summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/bcache.rst3
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst66
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt257
-rw-r--r--Documentation/admin-guide/perf/hisi-pmu.rst40
-rw-r--r--Documentation/admin-guide/sysctl/kernel.rst2
5 files changed, 217 insertions, 151 deletions
diff --git a/Documentation/admin-guide/bcache.rst b/Documentation/admin-guide/bcache.rst
index bb5032a99234..6fdb495ac466 100644
--- a/Documentation/admin-guide/bcache.rst
+++ b/Documentation/admin-guide/bcache.rst
@@ -508,9 +508,6 @@ cache_miss_collisions
cache miss, but raced with a write and data was already present (usually 0
since the synchronization for cache misses was rewritten)
-cache_readaheads
- Count of times readahead occurred.
-
Sysfs - cache set
~~~~~~~~~~~~~~~~~
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index 1ffe019483ac..4ef890191196 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1213,23 +1213,25 @@ PAGE_SIZE multiple when read back.
A read-write single value file which exists on non-root
cgroups. The default is "max".
- Memory usage throttle limit. This is the main mechanism to
- control memory usage of a cgroup. If a cgroup's usage goes
+ Memory usage throttle limit. If a cgroup's usage goes
over the high boundary, the processes of the cgroup are
throttled and put under heavy reclaim pressure.
Going over the high limit never invokes the OOM killer and
- under extreme conditions the limit may be breached.
+ under extreme conditions the limit may be breached. The high
+ limit should be used in scenarios where an external process
+ monitors the limited cgroup to alleviate heavy reclaim
+ pressure.
memory.max
A read-write single value file which exists on non-root
cgroups. The default is "max".
- Memory usage hard limit. This is the final protection
- mechanism. If a cgroup's memory usage reaches this limit and
- can't be reduced, the OOM killer is invoked in the cgroup.
- Under certain circumstances, the usage may go over the limit
- temporarily.
+ Memory usage hard limit. This is the main mechanism to limit
+ memory usage of a cgroup. If a cgroup's memory usage reaches
+ this limit and can't be reduced, the OOM killer is invoked in
+ the cgroup. Under certain circumstances, the usage may go
+ over the limit temporarily.
In default configuration regular 0-order allocations always
succeed unless OOM killer chooses current task as a victim.
@@ -1238,10 +1240,6 @@ PAGE_SIZE multiple when read back.
Caller could retry them differently, return into userspace
as -ENOMEM or silently ignore in cases like disk readahead.
- This is the ultimate protection mechanism. As long as the
- high limit is used and monitored properly, this limit's
- utility is limited to providing the final safety net.
-
memory.reclaim
A write-only nested-keyed file which exists for all cgroups.
@@ -2031,31 +2029,33 @@ that attribute:
no-change
Do not modify the I/O priority class.
- none-to-rt
- For requests that do not have an I/O priority class (NONE),
- change the I/O priority class into RT. Do not modify
- the I/O priority class of other requests.
+ promote-to-rt
+ For requests that have a non-RT I/O priority class, change it into RT.
+ Also change the priority level of these requests to 4. Do not modify
+ the I/O priority of requests that have priority class RT.
restrict-to-be
For requests that do not have an I/O priority class or that have I/O
- priority class RT, change it into BE. Do not modify the I/O priority
- class of requests that have priority class IDLE.
+ priority class RT, change it into BE. Also change the priority level
+ of these requests to 0. Do not modify the I/O priority class of
+ requests that have priority class IDLE.
idle
Change the I/O priority class of all requests into IDLE, the lowest
I/O priority class.
+ none-to-rt
+ Deprecated. Just an alias for promote-to-rt.
+
The following numerical values are associated with the I/O priority policies:
-+-------------+---+
-| no-change | 0 |
-+-------------+---+
-| none-to-rt | 1 |
-+-------------+---+
-| rt-to-be | 2 |
-+-------------+---+
-| all-to-idle | 3 |
-+-------------+---+
++----------------+---+
+| no-change | 0 |
++----------------+---+
+| rt-to-be | 2 |
++----------------+---+
+| all-to-idle | 3 |
++----------------+---+
The numerical value that corresponds to each I/O priority class is as follows:
@@ -2071,9 +2071,13 @@ The numerical value that corresponds to each I/O priority class is as follows:
The algorithm to set the I/O priority class for a request is as follows:
-- Translate the I/O priority class policy into a number.
