summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r--arch/x86/kvm/x86.c576
1 files changed, 395 insertions, 181 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index b0c47b41c264..4bd5f8a751de 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -173,8 +173,13 @@ bool __read_mostly enable_vmware_backdoor = false;
module_param(enable_vmware_backdoor, bool, S_IRUGO);
EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
-static bool __read_mostly force_emulation_prefix = false;
-module_param(force_emulation_prefix, bool, S_IRUGO);
+/*
+ * Flags to manipulate forced emulation behavior (any non-zero value will
+ * enable forced emulation).
+ */
+#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
+static int __read_mostly force_emulation_prefix;
+module_param(force_emulation_prefix, int, 0644);
int __read_mostly pi_inject_timer = -1;
module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
@@ -528,6 +533,7 @@ static int exception_class(int vector)
#define EXCPT_TRAP 1
#define EXCPT_ABORT 2
#define EXCPT_INTERRUPT 3
+#define EXCPT_DB 4
static int exception_type(int vector)
{
@@ -538,8 +544,14 @@ static int exception_type(int vector)
mask = 1 << vector;
- /* #DB is trap, as instruction watchpoints are handled elsewhere */
- if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
+ /*
+ * #DBs can be trap-like or fault-like, the caller must check other CPU
+ * state, e.g. DR6, to determine whether a #DB is a trap or fault.
+ */
+ if (mask & (1 << DB_VECTOR))
+ return EXCPT_DB;
+
+ if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
return EXCPT_TRAP;
if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
@@ -549,16 +561,13 @@ static int exception_type(int vector)
return EXCPT_FAULT;
}
-void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
+void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
+ struct kvm_queued_exception *ex)
{
- unsigned nr = vcpu->arch.exception.nr;
- bool has_payload = vcpu->arch.exception.has_payload;
- unsigned long payload = vcpu->arch.exception.payload;
-
- if (!has_payload)
+ if (!ex->has_payload)
return;
- switch (nr) {
+ switch (ex->vector) {
case DB_VECTOR:
/*
* "Certain debug exceptions may clear bit 0-3. The
@@ -583,8 +592,8 @@ void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
* So they need to be flipped for DR6.
*/
vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
- vcpu->arch.dr6 |= payload;
- vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
+ vcpu->arch.dr6 |= ex->payload;
+ vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
/*
* The #DB payload is defined as compatible with the 'pending
@@ -595,15 +604,30 @@ void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
vcpu->arch.dr6 &= ~BIT(12);
break;
case PF_VECTOR:
- vcpu->arch.cr2 = payload;
+ vcpu->arch.cr2 = ex->payload;
break;
}
- vcpu->arch.exception.has_payload = false;
- vcpu->arch.exception.payload = 0;
+ ex->has_payload = false;
+ ex->payload = 0;
}
EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
+static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
+ bool has_error_code, u32 error_code,
+ bool has_payload, unsigned long payload)
+{
+ struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
+
+ ex->vector = vector;
+ ex->injected = false;
+ ex->pending = true;
+ ex->has_error_code = has_error_code;
+ ex->error_code = error_code;
+ ex->has_payload = has_payload;
+ ex->payload = payload;
+}
+
static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
unsigned nr, bool has_error, u32 error_code,
bool has_payload, unsigned long payload, bool reinject)
@@ -613,18 +637,31 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
kvm_make_request(KVM_REQ_EVENT, vcpu);
+ /*
+ * If the exception is destined for L2 and isn't being reinjected,
+ * morph it to a VM-Exit if L1 wants to intercept the exception. A
+ * previously injected exception is not checked because it was checked
+ * when it was original queued, and re-checking is incorrect if _L1_
+ * injected the exception, in which case it's exempt from interception.
+ */
+ if (!reinject && is_guest_mode(vcpu) &&
+ kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
+ kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
+ has_payload, payload);
+ return;
+ }
+
if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
queue:
if (reinject) {
/*
- * On vmentry, vcpu->arch.exception.pending is only
- * true if an event injection was blocked by
- * nested_run_pending. In that case, however,
- * vcpu_enter_guest requests an immediate exit,
- * and the guest shouldn't proceed far enough to
- * need reinjection.
