summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/panthor/panthor_sched.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/panthor/panthor_sched.c')
-rw-r--r--drivers/gpu/drm/panthor/panthor_sched.c3528
1 files changed, 3528 insertions, 0 deletions
diff --git a/drivers/gpu/drm/panthor/panthor_sched.c b/drivers/gpu/drm/panthor/panthor_sched.c
new file mode 100644
index 000000000000..7f16a4a14e9a
--- /dev/null
+++ b/drivers/gpu/drm/panthor/panthor_sched.c
@@ -0,0 +1,3528 @@
+// SPDX-License-Identifier: GPL-2.0 or MIT
+/* Copyright 2023 Collabora ltd. */
+
+#include <drm/drm_drv.h>
+#include <drm/drm_exec.h>
+#include <drm/drm_gem_shmem_helper.h>
+#include <drm/drm_managed.h>
+#include <drm/gpu_scheduler.h>
+#include <drm/panthor_drm.h>
+
+#include <linux/build_bug.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dma-resv.h>
+#include <linux/firmware.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/iosys-map.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+
+#include "panthor_devfreq.h"
+#include "panthor_device.h"
+#include "panthor_fw.h"
+#include "panthor_gem.h"
+#include "panthor_gpu.h"
+#include "panthor_heap.h"
+#include "panthor_mmu.h"
+#include "panthor_regs.h"
+#include "panthor_sched.h"
+
+/**
+ * DOC: Scheduler
+ *
+ * Mali CSF hardware adopts a firmware-assisted scheduling model, where
+ * the firmware takes care of scheduling aspects, to some extent.
+ *
+ * The scheduling happens at the scheduling group level, each group
+ * contains 1 to N queues (N is FW/hardware dependent, and exposed
+ * through the firmware interface). Each queue is assigned a command
+ * stream ring buffer, which serves as a way to get jobs submitted to
+ * the GPU, among other things.
+ *
+ * The firmware can schedule a maximum of M groups (M is FW/hardware
+ * dependent, and exposed through the firmware interface). Passed
+ * this maximum number of groups, the kernel must take care of
+ * rotating the groups passed to the firmware so every group gets
+ * a chance to have his queues scheduled for execution.
+ *
+ * The current implementation only supports with kernel-mode queues.
+ * In other terms, userspace doesn't have access to the ring-buffer.
+ * Instead, userspace passes indirect command stream buffers that are
+ * called from the queue ring-buffer by the kernel using a pre-defined
+ * sequence of command stream instructions to ensure the userspace driver
+ * always gets consistent results (cache maintenance,
+ * synchronization, ...).
+ *
+ * We rely on the drm_gpu_scheduler framework to deal with job
+ * dependencies and submission. As any other driver dealing with a
+ * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
+ * entity has its own job scheduler. When a job is ready to be executed
+ * (all its dependencies are met), it is pushed to the appropriate
+ * queue ring-buffer, and the group is scheduled for execution if it
+ * wasn't already active.
+ *
+ * Kernel-side group scheduling is timeslice-based. When we have less
+ * groups than there are slots, the periodic tick is disabled and we
+ * just let the FW schedule the active groups. When there are more
+ * groups than slots, we let each group a chance to execute stuff for
+ * a given amount of time, and then re-evaluate and pick new groups
+ * to schedule. The group selection algorithm is based on
+ * priority+round-robin.
+ *
+ * Even though user-mode queues is out of the scope right now, the
+ * current design takes them into account by avoiding any guess on the
+ * group/queue state that would be based on information we wouldn't have
+ * if userspace was in charge of the ring-buffer. That's also one of the
+ * reason we don't do 'cooperative' scheduling (encoding FW group slot
+ * reservation as dma_fence that would be returned from the
+ * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
+ * a queue of waiters, ordered by job submission order). This approach
+ * would work for kernel-mode queues, but would make user-mode queues a
+ * lot more complicated to retrofit.
+ */
+
+#define JOB_TIMEOUT_MS 5000
+
+#define MIN_CS_PER_CSG 8
+
+#define MIN_CSGS 3
+#define MAX_CSG_PRIO 0xf
+
+struct panthor_group;
+
+/**
+ * struct panthor_csg_slot - Command stream group slot
+ *
+ * This represents a FW slot for a scheduling group.
+ */
+struct panthor_csg_slot {
+ /** @group: Scheduling group bound to this slot. */
+ struct panthor_group *group;
+
+ /** @priority: Group priority. */
+ u8 priority;
+
+ /**
+ * @idle: True if the group bound to this slot is idle.
+ *
+ * A group is idle when it has nothing waiting for execution on
+ * all its queues, or when queues are blocked waiting for something
+ * to happen (synchronization object).
+ */
+ bool idle;
+};
+
+/**
+ * enum panthor_csg_priority - Group priority
+ */
+enum panthor_csg_priority {
+ /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
+ PANTHOR_CSG_PRIORITY_LOW = 0,
+
+ /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
+ PANTHOR_CSG_PRIORITY_MEDIUM,
+
+ /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
+ PANTHOR_CSG_PRIORITY_HIGH,
+
+ /**
+ * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
+ *
+ * Real-time priority allows one to preempt scheduling of other
+ * non-real-time groups. When such a group becomes executable,
+ * it will evict the group with the lowest non-rt priority if
+ * there's no free group slot available.
+ *
+ * Currently not exposed to userspace.
+ */
+ PANTHOR_CSG_PRIORITY_RT,
+
+ /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
+ PANTHOR_CSG_PRIORITY_COUNT,
+};
+
+/**
+ * struct panthor_scheduler - Object used to manage the scheduler
+ */
+struct panthor_scheduler {
+ /** @ptdev: Device. */
+ struct panthor_device *ptdev;
+
+ /**
+ * @wq: Workqueue used by our internal scheduler logic and
+ * drm_gpu_scheduler.
+ *
+ * Used for the scheduler tick, group update or other kind of FW
+ * event processing that can't be handled in the threaded interrupt
+ * path. Also passed to the drm_gpu_scheduler instances embedded
+ * in panthor_queue.
+ */
+ struct workqueue_struct *wq;
+
+ /**
+ * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
+ *
+ * We have a queue dedicated to heap chunk allocation works to avoid
+ * blocking the rest of the scheduler if the allocation tries to
+ * reclaim memory.
+ */
+ struct workqueue_struct *heap_alloc_wq;
+
+ /** @tick_work: Work executed on a scheduling tick. */
+ struct delayed_work tick_work;
+
+ /**
+ * @sync_upd_work: Work used to process synchronization object updates.
+ *
+ * We use this work to unblock queues/groups that were waiting on a
+ * synchronization object.
+ */
+ struct work_struct sync_upd_work;
+
+ /**
+ * @fw_events_work: Work used to process FW events outside the interrupt path.