-- Change the request I/O priority class into the maximum of the I/O priority
- class policy number and the numerical I/O priority class.
+- If I/O priority class policy is promote-to-rt, change the request I/O
+ priority class to IOPRIO_CLASS_RT and change the request I/O priority
+ level to 4.
+- If I/O priorityt class is not promote-to-rt, translate the I/O priority
+ class policy into a number, then change the request I/O priority class
+ into the maximum of the I/O priority class policy number and the numerical
+ I/O priority class.
PID
---
@@ -2446,7 +2450,7 @@ Miscellaneous controller provides 3 interface files. If two misc resources (res_
res_b 10
misc.current
- A read-only flat-keyed file shown in the non-root cgroups. It shows
+ A read-only flat-keyed file shown in the all cgroups. It shows
the current usage of the resources in the cgroup and its children.::
$ cat misc.current
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 9e5bab29685f..d172651ed914 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -304,7 +304,7 @@
EL0 is indicated by /sys/devices/system/cpu/aarch32_el0
and hot-unplug operations may be restricted.
- See Documentation/arm64/asymmetric-32bit.rst for more
+ See Documentation/arch/arm64/asymmetric-32bit.rst for more
information.
amd_iommu= [HW,X86-64]
@@ -429,6 +429,9 @@
arm64.nosme [ARM64] Unconditionally disable Scalable Matrix
Extension support
+ arm64.nomops [ARM64] Unconditionally disable Memory Copy and Memory
+ Set instructions support
+
ataflop= [HW,M68k]
atarimouse= [HW,MOUSE] Atari Mouse
@@ -818,20 +821,6 @@
Format:
<first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>]
- cpu0_hotplug [X86] Turn on CPU0 hotplug feature when
- CONFIG_BOOTPARAM_HOTPLUG_CPU0 is off.
- Some features depend on CPU0. Known dependencies are:
- 1. Resume from suspend/hibernate depends on CPU0.
- Suspend/hibernate will fail if CPU0 is offline and you
- need to online CPU0 before suspend/hibernate.
- 2. PIC interrupts also depend on CPU0. CPU0 can't be
- removed if a PIC interrupt is detected.
- It's said poweroff/reboot may depend on CPU0 on some
- machines although I haven't seen such issues so far
- after CPU0 is offline on a few tested machines.
- If the dependencies are under your control, you can
- turn on cpu0_hotplug.
-
cpuidle.off=1 [CPU_IDLE]
disable the cpuidle sub-system
@@ -852,6 +841,12 @@
on every CPU online, such as boot, and resume from suspend.
Default: 10000
+ cpuhp.parallel=
+ [SMP] Enable/disable parallel bringup of secondary CPUs
+ Format: <bool>
+ Default is enabled if CONFIG_HOTPLUG_PARALLEL=y. Otherwise
+ the parameter has no effect.
+
crash_kexec_post_notifiers
Run kdump after running panic-notifiers and dumping
kmsg. This only for the users who doubt kdump always
@@ -2117,6 +2112,16 @@
disable
Do not enable intel_pstate as the default
scaling driver for the supported processors
+ active
+ Use intel_pstate driver to bypass the scaling
+ governors layer of cpufreq and provides it own
+ algorithms for p-state selection. There are two
+ P-state selection algorithms provided by
+ intel_pstate in the active mode: powersave and
+ performance. The way they both operate depends
+ on whether or not the hardware managed P-states
+ (HWP) feature has been enabled in the processor
+ and possibly on the processor model.
passive
Use intel_pstate as a scaling driver, but configure it
to work with generic cpufreq governors (instead of
@@ -2551,12 +2556,13 @@
If the value is 0 (the default), KVM will pick a period based
on the ratio, such that a page is zapped after 1 hour on average.
- kvm-amd.nested= [KVM,AMD] Allow nested virtualization in KVM/SVM.
- Default is 1 (enabled)
+ kvm-amd.nested= [KVM,AMD] Control nested virtualization feature in
+ KVM/SVM. Default is 1 (enabled).
- kvm-amd.npt= [KVM,AMD] Disable nested paging (virtualized MMU)
- for all guests.
- Default is 1 (enabled) if in 64-bit or 32-bit PAE mode.