+ * On VM-Entry, an exception can be pending if and only
+ * if event injection was blocked by nested_run_pending.
+ * In that case, however, vcpu_enter_guest() requests an
+ * immediate exit, and the guest shouldn't proceed far
+ * enough to need reinjection.
*/
- WARN_ON_ONCE(vcpu->arch.exception.pending);
+ WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
vcpu->arch.exception.injected = true;
if (WARN_ON_ONCE(has_payload)) {
/*
@@ -639,17 +676,18 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
vcpu->arch.exception.injected = false;
}
vcpu->arch.exception.has_error_code = has_error;
- vcpu->arch.exception.nr = nr;
+ vcpu->arch.exception.vector = nr;
vcpu->arch.exception.error_code = error_code;
vcpu->arch.exception.has_payload = has_payload;
vcpu->arch.exception.payload = payload;
if (!is_guest_mode(vcpu))
- kvm_deliver_exception_payload(vcpu);
+ kvm_deliver_exception_payload(vcpu,
+ &vcpu->arch.exception);
return;
}
/* to check exception */
- prev_nr = vcpu->arch.exception.nr;
+ prev_nr = vcpu->arch.exception.vector;
if (prev_nr == DF_VECTOR) {
/* triple fault -> shutdown */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
@@ -657,25 +695,22 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
}
class1 = exception_class(prev_nr);
class2 = exception_class(nr);
- if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
- || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
+ if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
+ (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
/*
- * Generate double fault per SDM Table 5-5. Set
- * exception.pending = true so that the double fault
- * can trigger a nested vmexit.
+ * Synthesize #DF. Clear the previously injected or pending
+ * exception so as not to incorrectly trigger shutdown.
*/
- vcpu->arch.exception.pending = true;
vcpu->arch.exception.injected = false;
- vcpu->arch.exception.has_error_code = true;
- vcpu->arch.exception.nr = DF_VECTOR;
- vcpu->arch.exception.error_code = 0;
- vcpu->arch.exception.has_payload = false;
- vcpu->arch.exception.payload = 0;
- } else
+ vcpu->arch.exception.pending = false;
+
+ kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
+ } else {
/* replace previous exception with a new one in a hope
that instruction re-execution will regenerate lost
exception */
goto queue;
+ }
}
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
@@ -729,20 +764,22 @@ static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
{
++vcpu->stat.pf_guest;
- vcpu->arch.exception.nested_apf =
- is_guest_mode(vcpu) && fault->async_page_fault;
- if (vcpu->arch.exception.nested_apf) {
- vcpu->arch.apf.nested_apf_token = fault->address;
- kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
- } else {
+
+ /*
+ * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
+ * whether or not L1 wants to intercept "regular" #PF.
+ */
+ if (is_guest_mode(vcpu) && fault->async_page_fault)
+ kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
+ true, fault->error_code,
+ true, fault->address);
+ else
kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
fault->address);
- }
}
EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
-/* Returns true if the page fault was immediately morphed into a VM-Exit. */
-bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
+void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct kvm_mmu *fault_mmu;
@@ -760,26 +797,7 @@ bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
fault_mmu->root.hpa);
- /*
- * A workaround for KVM's bad exception handling. If KVM injected an
- * exception into L2, and L2 encountered a #PF while vectoring the
- * injected exception, manually check to see if L1 wants to intercept
- * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
- * In all other cases, defer the check to nested_ops->check_events(),
- * which will correctly handle priority (this does not). Note, other
- * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
- * most problematic, e.g. when L0 and L1 are both intercepting #PF for
- * shadow paging.
- *
- * TODO: Rewrite exception handling to track injected and pending
- * (VM-Exit) exceptions separately.