+ *
+ * Even if the interrupt is threaded, we need any event processing
+ * that require taking the panthor_scheduler::lock to be processed
+ * outside the interrupt path so we don't block the tick logic when
+ * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
+ * event processing requires taking this lock, we just delegate all
+ * FW event processing to the scheduler workqueue.
+ */
+ struct work_struct fw_events_work;
+
+ /**
+ * @fw_events: Bitmask encoding pending FW events.
+ */
+ atomic_t fw_events;
+
+ /**
+ * @resched_target: When the next tick should occur.
+ *
+ * Expressed in jiffies.
+ */
+ u64 resched_target;
+
+ /**
+ * @last_tick: When the last tick occurred.
+ *
+ * Expressed in jiffies.
+ */
+ u64 last_tick;
+
+ /** @tick_period: Tick period in jiffies. */
+ u64 tick_period;
+
+ /**
+ * @lock: Lock protecting access to all the scheduler fields.
+ *
+ * Should be taken in the tick work, the irq handler, and anywhere the @groups
+ * fields are touched.
+ */
+ struct mutex lock;
+
+ /** @groups: Various lists used to classify groups. */
+ struct {
+ /**
+ * @runnable: Runnable group lists.
+ *
+ * When a group has queues that want to execute something,
+ * its panthor_group::run_node should be inserted here.
+ *
+ * One list per-priority.
+ */
+ struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
+
+ /**
+ * @idle: Idle group lists.
+ *
+ * When all queues of a group are idle (either because they
+ * have nothing to execute, or because they are blocked), the
+ * panthor_group::run_node field should be inserted here.
+ *
+ * One list per-priority.
+ */
+ struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
+
+ /**
+ * @waiting: List of groups whose queues are blocked on a
+ * synchronization object.
+ *
+ * Insert panthor_group::wait_node here when a group is waiting
+ * for synchronization objects to be signaled.
+ *
+ * This list is evaluated in the @sync_upd_work work.
+ */
+ struct list_head waiting;
+ } groups;
+
+ /**
+ * @csg_slots: FW command stream group slots.
+ */
+ struct panthor_csg_slot csg_slots[MAX_CSGS];
+
+ /** @csg_slot_count: Number of command stream group slots exposed by the FW. */
+ u32 csg_slot_count;
+
+ /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
+ u32 cs_slot_count;
+
+ /** @as_slot_count: Number of address space slots supported by the MMU. */
+ u32 as_slot_count;
+
+ /** @used_csg_slot_count: Number of command stream group slot currently used. */
+ u32 used_csg_slot_count;
+
+ /** @sb_slot_count: Number of scoreboard slots. */
+ u32 sb_slot_count;
+
+ /**
+ * @might_have_idle_groups: True if an active group might have become idle.
+ *
+ * This will force a tick, so other runnable groups can be scheduled if one
+ * or more active groups became idle.
+ */
+ bool might_have_idle_groups;
+
+ /** @pm: Power management related fields. */
+ struct {
+ /** @has_ref: True if the scheduler owns a runtime PM reference. */
+ bool has_ref;
+ } pm;
+
+ /** @reset: Reset related fields. */
+ struct {
+ /** @lock: Lock protecting the other reset fields. */
+ struct mutex lock;
+
+ /**
+ * @in_progress: True if a reset is in progress.
+ *
+ * Set to true in panthor_sched_pre_reset() and back to false in
+ * panthor_sched_post_reset().
+ */
+ atomic_t in_progress;
+
+ /**
+ * @stopped_groups: List containing all groups that were stopped
+ * before a reset.
+ *
+ * Insert panthor_group::run_node in the pre_reset path.
+ */
+ struct list_head stopped_groups;
+ } reset;
+};
+
+/**
+ * struct panthor_syncobj_32b - 32-bit FW synchronization object
+ */
+struct panthor_syncobj_32b {
+ /** @seqno: Sequence number. */
+ u32 seqno;
+
+ /**
+ * @status: Status.
+ *
+ * Not zero on failure.
+ */
+ u32 status;
+};
+
+/**
+ * struct panthor_syncobj_64b - 64-bit FW synchronization object
+ */
+struct panthor_syncobj_64b {
+ /** @seqno: Sequence number. */
+ u64 seqno;
+
+ /**
+ * @status: Status.
+ *
+ * Not zero on failure.
+ */
+ u32 status;
+
+ /** @pad: MBZ. */
+ u32 pad;
+};
+
+/**
+ * struct panthor_queue - Execution queue
+ */
+struct panthor_queue {
+ /** @scheduler: DRM scheduler used for this queue. */
+ struct drm_gpu_scheduler scheduler;
+
+ /** @entity: DRM scheduling entity used for this queue. */
+ struct drm_sched_entity entity;
+
+ /**
+ * @remaining_time: Time remaining before the job timeout expires.
+ *
+ * The job timeout is suspended when the queue is not scheduled by the
+ * FW. Every time we suspend the timer, we need to save the remaining
+ * time so we can restore it later on.
+ */
+ unsigned long remaining_time;
+
+ /** @timeout_suspended: True if the job timeout was suspended. */
+ bool timeout_suspended;
+
+ /**
+ * @doorbell_id: Doorbell assigned to this queue.
+ *
+ * Right now, all groups share the same doorbell, and the doorbell ID
+ * is assigned to group_slot + 1 when the group is assigned a slot. But
+ * we might decide to provide fine grained doorbell assignment at some
+ * point, so don't have to wake up all queues in a group every time one
+ * of them is updated.
+ */
+ u8 doorbell_id;
+
+ /**
+ * @priority: Priority of the queue inside the group.
+ *
+ * Must be less than 16 (Only 4 bits available).
+ */
+ u8 priority;
+#define CSF_MAX_QUEUE_PRIO GENMASK(3, 0)
+
+ /** @ringbuf: Command stream ring-buffer. */
+ struct panthor_kernel_bo *ringbuf;
+
+ /** @iface: Firmware interface. */
+ struct {
+ /** @mem: FW memory allocated for this interface. */
+ struct panthor_kernel_bo *mem;
+
+ /** @input: Input interface. */
+ struct panthor_fw_ringbuf_input_iface *input;
+
+ /** @output: Output interface. */
+ const struct panthor_fw_ringbuf_output_iface *output;
+
+ /** @input_fw_va: FW virtual address of the input interface buffer. */
+ u32 input_fw_va;
+
+ /** @output_fw_va: FW virtual address of the output interface buffer. */
+ u32 output_fw_va;
+ } iface;
+
+ /**
+ * @syncwait: Stores information about the synchronization object this
+ * queue is waiting on.