+ kvm-amd.npt= [KVM,AMD] Control KVM's use of Nested Page Tables,
+ a.k.a. Two-Dimensional Page Tables. Default is 1
+ (enabled). Disable by KVM if hardware lacks support
+ for NPT.
kvm-arm.mode=
[KVM,ARM] Select one of KVM/arm64's modes of operation.
@@ -2602,30 +2608,33 @@
Format: <integer>
Default: 5
- kvm-intel.ept= [KVM,Intel] Disable extended page tables
- (virtualized MMU) support on capable Intel chips.
- Default is 1 (enabled)
+ kvm-intel.ept= [KVM,Intel] Control KVM's use of Extended Page Tables,
+ a.k.a. Two-Dimensional Page Tables. Default is 1
+ (enabled). Disable by KVM if hardware lacks support
+ for EPT.
kvm-intel.emulate_invalid_guest_state=
- [KVM,Intel] Disable emulation of invalid guest state.
- Ignored if kvm-intel.enable_unrestricted_guest=1, as
- guest state is never invalid for unrestricted guests.
- This param doesn't apply to nested guests (L2), as KVM
- never emulates invalid L2 guest state.
- Default is 1 (enabled)
+ [KVM,Intel] Control whether to emulate invalid guest
+ state. Ignored if kvm-intel.enable_unrestricted_guest=1,
+ as guest state is never invalid for unrestricted
+ guests. This param doesn't apply to nested guests (L2),
+ as KVM never emulates invalid L2 guest state.
+ Default is 1 (enabled).
kvm-intel.flexpriority=
- [KVM,Intel] Disable FlexPriority feature (TPR shadow).
- Default is 1 (enabled)
+ [KVM,Intel] Control KVM's use of FlexPriority feature
+ (TPR shadow). Default is 1 (enabled). Disalbe by KVM if
+ hardware lacks support for it.
kvm-intel.nested=
- [KVM,Intel] Enable VMX nesting (nVMX).
- Default is 0 (disabled)
+ [KVM,Intel] Control nested virtualization feature in
+ KVM/VMX. Default is 1 (enabled).
kvm-intel.unrestricted_guest=
- [KVM,Intel] Disable unrestricted guest feature
- (virtualized real and unpaged mode) on capable
- Intel chips. Default is 1 (enabled)
+ [KVM,Intel] Control KVM's use of unrestricted guest
+ feature (virtualized real and unpaged mode). Default
+ is 1 (enabled). Disable by KVM if EPT is disabled or
+ hardware lacks support for it.
kvm-intel.vmentry_l1d_flush=[KVM,Intel] Mitigation for L1 Terminal Fault
CVE-2018-3620.
@@ -2639,9 +2648,10 @@
Default is cond (do L1 cache flush in specific instances)
- kvm-intel.vpid= [KVM,Intel] Disable Virtual Processor Identification
- feature (tagged TLBs) on capable Intel chips.
- Default is 1 (enabled)
+ kvm-intel.vpid= [KVM,Intel] Control KVM's use of Virtual Processor
+ Identification feature (tagged TLBs). Default is 1
+ (enabled). Disable by KVM if hardware lacks support
+ for it.
l1d_flush= [X86,INTEL]
Control mitigation for L1D based snooping vulnerability.
@@ -3423,6 +3433,10 @@
[HW] Make the MicroTouch USB driver use raw coordinates
('y', default) or cooked coordinates ('n')
+ mtrr=debug [X86]
+ Enable printing debug information related to MTRR
+ registers at boot time.
+
mtrr_chunk_size=nn[KMG] [X86]
used for mtrr cleanup. It is largest continuous chunk
that could hold holes aka. UC entries.
@@ -4736,43 +4750,6 @@
the propagation of recent CPU-hotplug changes up
the rcu_node combining tree.
- rcutree.use_softirq= [KNL]
- If set to zero, move all RCU_SOFTIRQ processing to
- per-CPU rcuc kthreads. Defaults to a non-zero
- value, meaning that RCU_SOFTIRQ is used by default.
- Specify rcutree.use_softirq=0 to use rcuc kthreads.
-
- But note that CONFIG_PREEMPT_RT=y kernels disable
- this kernel boot parameter, forcibly setting it
- to zero.
-
- rcutree.rcu_fanout_exact= [KNL]
- Disable autobalancing of the rcu_node combining
- tree. This is used by rcutorture, and might
- possibly be useful for architectures having high
- cache-to-cache transfer latencies.