- */
- if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
- kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
- return true;
-
fault_mmu->inject_page_fault(vcpu, fault);
- return false;
}
EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
@@ -4841,7 +4859,7 @@ static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
return (kvm_arch_interrupt_allowed(vcpu) &&
kvm_cpu_accept_dm_intr(vcpu) &&
!kvm_event_needs_reinjection(vcpu) &&
- !vcpu->arch.exception.pending);
+ !kvm_is_exception_pending(vcpu));
}
static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
@@ -5016,25 +5034,38 @@ static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
struct kvm_vcpu_events *events)
{
+ struct kvm_queued_exception *ex;
+
process_nmi(vcpu);
if (kvm_check_request(KVM_REQ_SMI, vcpu))
process_smi(vcpu);
/*
- * In guest mode, payload delivery should be deferred,
- * so that the L1 hypervisor can intercept #PF before
- * CR2 is modified (or intercept #DB before DR6 is
- * modified under nVMX). Unless the per-VM capability,
- * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
- * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
- * opportunistically defer the exception payload, deliver it if the
- * capability hasn't been requested before processing a
- * KVM_GET_VCPU_EVENTS.
+ * KVM's ABI only allows for one exception to be migrated. Luckily,
+ * the only time there can be two queued exceptions is if there's a
+ * non-exiting _injected_ exception, and a pending exiting exception.
+ * In that case, ignore the VM-Exiting exception as it's an extension
+ * of the injected exception.
+ */
+ if (vcpu->arch.exception_vmexit.pending &&
+ !vcpu->arch.exception.pending &&
+ !vcpu->arch.exception.injected)
+ ex = &vcpu->arch.exception_vmexit;
+ else
+ ex = &vcpu->arch.exception;
+
+ /*
+ * In guest mode, payload delivery should be deferred if the exception
+ * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
+ * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
+ * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
+ * propagate the payload and so it cannot be safely deferred. Deliver
+ * the payload if the capability hasn't been requested.
*/
if (!vcpu->kvm->arch.exception_payload_enabled &&
- vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
- kvm_deliver_exception_payload(vcpu);
+ ex->pending && ex->has_payload)
+ kvm_deliver_exception_payload(vcpu, ex);
/*
* The API doesn't provide the instruction length for software
@@ -5042,26 +5073,25 @@ static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
* isn't advanced, we should expect to encounter the exception
* again.
*/
- if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
+ if (kvm_exception_is_soft(ex->vector)) {
events->exception.injected = 0;
events->exception.pending = 0;
} else {
- events->exception.injected = vcpu->arch.exception.injected;
- events->exception.pending = vcpu->arch.exception.pending;
+ events->exception.injected = ex->injected;
+ events->exception.pending = ex->pending;
/*
* For ABI compatibility, deliberately conflate
* pending and injected exceptions when
* KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
*/
if (!vcpu->kvm->arch.exception_payload_enabled)
- events->exception.injected |=
- vcpu->arch.exception.pending;
+ events->exception.injected |= ex->pending;
}
- events->exception.nr = vcpu->arch.exception.nr;
- events->exception.has_error_code = vcpu->arch.exception.has_error_code;
- events->exception.error_code = vcpu->arch.exception.error_code;
- events->exception_has_payload = vcpu->arch.exception.has_payload;
- events->exception_payload = vcpu->arch.exception.payload;
+ events->exception.nr = ex->vector;
+ events->exception.has_error_code = ex->has_error_code;
+ events->exception.error_code = ex->error_code;
+ events->exception_has_payload = ex->has_payload;
+ events->exception_payload = ex->payload;
events->interrupt.injected =
vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
@@ -5131,9 +5161,22 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
return -EINVAL;
process_nmi(vcpu);
+
+ /*
+ * Flag that userspace is stuffing an exception, the next KVM_RUN will
+ * morph the exception to a VM-Exit if appropriate. Do this only for
+ * pending exceptions, already-injected exceptions are not subject to
+ * intercpetion. Note, userspace that conflates pending and injected
+ * is hosed, and will incorrectly convert an injected exception into a
+ * pending exception, which in turn may cause a spurious VM-Exit.