+ */
+ struct {
+ /** @gpu_va: GPU address of the synchronization object. */
+ u64 gpu_va;
+
+ /** @ref: Reference value to compare against. */
+ u64 ref;
+
+ /** @gt: True if this is a greater-than test. */
+ bool gt;
+
+ /** @sync64: True if this is a 64-bit sync object. */
+ bool sync64;
+
+ /** @bo: Buffer object holding the synchronization object. */
+ struct drm_gem_object *obj;
+
+ /** @offset: Offset of the synchronization object inside @bo. */
+ u64 offset;
+
+ /**
+ * @kmap: Kernel mapping of the buffer object holding the
+ * synchronization object.
+ */
+ void *kmap;
+ } syncwait;
+
+ /** @fence_ctx: Fence context fields. */
+ struct {
+ /** @lock: Used to protect access to all fences allocated by this context. */
+ spinlock_t lock;
+
+ /**
+ * @id: Fence context ID.
+ *
+ * Allocated with dma_fence_context_alloc().
+ */
+ u64 id;
+
+ /** @seqno: Sequence number of the last initialized fence. */
+ atomic64_t seqno;
+
+ /**
+ * @in_flight_jobs: List containing all in-flight jobs.
+ *
+ * Used to keep track and signal panthor_job::done_fence when the
+ * synchronization object attached to the queue is signaled.
+ */
+ struct list_head in_flight_jobs;
+ } fence_ctx;
+};
+
+/**
+ * enum panthor_group_state - Scheduling group state.
+ */
+enum panthor_group_state {
+ /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
+ PANTHOR_CS_GROUP_CREATED,
+
+ /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
+ PANTHOR_CS_GROUP_ACTIVE,
+
+ /**
+ * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
+ * inactive/suspended right now.
+ */
+ PANTHOR_CS_GROUP_SUSPENDED,
+
+ /**
+ * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
+ *
+ * Can no longer be scheduled. The only allowed action is a destruction.
+ */
+ PANTHOR_CS_GROUP_TERMINATED,
+
+ /**
+ * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
+ *
+ * The FW returned an inconsistent state. The group is flagged unusable
+ * and can no longer be scheduled. The only allowed action is a
+ * destruction.
+ *
+ * When that happens, we also schedule a FW reset, to start from a fresh
+ * state.
+ */
+ PANTHOR_CS_GROUP_UNKNOWN_STATE,
+};
+
+/**
+ * struct panthor_group - Scheduling group object
+ */
+struct panthor_group {
+ /** @refcount: Reference count */
+ struct kref refcount;
+
+ /** @ptdev: Device. */
+ struct panthor_device *ptdev;
+
+ /** @vm: VM bound to the group. */
+ struct panthor_vm *vm;
+
+ /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
+ u64 compute_core_mask;
+
+ /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
+ u64 fragment_core_mask;
+
+ /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
+ u64 tiler_core_mask;
+
+ /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
+ u8 max_compute_cores;
+
+ /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
+ u8 max_fragment_cores;
+
+ /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
+ u8 max_tiler_cores;
+
+ /** @priority: Group priority (check panthor_csg_priority). */
+ u8 priority;
+
+ /** @blocked_queues: Bitmask reflecting the blocked queues. */
+ u32 blocked_queues;
+
+ /** @idle_queues: Bitmask reflecting the idle queues. */
+ u32 idle_queues;
+
+ /** @fatal_lock: Lock used to protect access to fatal fields. */
+ spinlock_t fatal_lock;
+
+ /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
+ u32 fatal_queues;
+
+ /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
+ atomic_t tiler_oom;
+
+ /** @queue_count: Number of queues in this group. */
+ u32 queue_count;
+
+ /** @queues: Queues owned by this group. */
+ struct panthor_queue *queues[MAX_CS_PER_CSG];
+
+ /**
+ * @csg_id: ID of the FW group slot.
+ *
+ * -1 when the group is not scheduled/active.
+ */
+ int csg_id;
+
+ /**
+ * @destroyed: True when the group has been destroyed.
+ *
+ * If a group is destroyed it becomes useless: no further jobs can be submitted
+ * to its queues. We simply wait for all references to be dropped so we can
+ * release the group object.
+ */
+ bool destroyed;
+
+ /**
+ * @timedout: True when a timeout occurred on any of the queues owned by
+ * this group.
+ *
+ * Timeouts can be reported by drm_sched or by the FW. In any case, any
+ * timeout situation is unrecoverable, and the group becomes useless.
+ * We simply wait for all references to be dropped so we can release the
+ * group object.
+ */
+ bool timedout;
+
+ /**
+ * @syncobjs: Pool of per-queue synchronization objects.
+ *
+ * One sync object per queue. The position of the sync object is
+ * determined by the queue index.
+ */
+ struct panthor_kernel_bo *syncobjs;
+
+ /** @state: Group state. */
+ enum panthor_group_state state;
+
+ /**
+ * @suspend_buf: Suspend buffer.
+ *
+ * Stores the state of the group and its queues when a group is suspended.
+ * Used at resume time to restore the group in its previous state.
+ *
+ * The size of the suspend buffer is exposed through the FW interface.
+ */
+ struct panthor_kernel_bo *suspend_buf;
+
+ /**
+ * @protm_suspend_buf: Protection mode suspend buffer.
+ *
+ * Stores the state of the group and its queues when a group that's in
+ * protection mode is suspended.
+ *
+ * Used at resume time to restore the group in its previous state.
+ *
+ * The size of the protection mode suspend buffer is exposed through the
+ * FW interface.
+ */
+ struct panthor_kernel_bo *protm_suspend_buf;
+
+ /** @sync_upd_work: Work used to check/signal job fences. */
+ struct work_struct sync_upd_work;
+
+ /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
+ struct work_struct tiler_oom_work;
+
+ /** @term_work: Work used to finish the group termination procedure. */
+ struct work_struct term_work;
+
+ /**
+ * @release_work: Work used to release group resources.
+ *
+ * We need to postpone the group release to avoid a deadlock when
+ * the last ref is released in the tick work.
+ */
+ struct work_struct release_work;
+
+ /**
+ * @run_node: Node used to insert the group in the
+ * panthor_group::groups::{runnable,idle} and
+ * panthor_group::reset.stopped_groups lists.
+ */
+ struct list_head run_node;
+
+ /**
+ * @wait_node: Node used to insert the group in the
+ * panthor_group::groups::waiting list.
+ */
+ struct list_head wait_node;
+};
+
+/**
+ * group_queue_work() - Queue a group work
+ * @group: Group to queue the work for.
+ * @wname: Work name.
+ *
+ * Grabs a ref and queue a work item to the scheduler workqueue. If
+ * the work was already queued, we release the reference we grabbed.
+ *
+ * Work callbacks must release the reference we grabbed here.