-
- rcutree.rcu_fanout_leaf= [KNL]
- Change the number of CPUs assigned to each
- leaf rcu_node structure. Useful for very
- large systems, which will choose the value 64,
- and for NUMA systems with large remote-access
- latencies, which will choose a value aligned
- with the appropriate hardware boundaries.
-
- rcutree.rcu_min_cached_objs= [KNL]
- Minimum number of objects which are cached and
- maintained per one CPU. Object size is equal
- to PAGE_SIZE. The cache allows to reduce the
- pressure to page allocator, also it makes the
- whole algorithm to behave better in low memory
- condition.
-
- rcutree.rcu_delay_page_cache_fill_msec= [KNL]
- Set the page-cache refill delay (in milliseconds)
- in response to low-memory conditions. The range
- of permitted values is in the range 0:100000.
-
rcutree.jiffies_till_first_fqs= [KNL]
Set delay from grace-period initialization to
first attempt to force quiescent states.
@@ -4811,21 +4788,6 @@
When RCU_NOCB_CPU is set, also adjust the
priority of NOCB callback kthreads.
- rcutree.rcu_divisor= [KNL]
- Set the shift-right count to use to compute
- the callback-invocation batch limit bl from
- the number of callbacks queued on this CPU.
- The result will be bounded below by the value of
- the rcutree.blimit kernel parameter. Every bl
- callbacks, the softirq handler will exit in
- order to allow the CPU to do other work.
-
- Please note that this callback-invocation batch
- limit applies only to non-offloaded callback
- invocation. Offloaded callbacks are instead
- invoked in the context of an rcuoc kthread, which
- scheduler will preempt as it does any other task.
-
rcutree.nocb_nobypass_lim_per_jiffy= [KNL]
On callback-offloaded (rcu_nocbs) CPUs,
RCU reduces the lock contention that would
@@ -4839,14 +4801,6 @@
the ->nocb_bypass queue. The definition of "too
many" is supplied by this kernel boot parameter.
- rcutree.rcu_nocb_gp_stride= [KNL]
- Set the number of NOCB callback kthreads in
- each group, which defaults to the square root
- of the number of CPUs. Larger numbers reduce
- the wakeup overhead on the global grace-period
- kthread, but increases that same overhead on
- each group's NOCB grace-period kthread.
-
rcutree.qhimark= [KNL]
Set threshold of queued RCU callbacks beyond which
batch limiting is disabled.
@@ -4864,6 +4818,56 @@
on rcutree.qhimark at boot time and to zero to
disable more aggressive help enlistment.
+ rcutree.rcu_delay_page_cache_fill_msec= [KNL]
+ Set the page-cache refill delay (in milliseconds)
+ in response to low-memory conditions. The range
+ of permitted values is in the range 0:100000.
+
+ rcutree.rcu_divisor= [KNL]
+ Set the shift-right count to use to compute
+ the callback-invocation batch limit bl from
+ the number of callbacks queued on this CPU.
+ The result will be bounded below by the value of
+ the rcutree.blimit kernel parameter. Every bl
+ callbacks, the softirq handler will exit in
+ order to allow the CPU to do other work.
+
+ Please note that this callback-invocation batch
+ limit applies only to non-offloaded callback
+ invocation. Offloaded callbacks are instead
+ invoked in the context of an rcuoc kthread, which
+ scheduler will preempt as it does any other task.
+
+ rcutree.rcu_fanout_exact= [KNL]
+ Disable autobalancing of the rcu_node combining
+ tree. This is used by rcutorture, and might
+ possibly be useful for architectures having high
+ cache-to-cache transfer latencies.
+
+ rcutree.rcu_fanout_leaf= [KNL]
+ Change the number of CPUs assigned to each
+ leaf rcu_node structure. Useful for very
+ large systems, which will choose the value 64,
+ and for NUMA systems with large remote-access
+ latencies, which will choose a value aligned
+ with the appropriate hardware boundaries.
+
+ rcutree.rcu_min_cached_objs= [KNL]
+ Minimum number of objects which are cached and
+ maintained per one CPU. Object size is equal
+ to PAGE_SIZE. The cache allows to reduce the
+ pressure to page allocator, also it makes the
+ whole algorithm to behave better in low memory
+ condition.