+ */
+ vcpu->arch.exception_from_userspace = events->exception.pending;
+
+ vcpu->arch.exception_vmexit.pending = false;
+
vcpu->arch.exception.injected = events->exception.injected;
vcpu->arch.exception.pending = events->exception.pending;
- vcpu->arch.exception.nr = events->exception.nr;
+ vcpu->arch.exception.vector = events->exception.nr;
vcpu->arch.exception.has_error_code = events->exception.has_error_code;
vcpu->arch.exception.error_code = events->exception.error_code;
vcpu->arch.exception.has_payload = events->exception_has_payload;
@@ -7257,6 +7300,7 @@ static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
int handle_ud(struct kvm_vcpu *vcpu)
{
static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
+ int fep_flags = READ_ONCE(force_emulation_prefix);
int emul_type = EMULTYPE_TRAP_UD;
char sig[5]; /* ud2; .ascii "kvm" */
struct x86_exception e;
@@ -7264,10 +7308,12 @@ int handle_ud(struct kvm_vcpu *vcpu)
if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
return 1;
- if (force_emulation_prefix &&
+ if (fep_flags &&
kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
sig, sizeof(sig), &e) == 0 &&
memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
+ if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
+ kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
emul_type = EMULTYPE_TRAP_UD_FORCED;
}
@@ -7933,14 +7979,20 @@ static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
int r;
r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
+ if (r < 0)
+ return X86EMUL_UNHANDLEABLE;
- if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
- complete_emulated_rdmsr, r)) {
- /* Bounce to user space */
- return X86EMUL_IO_NEEDED;
+ if (r) {
+ if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
+ complete_emulated_rdmsr, r))
+ return X86EMUL_IO_NEEDED;
+
+ trace_kvm_msr_read_ex(msr_index);
+ return X86EMUL_PROPAGATE_FAULT;
}
- return r;
+ trace_kvm_msr_read(msr_index, *pdata);
+ return X86EMUL_CONTINUE;
}
static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
@@ -7950,14 +8002,20 @@ static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
int r;
r = kvm_set_msr_with_filter(vcpu, msr_index, data);
+ if (r < 0)
+ return X86EMUL_UNHANDLEABLE;
- if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
- complete_emulated_msr_access, r)) {
- /* Bounce to user space */
- return X86EMUL_IO_NEEDED;
+ if (r) {
+ if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
+ complete_emulated_msr_access, r))
+ return X86EMUL_IO_NEEDED;
+
+ trace_kvm_msr_write_ex(msr_index, data);
+ return X86EMUL_PROPAGATE_FAULT;
}
- return r;
+ trace_kvm_msr_write(msr_index, data);
+ return X86EMUL_CONTINUE;
}
static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
@@ -8161,18 +8219,17 @@ static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
}
}
-static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
+static void inject_emulated_exception(struct kvm_vcpu *vcpu)
{
struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
- if (ctxt->exception.vector == PF_VECTOR)
- return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
- if (ctxt->exception.error_code_valid)
+ if (ctxt->exception.vector == PF_VECTOR)
+ kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
+ else if (ctxt->exception.error_code_valid)
kvm_queue_exception_e(vcpu, ctxt->exception.vector,
ctxt->exception.error_code);
else
kvm_queue_exception(vcpu, ctxt->exception.vector);
- return false;
}
static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
@@ -8548,8 +8605,46 @@ int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
}
EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
-static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
+static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
{
+ u32 shadow;
+
+ if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
+ return true;
+
+ /*
+ * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
+ * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
+ * to avoid the relatively expensive CPUID lookup.
+ */
+ shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
+ return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
+ guest_cpuid_is_intel(vcpu);
+}
+
+static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
+ int emulation_type, int *r)
+{
+ WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
+
+ /*
+ * Do not check for code breakpoints if hardware has already done the
+ * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
+ * the instruction has passed all exception checks, and all intercepted
+ * exceptions that trigger emulation have lower priority than code
+ * breakpoints, i.e. the fact that the intercepted exception occurred
+ * means any code breakpoints have already been serviced.
+ *
+ * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
+ * hardware has checked the RIP of the magic prefix, but not the RIP of
+ * the instruction being emulated. The intent of forced emulation is
+ * to behave as if KVM intercepted the instruction without an exception
+ * and without a prefix.