+ */
+#define group_queue_work(group, wname) \
+ do { \
+ group_get(group); \
+ if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
+ group_put(group); \
+ } while (0)
+
+/**
+ * sched_queue_work() - Queue a scheduler work.
+ * @sched: Scheduler object.
+ * @wname: Work name.
+ *
+ * Conditionally queues a scheduler work if no reset is pending/in-progress.
+ */
+#define sched_queue_work(sched, wname) \
+ do { \
+ if (!atomic_read(&(sched)->reset.in_progress) && \
+ !panthor_device_reset_is_pending((sched)->ptdev)) \
+ queue_work((sched)->wq, &(sched)->wname ## _work); \
+ } while (0)
+
+/**
+ * sched_queue_delayed_work() - Queue a scheduler delayed work.
+ * @sched: Scheduler object.
+ * @wname: Work name.
+ * @delay: Work delay in jiffies.
+ *
+ * Conditionally queues a scheduler delayed work if no reset is
+ * pending/in-progress.
+ */
+#define sched_queue_delayed_work(sched, wname, delay) \
+ do { \
+ if (!atomic_read(&sched->reset.in_progress) && \
+ !panthor_device_reset_is_pending((sched)->ptdev)) \
+ mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
+ } while (0)
+
+/*
+ * We currently set the maximum of groups per file to an arbitrary low value.
+ * But this can be updated if we need more.
+ */
+#define MAX_GROUPS_PER_POOL 128
+
+/**
+ * struct panthor_group_pool - Group pool
+ *
+ * Each file get assigned a group pool.
+ */
+struct panthor_group_pool {
+ /** @xa: Xarray used to manage group handles. */
+ struct xarray xa;
+};
+
+/**
+ * struct panthor_job - Used to manage GPU job
+ */
+struct panthor_job {
+ /** @base: Inherit from drm_sched_job. */
+ struct drm_sched_job base;
+
+ /** @refcount: Reference count. */
+ struct kref refcount;
+
+ /** @group: Group of the queue this job will be pushed to. */
+ struct panthor_group *group;
+
+ /** @queue_idx: Index of the queue inside @group. */
+ u32 queue_idx;
+
+ /** @call_info: Information about the userspace command stream call. */
+ struct {
+ /** @start: GPU address of the userspace command stream. */
+ u64 start;
+
+ /** @size: Size of the userspace command stream. */
+ u32 size;
+
+ /**
+ * @latest_flush: Flush ID at the time the userspace command
+ * stream was built.
+ *
+ * Needed for the flush reduction mechanism.
+ */
+ u32 latest_flush;
+ } call_info;
+
+ /** @ringbuf: Position of this job is in the ring buffer. */
+ struct {
+ /** @start: Start offset. */
+ u64 start;
+
+ /** @end: End offset. */
+ u64 end;
+ } ringbuf;
+
+ /**
+ * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
+ * list.
+ */
+ struct list_head node;
+
+ /** @done_fence: Fence signaled when the job is finished or cancelled. */
+ struct dma_fence *done_fence;
+};
+
+static void
+panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
+{
+ if (queue->syncwait.kmap) {
+ struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
+
+ drm_gem_vunmap_unlocked(queue->syncwait.obj, &map);
+ queue->syncwait.kmap = NULL;
+ }
+
+ drm_gem_object_put(queue->syncwait.obj);
+ queue->syncwait.obj = NULL;
+}
+
+static void *
+panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_gem_object *bo;
+ struct iosys_map map;
+ int ret;
+
+ if (queue->syncwait.kmap)
+ return queue->syncwait.kmap + queue->syncwait.offset;
+
+ bo = panthor_vm_get_bo_for_va(group->vm,
+ queue->syncwait.gpu_va,
+ &queue->syncwait.offset);
+ if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
+ goto err_put_syncwait_obj;
+
+ queue->syncwait.obj = &bo->base.base;
+ ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map);
+ if (drm_WARN_ON(&ptdev->base, ret))
+ goto err_put_syncwait_obj;
+
+ queue->syncwait.kmap = map.vaddr;
+ if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
+ goto err_put_syncwait_obj;
+
+ return queue->syncwait.kmap + queue->syncwait.offset;
+
+err_put_syncwait_obj:
+ panthor_queue_put_syncwait_obj(queue);
+ return NULL;
+}
+
+static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
+{
+ if (IS_ERR_OR_NULL(queue))
+ return;
+
+ if (queue->entity.fence_context)
+ drm_sched_entity_destroy(&queue->entity);
+
+ if (queue->scheduler.ops)
+ drm_sched_fini(&queue->scheduler);
+
+ panthor_queue_put_syncwait_obj(queue);
+
+ panthor_kernel_bo_destroy(group->vm, queue->ringbuf);
+ panthor_kernel_bo_destroy(panthor_fw_vm(group->ptdev), queue->iface.mem);
+
+ kfree(queue);
+}
+
+static void group_release_work(struct work_struct *work)
+{
+ struct panthor_group *group = container_of(work,
+ struct panthor_group,
+ release_work);
+ struct panthor_device *ptdev = group->ptdev;
+ u32 i;
+
+ for (i = 0; i < group->queue_count; i++)
+ group_free_queue(group, group->queues[i]);
+
+ panthor_kernel_bo_destroy(panthor_fw_vm(ptdev), group->suspend_buf);
+ panthor_kernel_bo_destroy(panthor_fw_vm(ptdev), group->protm_suspend_buf);
+ panthor_kernel_bo_destroy(group->vm, group->syncobjs);
+
+ panthor_vm_put(group->vm);
+ kfree(group);
+}
+
+static void group_release(struct kref *kref)
+{
+ struct panthor_group *group = container_of(kref,
+ struct panthor_group,
+ refcount);
+ struct panthor_device *ptdev = group->ptdev;
+
+ drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
+ drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
+ drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
+
+ queue_work(panthor_cleanup_wq, &group->release_work);
+}
+
+static void group_put(struct panthor_group *group)
+{
+ if (group)
+ kref_put(&group->refcount, group_release);
+}
+
+static struct panthor_group *
+group_get(struct panthor_group *group)
+{
+ if (group)
+ kref_get(&group->refcount);
+
+ return group;
+}
+
+/**
+ * group_bind_locked() - Bind a group to a group slot
+ * @group: Group.
+ * @csg_id: Slot.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+static int
+group_bind_locked(struct panthor_group *group, u32 csg_id)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_csg_slot *csg_slot;
+ int ret;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
+ ptdev->scheduler->csg_slots[csg_id].group))
+ return -EINVAL;
+
+ ret = panthor_vm_active(group->vm);
+ if (ret)
+ return ret;
+
+ csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ group_get(group);
+ group->csg_id = csg_id;
+
+ /* Dummy doorbell allocation: doorbell is assigned to the group and
+ * all queues use the same doorbell.
