summaryrefslogtreecommitdiff
path: root/Documentation/RCU/rculist_nulls.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/RCU/rculist_nulls.rst')
-rw-r--r--Documentation/RCU/rculist_nulls.rst38
1 files changed, 27 insertions, 11 deletions
diff --git a/Documentation/RCU/rculist_nulls.rst b/Documentation/RCU/rculist_nulls.rst
index 9a734bf54b76..21e40fcc08de 100644
--- a/Documentation/RCU/rculist_nulls.rst
+++ b/Documentation/RCU/rculist_nulls.rst
@@ -18,7 +18,16 @@ to solve following problem.
Without 'nulls', a typical RCU linked list managing objects which are
allocated with SLAB_TYPESAFE_BY_RCU kmem_cache can use the following
-algorithms:
+algorithms. Following examples assume 'obj' is a pointer to such
+objects, which is having below type.
+
+::
+
+ struct object {
+ struct hlist_node obj_node;
+ atomic_t refcnt;
+ unsigned int key;
+ };
1) Lookup algorithm
-------------------
@@ -26,11 +35,13 @@ algorithms:
::
begin:
- rcu_read_lock()
+ rcu_read_lock();
obj = lockless_lookup(key);
if (obj) {
- if (!try_get_ref(obj)) // might fail for free objects
+ if (!try_get_ref(obj)) { // might fail for free objects
+ rcu_read_unlock();
goto begin;
+ }
/*
* Because a writer could delete object, and a writer could
* reuse these object before the RCU grace period, we
@@ -54,7 +65,7 @@ but a version with an additional memory barrier (smp_rmb())
struct hlist_node *node, *next;
for (pos = rcu_dereference((head)->first);
pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) &&
- ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
+ ({ obj = hlist_entry(pos, typeof(*obj), obj_node); 1; });
pos = rcu_dereference(next))
if (obj->key == key)
return obj;
@@ -66,10 +77,10 @@ And note the traditional hlist_for_each_entry_rcu() misses this smp_rmb()::
struct hlist_node *node;
for (pos = rcu_dereference((head)->first);
pos && ({ prefetch(pos->next); 1; }) &&
- ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
+ ({ obj = hlist_entry(pos, typeof(*obj), obj_node); 1; });
pos = rcu_dereference(pos->next))
- if (obj->key == key)
- return obj;
+ if (obj->key == key)
+ return obj;
return NULL;
Quoting Corey Minyard::
@@ -86,7 +97,7 @@ Quoting Corey Minyard::
2) Insertion algorithm
----------------------
-We need to make sure a reader cannot read the new 'obj->obj_next' value
+We need to make sure a reader cannot read the new 'obj->obj_node.next' value
and previous value of 'obj->key'. Otherwise, an item could be deleted
from a chain, and inserted into another chain. If new chain was empty
before the move, 'next' pointer is NULL, and lockless reader can not
@@ -129,8 +140,7 @@ very very fast (before the end of RCU grace period)
Avoiding extra smp_rmb()
========================
-With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup()
-and extra _release() in insert function.
+With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup().
For example, if we choose to store the slot number as the 'nulls'
end-of-list marker for each slot of the hash table, we can detect
@@ -142,6 +152,9 @@ the beginning. If the object was moved to the same chain,
then the reader doesn't care: It might occasionally
scan the list again without harm.
+Note that using hlist_nulls means the type of 'obj_node' field of
+'struct object' becomes 'struct hlist_nulls_node'.
+
1) lookup algorithm
-------------------
@@ -151,7 +164,7 @@ scan the list again without harm.
head = &table[slot];
begin:
rcu_read_lock();
- hlist_nulls_for_each_entry_rcu(obj, node, head, member) {
+ hlist_nulls_for_each_entry_rcu(obj, node, head, obj_node) {
if (obj->key == key) {
if (!try_get_ref(obj)) { // might fail for free objects
rcu_read_unlock();
@@ -182,6 +195,9 @@ scan the list again without harm.
2) Insert algorithm
-------------------
+Same to the above one, but uses hlist_nulls_add_head_rcu() instead of
+hlist_add_head_rcu().
+
::
/*