+ */
+ if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
+ EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
+ return false;
+
if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
(vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
struct kvm_run *kvm_run = vcpu->run;
@@ -8569,7 +8664,7 @@ static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
}
if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
- !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
+ !kvm_is_code_breakpoint_inhibited(vcpu)) {
unsigned long eip = kvm_get_linear_rip(vcpu);
u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
vcpu->arch.dr7,
@@ -8671,8 +8766,7 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
* are fault-like and are higher priority than any faults on
* the code fetch itself.
*/
- if (!(emulation_type & EMULTYPE_SKIP) &&
- kvm_vcpu_check_code_breakpoint(vcpu, &r))
+ if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
return r;
r = x86_decode_emulated_instruction(vcpu, emulation_type,
@@ -8770,8 +8864,7 @@ restart:
if (ctxt->have_exception) {
r = 1;
- if (inject_emulated_exception(vcpu))
- return r;
+ inject_emulated_exception(vcpu);
} else if (vcpu->arch.pio.count) {
if (!vcpu->arch.pio.in) {
/* FIXME: return into emulator if single-stepping. */
@@ -8801,6 +8894,12 @@ writeback:
unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
toggle_interruptibility(vcpu, ctxt->interruptibility);
vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
+
+ /*
+ * Note, EXCPT_DB is assumed to be fault-like as the emulator
+ * only supports code breakpoints and general detect #DB, both
+ * of which are fault-like.
+ */
if (!ctxt->have_exception ||
exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
@@ -9662,74 +9761,155 @@ int kvm_check_nested_events(struct kvm_vcpu *vcpu)
static void kvm_inject_exception(struct kvm_vcpu *vcpu)
{
- trace_kvm_inj_exception(vcpu->arch.exception.nr,
+ trace_kvm_inj_exception(vcpu->arch.exception.vector,
vcpu->arch.exception.has_error_code,
vcpu->arch.exception.error_code,
vcpu->arch.exception.injected);
if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
vcpu->arch.exception.error_code = false;
- static_call(kvm_x86_queue_exception)(vcpu);
+ static_call(kvm_x86_inject_exception)(vcpu);
}
-static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
+/*
+ * Check for any event (interrupt or exception) that is ready to be injected,
+ * and if there is at least one event, inject the event with the highest
+ * priority. This handles both "pending" events, i.e. events that have never
+ * been injected into the guest, and "injected" events, i.e. events that were
+ * injected as part of a previous VM-Enter, but weren't successfully delivered
+ * and need to be re-injected.
+ *
+ * Note, this is not guaranteed to be invoked on a guest instruction boundary,
+ * i.e. doesn't guarantee that there's an event window in the guest. KVM must
+ * be able to inject exceptions in the "middle" of an instruction, and so must
+ * also be able to re-inject NMIs and IRQs in the middle of an instruction.
+ * I.e. for exceptions and re-injected events, NOT invoking this on instruction
+ * boundaries is necessary and correct.
+ *
+ * For simplicity, KVM uses a single path to inject all events (except events
+ * that are injected directly from L1 to L2) and doesn't explicitly track
+ * instruction boundaries for asynchronous events. However, because VM-Exits
+ * that can occur during instruction execution typically result in KVM skipping
+ * the instruction or injecting an exception, e.g. instruction and exception
+ * intercepts, and because pending exceptions have higher priority than pending
+ * interrupts, KVM still honors instruction boundaries in most scenarios.
+ *
+ * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
+ * the instruction or inject an exception, then KVM can incorrecty inject a new
+ * asynchrounous event if the event became pending after the CPU fetched the
+ * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
+ * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
+ * injected on the restarted instruction instead of being deferred until the
+ * instruction completes.
+ *
+ * In practice, this virtualization hole is unlikely to be observed by the
+ * guest, and even less likely to cause functional problems. To detect the
+ * hole, the guest would have to trigger an event on a side effect of an early
+ * phase of instruction execution, e.g. on the instruction fetch from memory.
+ * And for it to be a functional problem, the guest would need to depend on the
+ * ordering between that side effect, the instruction completing, _and_ the
+ * delivery of the asynchronous event.