+ *
+ * TODO: Implement LRU-based doorbell assignment, so the most often
+ * updated queues get their own doorbell, thus avoiding useless checks
+ * on queues belonging to the same group that are rarely updated.
+ */
+ for (u32 i = 0; i < group->queue_count; i++)
+ group->queues[i]->doorbell_id = csg_id + 1;
+
+ csg_slot->group = group;
+
+ return 0;
+}
+
+/**
+ * group_unbind_locked() - Unbind a group from a slot.
+ * @group: Group to unbind.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+static int
+group_unbind_locked(struct panthor_group *group)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_csg_slot *slot;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
+ return -EINVAL;
+
+ if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
+ return -EINVAL;
+
+ slot = &ptdev->scheduler->csg_slots[group->csg_id];
+ panthor_vm_idle(group->vm);
+ group->csg_id = -1;
+
+ /* Tiler OOM events will be re-issued next time the group is scheduled. */
+ atomic_set(&group->tiler_oom, 0);
+ cancel_work(&group->tiler_oom_work);
+
+ for (u32 i = 0; i < group->queue_count; i++)
+ group->queues[i]->doorbell_id = -1;
+
+ slot->group = NULL;
+
+ group_put(group);
+ return 0;
+}
+
+/**
+ * cs_slot_prog_locked() - Program a queue slot
+ * @ptdev: Device.
+ * @csg_id: Group slot ID.
+ * @cs_id: Queue slot ID.
+ *
+ * Program a queue slot with the queue information so things can start being
+ * executed on this queue.
+ *
+ * The group slot must have a group bound to it already (group_bind_locked()).
+ */
+static void
+cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
+{
+ struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
+ struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ queue->iface.input->extract = queue->iface.output->extract;
+ drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
+
+ cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
+ cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
+ cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
+ cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
+ cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
+ CS_CONFIG_DOORBELL(queue->doorbell_id);
+ cs_iface->input->ack_irq_mask = ~0;
+ panthor_fw_update_reqs(cs_iface, req,
+ CS_IDLE_SYNC_WAIT |
+ CS_IDLE_EMPTY |
+ CS_STATE_START |
+ CS_EXTRACT_EVENT,
+ CS_IDLE_SYNC_WAIT |
+ CS_IDLE_EMPTY |
+ CS_STATE_MASK |
+ CS_EXTRACT_EVENT);
+ if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) {
+ drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time);
+ queue->timeout_suspended = false;
+ }
+}
+
+/**
+ * cs_slot_reset_locked() - Reset a queue slot
+ * @ptdev: Device.
+ * @csg_id: Group slot.
+ * @cs_id: Queue slot.
+ *
+ * Change the queue slot state to STOP and suspend the queue timeout if
+ * the queue is not blocked.
+ *
+ * The group slot must have a group bound to it (group_bind_locked()).
+ */
+static int
+cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
+{
+ struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+ struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
+ struct panthor_queue *queue = group->queues[cs_id];
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ panthor_fw_update_reqs(cs_iface, req,
+ CS_STATE_STOP,
+ CS_STATE_MASK);
+
+ /* If the queue is blocked, we want to keep the timeout running, so
+ * we can detect unbounded waits and kill the group when that happens.
+ */
+ if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) {
+ queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
+ queue->timeout_suspended = true;
+ WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS));
+ }
+
+ return 0;
+}
+
+/**
+ * csg_slot_sync_priority_locked() - Synchronize the group slot priority
+ * @ptdev: Device.
+ * @csg_id: Group slot ID.
+ *
+ * Group slot priority update happens asynchronously. When we receive a
+ * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
+ * reflect it to our panthor_csg_slot object.
+ */
+static void
+csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ struct panthor_fw_csg_iface *csg_iface;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28;
+}
+
+/**
+ * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
+ * @ptdev: Device.
+ * @csg_id: Group slot.
+ * @cs_id: Queue slot.
+ *
+ * Queue state is updated on group suspend or STATUS_UPDATE event.
+ */
+static void
+cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
+{
+ struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
+ struct panthor_queue *queue = group->queues[cs_id];
+ struct panthor_fw_cs_iface *cs_iface =
+ panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
+
+ u32 status_wait_cond;
+
+ switch (cs_iface->output->status_blocked_reason) {
+ case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
+ if (queue->iface.input->insert == queue->iface.output->extract &&
+ cs_iface->output->status_scoreboards == 0)
+ group->idle_queues |= BIT(cs_id);
+ break;
+
+ case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
+ if (list_empty(&group->wait_node)) {
+ list_move_tail(&group->wait_node,
+ &group->ptdev->scheduler->groups.waiting);
+ }
+ group->blocked_queues |= BIT(cs_id);
+ queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
+ queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
+ status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
+ queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
+ if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
+ u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
+
+ queue->syncwait.sync64 = true;
+ queue->syncwait.ref |= sync_val_hi << 32;
+ } else {
+ queue->syncwait.sync64 = false;
+ }
+ break;
+
+ default:
+ /* Other reasons are not blocking. Consider the queue as runnable
+ * in those cases.
+ */
+ break;
+ }
+}
+
+static void
+csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+ u32 i;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ group->idle_queues = 0;
+ group->blocked_queues = 0;
+
+ for (i = 0; i < group->queue_count; i++) {
+ if (group->queues[i])
+ cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
+ }
+}
+
+static void
+csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ struct panthor_fw_csg_iface *csg_iface;
+ struct panthor_group *group;
+ enum panthor_group_state new_state, old_state;
+ u32 csg_state;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ group = csg_slot->group;
+
+ if (!group)
+ return;
+
+ old_state = group->state;
+ csg_state = csg_iface->output->ack & CSG_STATE_MASK;
+ switch (csg_state) {
+ case CSG_STATE_START:
+ case CSG_STATE_RESUME:
+ new_state = PANTHOR_CS_GROUP_ACTIVE;
+ break;
+ case CSG_STATE_TERMINATE:
+ new_state = PANTHOR_CS_GROUP_TERMINATED;
+ break;
+ case CSG_STATE_SUSPEND:
+ new_state = PANTHOR_CS_GROUP_SUSPENDED;
+ break;
+ default:
+ /* The unknown state might be caused by a FW state corruption,
+ * which means the group metadata can't be trusted anymore, and
+ * the SUSPEND operation might propagate the corruption to the
+ * suspend buffers. Flag the group state as unknown to make
+ * sure it's unusable after that point.
+ */
+ drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
+ csg_id, csg_state);
+ new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
+ break;
+ }
+
+ if (old_state == new_state)
+ return;
+
+ /* The unknown state might be caused by a FW issue, reset the FW to
+ * take a fresh start.