+
+ rcutree.rcu_nocb_gp_stride= [KNL]
+ Set the number of NOCB callback kthreads in
+ each group, which defaults to the square root
+ of the number of CPUs. Larger numbers reduce
+ the wakeup overhead on the global grace-period
+ kthread, but increases that same overhead on
+ each group's NOCB grace-period kthread.
+
rcutree.rcu_kick_kthreads= [KNL]
Cause the grace-period kthread to get an extra
wake_up() if it sleeps three times longer than
@@ -4871,6 +4875,13 @@
This wake_up() will be accompanied by a
WARN_ONCE() splat and an ftrace_dump().
+ rcutree.rcu_resched_ns= [KNL]
+ Limit the time spend invoking a batch of RCU
+ callbacks to the specified number of nanoseconds.
+ By default, this limit is checked only once
+ every 32 callbacks in order to limit the pain
+ inflicted by local_clock() overhead.
+
rcutree.rcu_unlock_delay= [KNL]
In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels,
this specifies an rcu_read_unlock()-time delay
@@ -4885,6 +4896,16 @@
rcu_node tree with an eye towards determining
why a new grace period has not yet started.
+ rcutree.use_softirq= [KNL]
+ If set to zero, move all RCU_SOFTIRQ processing to
+ per-CPU rcuc kthreads. Defaults to a non-zero
+ value, meaning that RCU_SOFTIRQ is used by default.
+ Specify rcutree.use_softirq=0 to use rcuc kthreads.
+
+ But note that CONFIG_PREEMPT_RT=y kernels disable
+ this kernel boot parameter, forcibly setting it
+ to zero.
+
rcuscale.gp_async= [KNL]
Measure performance of asynchronous
grace-period primitives such as call_rcu().
@@ -5087,8 +5108,17 @@
rcutorture.stall_cpu_block= [KNL]
Sleep while stalling if set. This will result
- in warnings from preemptible RCU in addition
- to any other stall-related activity.
+ in warnings from preemptible RCU in addition to
+ any other stall-related activity. Note that
+ in kernels built with CONFIG_PREEMPTION=n and
+ CONFIG_PREEMPT_COUNT=y, this parameter will
+ cause the CPU to pass through a quiescent state.
+ Given CONFIG_PREEMPTION=n, this will suppress
+ RCU CPU stall warnings, but will instead result
+ in scheduling-while-atomic splats.
+
+ Use of this module parameter results in splats.
+
rcutorture.stall_cpu_holdoff= [KNL]
Time to wait (s) after boot before inducing stall.
@@ -5452,7 +5482,12 @@
port and the regular usb controller gets disabled.
root= [KNL] Root filesystem
- See name_to_dev_t comment in init/do_mounts.c.
+ Usually this a a block device specifier of some kind,
+ see the early_lookup_bdev comment in
+ block/early-lookup.c for details.
+ Alternatively this can be "ram" for the legacy initial
+ ramdisk, "nfs" and "cifs" for root on a network file
+ system, or "mtd" and "ubi" for mounting from raw flash.
rootdelay= [KNL] Delay (in seconds) to pause before attempting to
mount the root filesystem
@@ -6563,6 +6598,12 @@
unknown_nmi_panic
[X86] Cause panic on unknown NMI.
+ unwind_debug [X86-64]
+ Enable unwinder debug output. This can be
+ useful for debugging certain unwinder error
+ conditions, including corrupt stacks and
+ bad/missing unwinder metadata.
+
usbcore.authorized_default=
[USB] Default USB device authorization:
(default -1 = authorized except for wireless USB,
@@ -6931,6 +6972,18 @@
it can be updated at runtime by writing to the
corresponding sysfs file.
+ workqueue.cpu_intensive_thresh_us=
+ Per-cpu work items which run for longer than this
+ threshold are automatically considered CPU intensive
+ and excluded from concurrency management to prevent
+ them from noticeably delaying other per-cpu work
+ items. Default is 10000 (10ms).
+
+ If CONFIG_WQ_CPU_INTENSIVE_REPORT is set, the kernel
+ will report the work functions which violate this
+ threshold repeatedly. They are likely good
+ candidates for using WQ_UNBOUND workqueues instead.