+ */
+static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
+ bool *req_immediate_exit)
{
+ bool can_inject;
int r;
- bool can_inject = true;
- /* try to reinject previous events if any */
+ /*
+ * Process nested events first, as nested VM-Exit supercedes event
+ * re-injection. If there's an event queued for re-injection, it will
+ * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
+ */
+ if (is_guest_mode(vcpu))
+ r = kvm_check_nested_events(vcpu);
+ else
+ r = 0;
- if (vcpu->arch.exception.injected) {
- kvm_inject_exception(vcpu);
- can_inject = false;
- }
/*
- * Do not inject an NMI or interrupt if there is a pending
- * exception. Exceptions and interrupts are recognized at
- * instruction boundaries, i.e. the start of an instruction.
- * Trap-like exceptions, e.g. #DB, have higher priority than
- * NMIs and interrupts, i.e. traps are recognized before an
- * NMI/interrupt that's pending on the same instruction.
- * Fault-like exceptions, e.g. #GP and #PF, are the lowest
- * priority, but are only generated (pended) during instruction
- * execution, i.e. a pending fault-like exception means the
- * fault occurred on the *previous* instruction and must be
- * serviced prior to recognizing any new events in order to
- * fully complete the previous instruction.
+ * Re-inject exceptions and events *especially* if immediate entry+exit
+ * to/from L2 is needed, as any event that has already been injected
+ * into L2 needs to complete its lifecycle before injecting a new event.
+ *
+ * Don't re-inject an NMI or interrupt if there is a pending exception.
+ * This collision arises if an exception occurred while vectoring the
+ * injected event, KVM intercepted said exception, and KVM ultimately
+ * determined the fault belongs to the guest and queues the exception
+ * for injection back into the guest.
+ *
+ * "Injected" interrupts can also collide with pending exceptions if
+ * userspace ignores the "ready for injection" flag and blindly queues
+ * an interrupt. In that case, prioritizing the exception is correct,
+ * as the exception "occurred" before the exit to userspace. Trap-like
+ * exceptions, e.g. most #DBs, have higher priority than interrupts.
+ * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
+ * priority, they're only generated (pended) during instruction
+ * execution, and interrupts are recognized at instruction boundaries.
+ * Thus a pending fault-like exception means the fault occurred on the
+ * *previous* instruction and must be serviced prior to recognizing any
+ * new events in order to fully complete the previous instruction.
*/
- else if (!vcpu->arch.exception.pending) {
- if (vcpu->arch.nmi_injected) {
- static_call(kvm_x86_inject_nmi)(vcpu);
- can_inject = false;
- } else if (vcpu->arch.interrupt.injected) {
- static_call(kvm_x86_inject_irq)(vcpu, true);
- can_inject = false;
- }
- }
+ if (vcpu->arch.exception.injected)
+ kvm_inject_exception(vcpu);
+ else if (kvm_is_exception_pending(vcpu))
+ ; /* see above */
+ else if (vcpu->arch.nmi_injected)
+ static_call(kvm_x86_inject_nmi)(vcpu);
+ else if (vcpu->arch.interrupt.injected)
+ static_call(kvm_x86_inject_irq)(vcpu, true);
+ /*
+ * Exceptions that morph to VM-Exits are handled above, and pending
+ * exceptions on top of injected exceptions that do not VM-Exit should
+ * either morph to #DF or, sadly, override the injected exception.
+ */
WARN_ON_ONCE(vcpu->arch.exception.injected &&
vcpu->arch.exception.pending);
/*
- * Call check_nested_events() even if we reinjected a previous event
- * in order for caller to determine if it should require immediate-exit
- * from L2 to L1 due to pending L1 events which require exit
- * from L2 to L1.
+ * Bail if immediate entry+exit to/from the guest is needed to complete
+ * nested VM-Enter or event re-injection so that a different pending
+ * event can be serviced (or if KVM needs to exit to userspace).
+ *
+ * Otherwise, continue processing events even if VM-Exit occurred. The
+ * VM-Exit will have cleared exceptions that were meant for L2, but
+ * there may now be events that can be injected into L1.
