summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/locking.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/locking.rst')
-rw-r--r--Documentation/filesystems/locking.rst62
1 files changed, 40 insertions, 22 deletions
diff --git a/Documentation/filesystems/locking.rst b/Documentation/filesystems/locking.rst
index 0ca479dbb1cd..7be2900806c8 100644
--- a/Documentation/filesystems/locking.rst
+++ b/Documentation/filesystems/locking.rst
@@ -85,13 +85,14 @@ prototypes::
struct dentry *dentry, struct fileattr *fa);
int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa);
struct posix_acl * (*get_acl)(struct mnt_idmap *, struct dentry *, int);
+ struct offset_ctx *(*get_offset_ctx)(struct inode *inode);
locking rules:
all may block
-============== =============================================
+============== ==================================================
ops i_rwsem(inode)
-============== =============================================
+============== ==================================================
lookup: shared
create: exclusive
link: exclusive (both)
@@ -115,7 +116,8 @@ atomic_open: shared (exclusive if O_CREAT is set in open flags)
tmpfile: no
fileattr_get: no or exclusive
fileattr_set: exclusive
-============== =============================================
+get_offset_ctx no
+============== ==================================================
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_rwsem
@@ -374,10 +376,17 @@ invalidate_lock before invalidating page cache in truncate / hole punch
path (and thus calling into ->invalidate_folio) to block races between page
cache invalidation and page cache filling functions (fault, read, ...).
-->release_folio() is called when the kernel is about to try to drop the
-buffers from the folio in preparation for freeing it. It returns false to
-indicate that the buffers are (or may be) freeable. If ->release_folio is
-NULL, the kernel assumes that the fs has no private interest in the buffers.
+->release_folio() is called when the MM wants to make a change to the
+folio that would invalidate the filesystem's private data. For example,
+it may be about to be removed from the address_space or split. The folio
+is locked and not under writeback. It may be dirty. The gfp parameter
+is not usually used for allocation, but rather to indicate what the
+filesystem may do to attempt to free the private data. The filesystem may
+return false to indicate that the folio's private data cannot be freed.
+If it returns true, it should have already removed the private data from
+the folio. If a filesystem does not provide a ->release_folio method,
+the pagecache will assume that private data is buffer_heads and call
+try_to_free_buffers().
->free_folio() is called when the kernel has dropped the folio
from the page cache.
@@ -509,7 +518,6 @@ prototypes::
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iopoll) (struct kiocb *kiocb, bool spin);
- int (*iterate) (struct file *, struct dir_context *);
int (*iterate_shared) (struct file *, struct dir_context *);
__poll_t (*poll) (struct file *, struct poll_table_struct *);
long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
@@ -627,26 +635,29 @@ vm_operations_struct
prototypes::
- void (*open)(struct vm_area_struct*);
- void (*close)(struct vm_area_struct*);
- vm_fault_t (*fault)(struct vm_area_struct*, struct vm_fault *);
+ void (*open)(struct vm_area_struct *);
+ void (*close)(struct vm_area_struct *);
+ vm_fault_t (*fault)(struct vm_fault *);
+ vm_fault_t (*huge_fault)(struct vm_fault *, unsigned int order);
+ vm_fault_t (*map_pages)(struct vm_fault *, pgoff_t start, pgoff_t end);
vm_fault_t (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);
vm_fault_t (*pfn_mkwrite)(struct vm_area_struct *, struct vm_fault *);
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
locking rules:
-============= ========= ===========================
+============= ========== ===========================
ops mmap_lock PageLocked(page)
-============= ========= ===========================
-open: yes
-close: yes
-fault: yes can return with page locked
-map_pages: read
-page_mkwrite: yes can return with page locked
-pfn_mkwrite: yes
-access: yes
-============= ========= ===========================
+============= ========== ===========================
+open: write
+close: read/write
+fault: read can return with page locked
+huge_fault: maybe-read
+map_pages: maybe-read
+page_mkwrite: read can return with page locked
+pfn_mkwrite: read
+access: read
+============= ========== ===========================
->fault() is called when a previously not present pte is about to be faulted
in. The filesystem must find and return the page associated with the passed in
@@ -656,11 +667,18 @@ then ensure the page is not already truncated (invalidate_lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
+->huge_fault() is called when there is no PUD or PMD entry present. This
+gives the filesystem the opportunity to install a PUD or PMD sized page.
+Filesystems can also use the ->fault method to return a PMD sized page,
+so implementing this function may not be necessary. In particular,
+filesystems should not call filemap_fault() from ->huge_fault().
+The mmap_lock may not be held when this method is called.
+
->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from "start_pgoff"
till "end_pgoff". ->map_pages() is called with the RCU lock held and must
not block. If it's not possible to reach a page without blocking,
-filesystem should skip it. Filesystem should use do_set_pte() to setup
+filesystem should skip it. Filesystem should use set_pte_range() to setup
page table entry. Pointer to entry associated with the page is passed in
"pte" field in vm_fault structure. Pointers to entries for other offsets
should be calculated relative to "pte".