+ */
+ if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
+ panthor_device_schedule_reset(ptdev);
+
+ if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
+ csg_slot_sync_queues_state_locked(ptdev, csg_id);
+
+ if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
+ u32 i;
+
+ /* Reset the queue slots so we start from a clean
+ * state when starting/resuming a new group on this
+ * CSG slot. No wait needed here, and no ringbell
+ * either, since the CS slot will only be re-used
+ * on the next CSG start operation.
+ */
+ for (i = 0; i < group->queue_count; i++) {
+ if (group->queues[i])
+ cs_slot_reset_locked(ptdev, csg_id, i);
+ }
+ }
+
+ group->state = new_state;
+}
+
+static int
+csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
+{
+ struct panthor_fw_csg_iface *csg_iface;
+ struct panthor_csg_slot *csg_slot;
+ struct panthor_group *group;
+ u32 queue_mask = 0, i;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ if (priority > MAX_CSG_PRIO)
+ return -EINVAL;
+
+ if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
+ return -EINVAL;
+
+ csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ group = csg_slot->group;
+ if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
+ return 0;
+
+ csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
+
+ for (i = 0; i < group->queue_count; i++) {
+ if (group->queues[i]) {
+ cs_slot_prog_locked(ptdev, csg_id, i);
+ queue_mask |= BIT(i);
+ }
+ }
+
+ csg_iface->input->allow_compute = group->compute_core_mask;
+ csg_iface->input->allow_fragment = group->fragment_core_mask;
+ csg_iface->input->allow_other = group->tiler_core_mask;
+ csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
+ CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
+ CSG_EP_REQ_TILER(group->max_tiler_cores) |
+ CSG_EP_REQ_PRIORITY(priority);
+ csg_iface->input->config = panthor_vm_as(group->vm);
+
+ if (group->suspend_buf)
+ csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
+ else
+ csg_iface->input->suspend_buf = 0;
+
+ if (group->protm_suspend_buf) {
+ csg_iface->input->protm_suspend_buf =
+ panthor_kernel_bo_gpuva(group->protm_suspend_buf);
+ } else {
+ csg_iface->input->protm_suspend_buf = 0;
+ }
+
+ csg_iface->input->ack_irq_mask = ~0;
+ panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
+ return 0;
+}
+
+static void
+cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
+ u32 csg_id, u32 cs_id)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+ struct panthor_fw_cs_iface *cs_iface;
+ u32 fatal;
+ u64 info;
+
+ lockdep_assert_held(&sched->lock);
+
+ cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+ fatal = cs_iface->output->fatal;
+ info = cs_iface->output->fatal_info;
+
+ if (group)
+ group->fatal_queues |= BIT(cs_id);
+
+ sched_queue_delayed_work(sched, tick, 0);
+ drm_warn(&ptdev->base,
+ "CSG slot %d CS slot: %d\n"
+ "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
+ "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
+ "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
+ csg_id, cs_id,
+ (unsigned int)CS_EXCEPTION_TYPE(fatal),
+ panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
+ (unsigned int)CS_EXCEPTION_DATA(fatal),
+ info);
+}
+
+static void
+cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
+ u32 csg_id, u32 cs_id)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+ struct panthor_queue *queue = group && cs_id < group->queue_count ?
+ group->queues[cs_id] : NULL;
+ struct panthor_fw_cs_iface *cs_iface;
+ u32 fault;
+ u64 info;
+
+ lockdep_assert_held(&sched->lock);
+
+ cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+ fault = cs_iface->output->fault;
+ info = cs_iface->output->fault_info;
+
+ if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) {
+ u64 cs_extract = queue->iface.output->extract;
+ struct panthor_job *job;
+
+ spin_lock(&queue->fence_ctx.lock);
+ list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
+ if (cs_extract >= job->ringbuf.end)
+ continue;
+
+ if (cs_extract < job->ringbuf.start)
+ break;
+
+ dma_fence_set_error(job->done_fence, -EINVAL);
+ }
+ spin_unlock(&queue->fence_ctx.lock);
+ }
+
+ drm_warn(&ptdev->base,
+ "CSG slot %d CS slot: %d\n"
+ "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
+ "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
+ "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
+ csg_id, cs_id,
+ (unsigned int)CS_EXCEPTION_TYPE(fault),
+ panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
+ (unsigned int)CS_EXCEPTION_DATA(fault),
+ info);
+}
+
+static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ u32 renderpasses_in_flight, pending_frag_count;
+ struct panthor_heap_pool *heaps = NULL;
+ u64 heap_address, new_chunk_va = 0;
+ u32 vt_start, vt_end, frag_end;
+ int ret, csg_id;
+
+ mutex_lock(&sched->lock);
+ csg_id = group->csg_id;
+ if (csg_id >= 0) {
+ struct panthor_fw_cs_iface *cs_iface;
+
+ cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+ heaps = panthor_vm_get_heap_pool(group->vm, false);
+ heap_address = cs_iface->output->heap_address;
+ vt_start = cs_iface->output->heap_vt_start;
+ vt_end = cs_iface->output->heap_vt_end;
+ frag_end = cs_iface->output->heap_frag_end;
+ renderpasses_in_flight = vt_start - frag_end;
+ pending_frag_count = vt_end - frag_end;
+ }
+ mutex_unlock(&sched->lock);
+
+ /* The group got scheduled out, we stop here. We will get a new tiler OOM event
+ * when it's scheduled again.
+ */
+ if (unlikely(csg_id < 0))
+ return 0;
+
+ if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
+ ret = -EINVAL;
+ } else {
+ /* We do the allocation without holding the scheduler lock to avoid
+ * blocking the scheduling.
+ */
+ ret = panthor_heap_grow(heaps, heap_address,
+ renderpasses_in_flight,
+ pending_frag_count, &new_chunk_va);
+ }
+
+ if (ret && ret != -EBUSY) {
+ drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
+ group->fatal_queues |= BIT(cs_id);
+ sched_queue_delayed_work(sched, tick, 0);
+ goto out_put_heap_pool;
+ }
+
+ mutex_lock(&sched->lock);
+ csg_id = group->csg_id;
+ if (csg_id >= 0) {
+ struct panthor_fw_csg_iface *csg_iface;
+ struct panthor_fw_cs_iface *cs_iface;
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+
+ cs_iface->input->heap_start = new_chunk_va;
+ cs_iface->input->heap_end = new_chunk_va;
+ panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
+ panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
+ panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
+ }
+ mutex_unlock(&sched->lock);
+
+ /* We allocated a chunck, but couldn't link it to the heap
+ * context because the group was scheduled out while we were
+ * allocating memory. We need to return this chunk to the heap.