*/
- if (is_guest_mode(vcpu)) {
- r = kvm_check_nested_events(vcpu);
- if (r < 0)
- goto out;
- }
+ if (r < 0)
+ goto out;
+
+ /*
+ * A pending exception VM-Exit should either result in nested VM-Exit
+ * or force an immediate re-entry and exit to/from L2, and exception
+ * VM-Exits cannot be injected (flag should _never_ be set).
+ */
+ WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
+ vcpu->arch.exception_vmexit.pending);
+
+ /*
+ * New events, other than exceptions, cannot be injected if KVM needs
+ * to re-inject a previous event. See above comments on re-injecting
+ * for why pending exceptions get priority.
+ */
+ can_inject = !kvm_event_needs_reinjection(vcpu);
- /* try to inject new event if pending */
if (vcpu->arch.exception.pending) {
- if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
+ /*
+ * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
+ * value pushed on the stack. Trap-like exception and all #DBs
+ * leave RF as-is (KVM follows Intel's behavior in this regard;
+ * AMD states that code breakpoint #DBs excplitly clear RF=0).
+ *
+ * Note, most versions of Intel's SDM and AMD's APM incorrectly
+ * describe the behavior of General Detect #DBs, which are
+ * fault-like. They do _not_ set RF, a la code breakpoints.
+ */
+ if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
X86_EFLAGS_RF);
- if (vcpu->arch.exception.nr == DB_VECTOR) {
- kvm_deliver_exception_payload(vcpu);
+ if (vcpu->arch.exception.vector == DB_VECTOR) {
+ kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
if (vcpu->arch.dr7 & DR7_GD) {
vcpu->arch.dr7 &= ~DR7_GD;
kvm_update_dr7(vcpu);
@@ -9801,11 +9981,11 @@ static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
}
if (is_guest_mode(vcpu) &&
- kvm_x86_ops.nested_ops->hv_timer_pending &&
- kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
+ kvm_x86_ops.nested_ops->has_events &&
+ kvm_x86_ops.nested_ops->has_events(vcpu))
*req_immediate_exit = true;
- WARN_ON(vcpu->arch.exception.pending);
+ WARN_ON(kvm_is_exception_pending(vcpu));
return 0;
out:
@@ -10110,7 +10290,7 @@ void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
* When APICv gets disabled, we may still have injected interrupts
* pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
* still active when the interrupt got accepted. Make sure
- * inject_pending_event() is called to check for that.
+ * kvm_check_and_inject_events() is called to check for that.
*/
if (!apic->apicv_active)
kvm_make_request(KVM_REQ_EVENT, vcpu);
@@ -10407,7 +10587,7 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
goto out;
}
- r = inject_pending_event(vcpu, &req_immediate_exit);
+ r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
if (r < 0) {
r = 0;
goto out;
@@ -10646,10 +10826,26 @@ static inline int vcpu_block(struct kvm_vcpu *vcpu)
if (hv_timer)
kvm_lapic_switch_to_hv_timer(vcpu);
- if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
+ /*
+ * If the vCPU is not runnable, a signal or another host event
+ * of some kind is pending; service it without changing the
+ * vCPU's activity state.
+ */
+ if (!kvm_arch_vcpu_runnable(vcpu))
return 1;
}
+ /*
+ * Evaluate nested events before exiting the halted state. This allows
+ * the halt state to be recorded properly in the VMCS12's activity
+ * state field (AMD does not have a similar field and a VM-Exit always
+ * causes a spurious wakeup from HLT).
+ */
+ if (is_guest_mode(vcpu)) {
+ if (kvm_check_nested_events(vcpu) < 0)
+ return 0;
+ }
+
if (kvm_apic_accept_events(vcpu) < 0)
return 0;
switch(vcpu->arch.mp_state) {
@@ -10673,9 +10869,6 @@ static inline int vcpu_block(struct kvm_vcpu *vcpu)
static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
{
- if (is_guest_mode(vcpu))
- kvm_check_nested_events(vcpu);
-
return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
!vcpu->arch.apf.halted);
}
@@ -10824,6 +11017,7 @@ static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
{
+ struct kvm_queued_exception *ex = &vcpu->arch.exception;
struct kvm_run *kvm_run = vcpu->run;
int r;
@@ -10852,7 +11046,6 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
r = 0;
goto out;
}
- kvm_clear_request(KVM_REQ_UNHALT, vcpu);
r = -EAGAIN;
if (signal_pending(current)) {
r = -EINTR;
@@ -10882,6 +11075,21 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
}
}
+ /*
+ * If userspace set a pending exception and L2 is active, convert it to
+ * a pending VM-Exit if L1 wants to intercept the exception.
