wrap) = 0, (cpu) = (start)-1; \
- (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \
- (cpu) < nr_cpumask_bits; )
-
#ifdef CONFIG_SCHED_SMT
static inline void set_idle_cores(int cpu, int val)
@@ -5736,7 +5620,7 @@ unlock:
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
- int core, cpu, wrap;
+ int core, cpu;
if (!static_branch_likely(&sched_smt_present))
return -1;
@@ -5746,7 +5630,7 @@ static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int
cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
- for_each_cpu_wrap(core, cpus, target, wrap) {
+ for_each_cpu_wrap(core, cpus, target) {
bool idle = true;
for_each_cpu(cpu, cpu_smt_mask(core)) {
@@ -5809,27 +5693,38 @@ static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
struct sched_domain *this_sd;
- u64 avg_cost, avg_idle = this_rq()->avg_idle;
+ u64 avg_cost, avg_idle;
u64 time, cost;
s64 delta;
- int cpu, wrap;
+ int cpu, nr = INT_MAX;
this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
if (!this_sd)
return -1;
- avg_cost = this_sd->avg_scan_cost;
-
/*
* Due to large variance we need a large fuzz factor; hackbench in
* particularly is sensitive here.
*/
- if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
+ avg_idle = this_rq()->avg_idle / 512;
+ avg_cost = this_sd->avg_scan_cost + 1;
+
+ if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
return -1;
+ if (sched_feat(SIS_PROP)) {
+ u64 span_avg = sd->span_weight * avg_idle;
+ if (span_avg > 4*avg_cost)
+ nr = div_u64(span_avg, avg_cost);
+ else
+ nr = 4;
+ }
+
time = local_clock();
- for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
+ for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
+ if (!--nr)
+ return -1;
if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
continue;
if (idle_cpu(cpu))
@@ -6011,11 +5906,15 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (affine_sd) {
sd = NULL; /* Prefer wake_affine over balance flags */
- if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
+ if (cpu == prev_cpu)
+ goto pick_cpu;
+
+ if (wake_affine(affine_sd, p, prev_cpu, sync))
new_cpu = cpu;
}
if (!sd) {
+ pick_cpu:
if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
@@ -6168,8 +6067,11 @@ static void set_last_buddy(struct sched_entity *se)
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
- for_each_sched_entity(se)
+ for_each_sched_entity(se) {
+ if (SCHED_WARN_ON(!se->on_rq))
+ return;
cfs_rq_of(se)->last = se;
+ }
}
static void set_next_buddy(struct sched_entity *se)
@@ -6177,8 +6079,11 @@ static void set_next_buddy(struct sched_entity *se)
if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
return;
- for_each_sched_entity(se)
+ for_each_sched_entity(se) {
+ if (SCHED_WARN_ON(!se->on_rq))
+ return;
cfs_rq_of(se)->next = se;
+ }
}
static void set_skip_buddy(struct sched_entity *se)
@@ -6686,6 +6591,10 @@ static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
if (dst_nid == p->numa_preferred_nid)
return 0;
+ /* Leaving a core idle is often worse than degrading locality. */
+ if (env->idle != CPU_NOT_IDLE)
+ return -1;
+
if (numa_group) {
src_faults = group_faults(p, src_nid);
dst_faults = group_faults(p, dst_nid);
@@ -6970,10 +6879,28 @@ static void attach_tasks(struct lb_env *env)
}
#ifdef CONFIG_FAIR_GROUP_SCHED
+
+static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
+{
+ if (cfs_rq->load.weight)
+ return false;
+
+ if (cfs_rq->avg.load_sum)
+ return false;
+
+ if (cfs_rq->avg.util_sum)
+ return false;
+
+ if (cfs_rq->runnable_load_sum)
+ return false;
+
+ return true;
+}
+
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq, *pos;
struct rq_flags rf;
rq_lock_irqsave(rq, &rf);
@@ -6983,7 +6910,7 @@ static void update_blocked_averages(int cpu)
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
- for_each_leaf_cfs_rq(rq, cfs_rq) {
+ for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
struct sched_entity *se;
/* throttled entities do not contribute to load */
@@ -6997,6 +6924,13 @@ static void update_blocked_averages(int cpu)
se = cfs_rq->tg->se[cpu];
if (se && !skip_blocked_update(se))
update_load_avg(se, 0);
+
+ /*
+ * There can be a lot of idle CPU cgroups. Don't let fully
+ * decayed cfs_rqs linger on the list.
+ */
+ if (cfs_rq_is_decayed(cfs_rq))
+ list_del_leaf_cfs_rq(cfs_rq);
}
rq_unlock_irqrestore(rq, &rf);
}
@@ -7229,7 +7163,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
* span the current group.
*/
- for_each_cpu(cpu, sched_group_cpus(sdg)) {
+ for_each_cpu(cpu, sched_group_span(sdg)) {
struct sched_group_capacity *sgc;
struct rq *rq = cpu_rq(cpu);
@@ -7408,7 +7342,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
memset(sgs, 0, sizeof(*sgs));
- for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
+ for_each_cpu_and(i, sched_group_span(group), env->cpus) {
struct rq *rq = cpu_rq(i);
/* Bias balancing toward cpus of our domain */
@@ -7572,7 +7506,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
struct sg_lb_stats *sgs = &tmp_sgs;
int local_group;
- local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
+ local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
if (local_group) {
sds->local = sg;
sgs = local;
@@ -7927,7 +7861,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
unsigned long busiest_load = 0, busiest_capacity = 1;
int i;
- for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
+ for_each_cpu_and(i, sched_group_span(group), env->cpus) {
unsigned long capacity, wl;
enum fbq_type rt;
@@ -8033,7 +7967,6 @@ static int active_load_balance_cpu_stop(void *data);
static int should_we_balance(struct lb_env *env)
{
struct sched_group *sg = env->sd->groups;
- struct cpumask *sg_cpus, *sg_mask;
int cpu, balance_cpu = -1;
/*
@@ -8043,11 +7976,9 @@ static int should_we_balance(struct lb_env *env)
if (env->idle == CPU_NEWLY_IDLE)
return 1;
- sg_cpus = sched_group_cpus(sg);
- sg_mask = sched_group_mask(sg);
/* Try to find first idle cpu */
- for_each_cpu_and(cpu, sg_cpus, env->cpus) {
- if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
+ for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
+ if (!idle_cpu(cpu))
continue;
balance_cpu = cpu;
@@ -8083,7 +8014,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
- .dst_grpmask = sched_group_cpus(sd->groups),
+ .dst_grpmask = sched_group_span(sd->groups),
.idle = idle,
.loop_break = sched_nr_migrate_break,
.cpus = cpus,
@@ -8659,6 +8590,10 @@ void nohz_balance_enter_idle(int cpu)
if (!cpu_active(cpu))
return;
+ /* Spare idle load balancing on CPUs that don't want to be disturbed: */
+ if (!is_housekeeping_cpu(cpu))
+ return;
+
if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
return;
@@ -9523,10 +9458,10 @@ const struct sched_class fair_sched_class = {
#ifdef CONFIG_SCHED_DEBUG
void print_cfs_stats(struct seq_file *m, int cpu)
{
- struct cfs_rq *cfs_rq;
+ struct cfs_rq *cfs_rq, *pos;
rcu_read_lock();
- for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
+ for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
print_cfs_rq(m, cpu, cfs_rq);
rcu_read_unlock();
}