+ */
+ if (unlikely(csg_id < 0 && new_chunk_va))
+ panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
+
+ ret = 0;
+
+out_put_heap_pool:
+ panthor_heap_pool_put(heaps);
+ return ret;
+}
+
+static void group_tiler_oom_work(struct work_struct *work)
+{
+ struct panthor_group *group =
+ container_of(work, struct panthor_group, tiler_oom_work);
+ u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
+
+ while (tiler_oom) {
+ u32 cs_id = ffs(tiler_oom) - 1;
+
+ group_process_tiler_oom(group, cs_id);
+ tiler_oom &= ~BIT(cs_id);
+ }
+
+ group_put(group);
+}
+
+static void
+cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
+ u32 csg_id, u32 cs_id)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+
+ lockdep_assert_held(&sched->lock);
+
+ if (drm_WARN_ON(&ptdev->base, !group))
+ return;
+
+ atomic_or(BIT(cs_id), &group->tiler_oom);
+
+ /* We don't use group_queue_work() here because we want to queue the
+ * work item to the heap_alloc_wq.
+ */
+ group_get(group);
+ if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
+ group_put(group);
+}
+
+static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
+ u32 csg_id, u32 cs_id)
+{
+ struct panthor_fw_cs_iface *cs_iface;
+ u32 req, ack, events;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
+ req = cs_iface->input->req;
+ ack = cs_iface->output->ack;
+ events = (req ^ ack) & CS_EVT_MASK;
+
+ if (events & CS_FATAL)
+ cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
+
+ if (events & CS_FAULT)
+ cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
+
+ if (events & CS_TILER_OOM)
+ cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
+
+ /* We don't acknowledge the TILER_OOM event since its handling is
+ * deferred to a separate work.
+ */
+ panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
+
+ return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
+}
+
+static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ struct panthor_fw_csg_iface *csg_iface;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
+}
+
+static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+
+ lockdep_assert_held(&sched->lock);
+
+ sched->might_have_idle_groups = true;
+
+ /* Schedule a tick so we can evict idle groups and schedule non-idle
+ * ones. This will also update runtime PM and devfreq busy/idle states,
+ * so the device can lower its frequency or get suspended.
+ */
+ sched_queue_delayed_work(sched, tick, 0);
+}
+
+static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
+ u32 csg_id)
+{
+ struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ if (group)
+ group_queue_work(group, sync_upd);
+
+ sched_queue_work(ptdev->scheduler, sync_upd);
+}
+
+static void
+csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+ struct panthor_group *group = csg_slot->group;
+
+ lockdep_assert_held(&sched->lock);
+
+ drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
+
+ group = csg_slot->group;
+ if (!drm_WARN_ON(&ptdev->base, !group))
+ group->timedout = true;
+
+ sched_queue_delayed_work(sched, tick, 0);
+}
+
+static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
+{
+ u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
+ struct panthor_fw_csg_iface *csg_iface;
+ u32 ring_cs_db_mask = 0;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
+ return;
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ req = READ_ONCE(csg_iface->input->req);
+ ack = READ_ONCE(csg_iface->output->ack);
+ cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
+ cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
+ csg_events = (req ^ ack) & CSG_EVT_MASK;
+
+ /* There may not be any pending CSG/CS interrupts to process */
+ if (req == ack && cs_irq_req == cs_irq_ack)
+ return;
+
+ /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
+ * examining the CS_ACK & CS_REQ bits. This would ensure that Host
+ * doesn't miss an interrupt for the CS in the race scenario where
+ * whilst Host is servicing an interrupt for the CS, firmware sends
+ * another interrupt for that CS.
+ */
+ csg_iface->input->cs_irq_ack = cs_irq_req;
+
+ panthor_fw_update_reqs(csg_iface, req, ack,
+ CSG_SYNC_UPDATE |
+ CSG_IDLE |
+ CSG_PROGRESS_TIMER_EVENT);
+
+ if (csg_events & CSG_IDLE)
+ csg_slot_process_idle_event_locked(ptdev, csg_id);
+
+ if (csg_events & CSG_PROGRESS_TIMER_EVENT)
+ csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
+
+ cs_irqs = cs_irq_req ^ cs_irq_ack;
+ while (cs_irqs) {
+ u32 cs_id = ffs(cs_irqs) - 1;
+
+ if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
+ ring_cs_db_mask |= BIT(cs_id);
+
+ cs_irqs &= ~BIT(cs_id);
+ }
+
+ if (csg_events & CSG_SYNC_UPDATE)
+ csg_slot_sync_update_locked(ptdev, csg_id);
+
+ if (ring_cs_db_mask)
+ panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
+
+ panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
+}
+
+static void sched_process_idle_event_locked(struct panthor_device *ptdev)
+{
+ struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ /* Acknowledge the idle event and schedule a tick. */
+ panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
+ sched_queue_delayed_work(ptdev->scheduler, tick, 0);
+}
+
+/**
+ * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
+ * @ptdev: Device.
+ */
+static void sched_process_global_irq_locked(struct panthor_device *ptdev)
+{
+ struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
+ u32 req, ack, evts;
+
+ lockdep_assert_held(&ptdev->scheduler->lock);
+
+ req = READ_ONCE(glb_iface->input->req);
+ ack = READ_ONCE(glb_iface->output->ack);
+ evts = (req ^ ack) & GLB_EVT_MASK;
+
+ if (evts & GLB_IDLE)
+ sched_process_idle_event_locked(ptdev);
+}
+
+static void process_fw_events_work(struct work_struct *work)
+{
+ struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
+ fw_events_work);
+ u32 events = atomic_xchg(&sched->fw_events, 0);
+ struct panthor_device *ptdev = sched->ptdev;
+
+ mutex_lock(&sched->lock);
+
+ if (events & JOB_INT_GLOBAL_IF) {
+ sched_process_global_irq_locked(ptdev);
+ events &= ~JOB_INT_GLOBAL_IF;
+ }
+
+ while (events) {
+ u32 csg_id = ffs(events) - 1;
+
+ sched_process_csg_irq_locked(ptdev, csg_id);
+ events &= ~BIT(csg_id);
+ }
+
+ mutex_unlock(&sched->lock);
+}
+
+/**
+ * panthor_sched_report_fw_events() - Report FW events to the scheduler.