+ */
+ if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
+ kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
+ ex->error_code)) {
+ kvm_queue_exception_vmexit(vcpu, ex->vector,
+ ex->has_error_code, ex->error_code,
+ ex->has_payload, ex->payload);
+ ex->injected = false;
+ ex->pending = false;
+ }
+ vcpu->arch.exception_from_userspace = false;
+
if (unlikely(vcpu->arch.complete_userspace_io)) {
int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
vcpu->arch.complete_userspace_io = NULL;
@@ -10988,6 +11196,7 @@ static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
vcpu->arch.exception.pending = false;
+ vcpu->arch.exception_vmexit.pending = false;
kvm_make_request(KVM_REQ_EVENT, vcpu);
}
@@ -11125,11 +11334,12 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
}
/*
- * KVM_MP_STATE_INIT_RECEIVED means the processor is in
- * INIT state; latched init should be reported using
- * KVM_SET_VCPU_EVENTS, so reject it here.
+ * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
+ * forcing the guest into INIT/SIPI if those events are supposed to be
+ * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
+ * if an SMI is pending as well.
*/
- if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
+ if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
(mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
goto out;
@@ -11368,7 +11578,7 @@ int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
r = -EBUSY;
- if (vcpu->arch.exception.pending)
+ if (kvm_is_exception_pending(vcpu))
goto out;
if (dbg->control & KVM_GUESTDBG_INJECT_DB)
kvm_queue_exception(vcpu, DB_VECTOR);
@@ -11750,8 +11960,8 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
/*
- * To avoid have the INIT path from kvm_apic_has_events() that be
- * called with loaded FPU and does not let userspace fix the state.
+ * All paths that lead to INIT are required to load the guest's
+ * FPU state (because most paths are buried in KVM_RUN).
*/
if (init_event)
kvm_put_guest_fpu(vcpu);
@@ -12080,6 +12290,10 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
if (ret)
goto out_page_track;
+ ret = static_call(kvm_x86_vm_init)(kvm);
+ if (ret)
+ goto out_uninit_mmu;
+
INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
atomic_set(&kvm->arch.noncoherent_dma_count, 0);
@@ -12115,8 +12329,10 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm_hv_init_vm(kvm);
kvm_xen_init_vm(kvm);
- return static_call(kvm_x86_vm_init)(kvm);
+ return 0;
+out_uninit_mmu:
+ kvm_mmu_uninit_vm(kvm);
out_page_track:
kvm_page_track_cleanup(kvm);
out:
@@ -12589,13 +12805,14 @@ static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
if (!list_empty_careful(&vcpu->async_pf.done))
return true;
- if (kvm_apic_has_events(vcpu))
+ if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
+ kvm_apic_init_sipi_allowed(vcpu))
return true;
if (vcpu->arch.pv.pv_unhalted)
return true;
- if (vcpu->arch.exception.pending)
+ if (kvm_is_exception_pending(vcpu))
return true;
if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
@@ -12617,16 +12834,13 @@ static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
return true;
if (is_guest_mode(vcpu) &&
- kvm_x86_ops.nested_ops->hv_timer_pending &&
- kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
+ kvm_x86_ops.nested_ops->has_events &&
+ kvm_x86_ops.nested_ops->has_events(vcpu))
return true;
if (kvm_xen_has_pending_events(vcpu))
return true;
- if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
- return true;
-
return false;
}
@@ -12850,7 +13064,7 @@ bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
{
if (unlikely(!lapic_in_kernel(vcpu) ||
kvm_event_needs_reinjection(vcpu) ||
- vcpu->arch.exception.pending))
+ kvm_is_exception_pending(vcpu)))
return false;
if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
@@ -13401,7 +13615,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
-EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
+EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);