+
workqueue.disable_numa
By default, all work items queued to unbound
workqueues are affine to the NUMA nodes they're
diff --git a/Documentation/admin-guide/perf/hisi-pmu.rst b/Documentation/admin-guide/perf/hisi-pmu.rst
index 546979360513..e0174d20809a 100644
--- a/Documentation/admin-guide/perf/hisi-pmu.rst
+++ b/Documentation/admin-guide/perf/hisi-pmu.rst
@@ -56,14 +56,14 @@ Example usage of perf::
For HiSilicon uncore PMU v2 whose identifier is 0x30, the topology is the same
as PMU v1, but some new functions are added to the hardware.
-(a) L3C PMU supports filtering by core/thread within the cluster which can be
+1. L3C PMU supports filtering by core/thread within the cluster which can be
specified as a bitmap::
$# perf stat -a -e hisi_sccl3_l3c0/config=0x02,tt_core=0x3/ sleep 5
This will only count the operations from core/thread 0 and 1 in this cluster.
-(b) Tracetag allow the user to chose to count only read, write or atomic
+2. Tracetag allow the user to chose to count only read, write or atomic
operations via the tt_req parameeter in perf. The default value counts all
operations. tt_req is 3bits, 3'b100 represents read operations, 3'b101
represents write operations, 3'b110 represents atomic store operations and
@@ -73,14 +73,16 @@ represents write operations, 3'b110 represents atomic store operations and
This will only count the read operations in this cluster.
-(c) Datasrc allows the user to check where the data comes from. It is 5 bits.
+3. Datasrc allows the user to check where the data comes from. It is 5 bits.
Some important codes are as follows:
-5'b00001: comes from L3C in this die;
-5'b01000: comes from L3C in the cross-die;
-5'b01001: comes from L3C which is in another socket;
-5'b01110: comes from the local DDR;
-5'b01111: comes from the cross-die DDR;
-5'b10000: comes from cross-socket DDR;
+
+- 5'b00001: comes from L3C in this die;
+- 5'b01000: comes from L3C in the cross-die;
+- 5'b01001: comes from L3C which is in another socket;
+- 5'b01110: comes from the local DDR;
+- 5'b01111: comes from the cross-die DDR;
+- 5'b10000: comes from cross-socket DDR;
+
etc, it is mainly helpful to find that the data source is nearest from the CPU
cores. If datasrc_cfg is used in the multi-chips, the datasrc_skt shall be
configured in perf command::
@@ -88,15 +90,25 @@ configured in perf command::
$# perf stat -a -e hisi_sccl3_l3c0/config=0xb9,datasrc_cfg=0xE/,
hisi_sccl3_l3c0/config=0xb9,datasrc_cfg=0xF/ sleep 5
-(d)Some HiSilicon SoCs encapsulate multiple CPU and IO dies. Each CPU die
+4. Some HiSilicon SoCs encapsulate multiple CPU and IO dies. Each CPU die
contains several Compute Clusters (CCLs). The I/O dies are called Super I/O
clusters (SICL) containing multiple I/O clusters (ICLs). Each CCL/ICL in the
SoC has a unique ID. Each ID is 11bits, include a 6-bit SCCL-ID and 5-bit
CCL/ICL-ID. For I/O die, the ICL-ID is followed by:
-5'b00000: I/O_MGMT_ICL;
-5'b00001: Network_ICL;
-5'b00011: HAC_ICL;
-5'b10000: PCIe_ICL;
+
+- 5'b00000: I/O_MGMT_ICL;
+- 5'b00001: Network_ICL;
+- 5'b00011: HAC_ICL;
+- 5'b10000: PCIe_ICL;
+
+5. uring_channel: UC PMU events 0x47~0x59 supports filtering by tx request
+uring channel. It is 2 bits. Some important codes are as follows:
+
+- 2'b11: count the events which sent to the uring_ext (MATA) channel;
+- 2'b01: is the same as 2'b11;
+- 2'b10: count the events which sent to the uring (non-MATA) channel;
+- 2'b00: default value, count the events which sent to the both uring and
+ uring_ext channel;
Users could configure IDs to count data come from specific CCL/ICL, by setting
srcid_cmd & srcid_msk, and data desitined for specific CCL/ICL by setting
diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
index d85d90f5d000..3800fab1619b 100644
--- a/Documentation/admin-guide/sysctl/kernel.rst
+++ b/Documentation/admin-guide/sysctl/kernel.rst
@@ -949,7 +949,7 @@ user space can read performance monitor counter registers directly.
The default value is 0 (access disabled).
-See Documentation/arm64/perf.rst for more information.
+See Documentation/arch/arm64/perf.rst for more information.
pid_max