+ */
+void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
+{
+ if (!ptdev->scheduler)
+ return;
+
+ atomic_or(events, &ptdev->scheduler->fw_events);
+ sched_queue_work(ptdev->scheduler, fw_events);
+}
+
+static const char *fence_get_driver_name(struct dma_fence *fence)
+{
+ return "panthor";
+}
+
+static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
+{
+ return "queue-fence";
+}
+
+static const struct dma_fence_ops panthor_queue_fence_ops = {
+ .get_driver_name = fence_get_driver_name,
+ .get_timeline_name = queue_fence_get_timeline_name,
+};
+
+struct panthor_csg_slots_upd_ctx {
+ u32 update_mask;
+ u32 timedout_mask;
+ struct {
+ u32 value;
+ u32 mask;
+ } requests[MAX_CSGS];
+};
+
+static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
+ struct panthor_csg_slots_upd_ctx *ctx,
+ u32 csg_id, u32 value, u32 mask)
+{
+ if (drm_WARN_ON(&ptdev->base, !mask) ||
+ drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
+ return;
+
+ ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
+ ctx->requests[csg_id].mask |= mask;
+ ctx->update_mask |= BIT(csg_id);
+}
+
+static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
+ struct panthor_csg_slots_upd_ctx *ctx)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ u32 update_slots = ctx->update_mask;
+
+ lockdep_assert_held(&sched->lock);
+
+ if (!ctx->update_mask)
+ return 0;
+
+ while (update_slots) {
+ struct panthor_fw_csg_iface *csg_iface;
+ u32 csg_id = ffs(update_slots) - 1;
+
+ update_slots &= ~BIT(csg_id);
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ panthor_fw_update_reqs(csg_iface, req,
+ ctx->requests[csg_id].value,
+ ctx->requests[csg_id].mask);
+ }
+
+ panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
+
+ update_slots = ctx->update_mask;
+ while (update_slots) {
+ struct panthor_fw_csg_iface *csg_iface;
+ u32 csg_id = ffs(update_slots) - 1;
+ u32 req_mask = ctx->requests[csg_id].mask, acked;
+ int ret;
+
+ update_slots &= ~BIT(csg_id);
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+
+ ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
+
+ if (acked & CSG_ENDPOINT_CONFIG)
+ csg_slot_sync_priority_locked(ptdev, csg_id);
+
+ if (acked & CSG_STATE_MASK)
+ csg_slot_sync_state_locked(ptdev, csg_id);
+
+ if (acked & CSG_STATUS_UPDATE) {
+ csg_slot_sync_queues_state_locked(ptdev, csg_id);
+ csg_slot_sync_idle_state_locked(ptdev, csg_id);
+ }
+
+ if (ret && acked != req_mask &&
+ ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
+ drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
+ ctx->timedout_mask |= BIT(csg_id);
+ }
+ }
+
+ if (ctx->timedout_mask)
+ return -ETIMEDOUT;
+
+ return 0;
+}
+
+struct panthor_sched_tick_ctx {
+ struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
+ struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
+ u32 idle_group_count;
+ u32 group_count;
+ enum panthor_csg_priority min_priority;
+ struct panthor_vm *vms[MAX_CS_PER_CSG];
+ u32 as_count;
+ bool immediate_tick;
+ u32 csg_upd_failed_mask;
+};
+
+static bool
+tick_ctx_is_full(const struct panthor_scheduler *sched,
+ const struct panthor_sched_tick_ctx *ctx)
+{
+ return ctx->group_count == sched->csg_slot_count;
+}
+
+static bool
+group_is_idle(struct panthor_group *group)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ u32 inactive_queues;
+
+ if (group->csg_id >= 0)
+ return ptdev->scheduler->csg_slots[group->csg_id].idle;
+
+ inactive_queues = group->idle_queues | group->blocked_queues;
+ return hweight32(inactive_queues) == group->queue_count;
+}
+
+static bool
+group_can_run(struct panthor_group *group)
+{
+ return group->state != PANTHOR_CS_GROUP_TERMINATED &&
+ group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
+ !group->destroyed && group->fatal_queues == 0 &&
+ !group->timedout;
+}
+
+static void
+tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
+ struct panthor_sched_tick_ctx *ctx,
+ struct list_head *queue,
+ bool skip_idle_groups,
+ bool owned_by_tick_ctx)
+{
+ struct panthor_group *group, *tmp;
+
+ if (tick_ctx_is_full(sched, ctx))
+ return;
+
+ list_for_each_entry_safe(group, tmp, queue, run_node) {
+ u32 i;
+
+ if (!group_can_run(group))
+ continue;
+
+ if (skip_idle_groups && group_is_idle(group))
+ continue;
+
+ for (i = 0; i < ctx->as_count; i++) {
+ if (ctx->vms[i] == group->vm)
+ break;
+ }
+
+ if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
+ continue;
+
+ if (!owned_by_tick_ctx)
+ group_get(group);
+
+ list_move_tail(&group->run_node, &ctx->groups[group->priority]);
+ ctx->group_count++;
+ if (group_is_idle(group))
+ ctx->idle_group_count++;
+
+ if (i == ctx->as_count)
+ ctx->vms[ctx->as_count++] = group->vm;
+
+ if (ctx->min_priority > group->priority)
+ ctx->min_priority = group->priority;
+
+ if (tick_ctx_is_full(sched, ctx))
+ return;
+ }
+}
+
+static void
+tick_ctx_insert_old_group(struct panthor_scheduler *sched,
+ struct panthor_sched_tick_ctx *ctx,
+ struct panthor_group *group,
+ bool full_tick)
+{
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
+ struct panthor_group *other_group;
+
+ if (!full_tick) {
+ list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
+ return;
+ }
+
+ /* Rotate to make sure groups with lower CSG slot
+ * priorities have a chance to get a higher CSG slot
+ * priority next time they get picked. This priority
+ * has an impact on resource request ordering, so it's
+ * important to make sure we don't let one group starve
+ * all other groups with the same group priority.
+ */
+ list_for_each_entry(other_group,
+ &ctx->old_groups[csg_slot->group->priority],
+ run_node) {
+ struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
+
+ if (other_csg_slot->priority > csg_slot->priority) {
+ list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
+ return;
+ }
+ }
+
+ list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
+}
+
+static void
+tick_ctx_init(struct panthor_scheduler *sched,
+ struct panthor_sched_tick_ctx *ctx,
+ bool full_tick)
+{
+ struct panthor_device *ptdev = sched->ptdev;
+ struct panthor_csg_slots_upd_ctx upd_ctx;
+ int ret;
+ u32 i;
+
+ memset(ctx, 0, sizeof(*ctx));
+ csgs_upd_ctx_init(&upd_ctx);
+
+ ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
+ for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
+ INIT_LIST_HEAD(&ctx->groups[i]);
+ INIT_LIST_HEAD(&ctx->old_groups[i]);
+ }
+
+ for (i = 0; i < sched->csg_slot_count; i++) {
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
+ struct panthor_group *group = csg_slot->group;
+ struct panthor_fw_csg_iface *csg_iface;
+
+ if (!group)
+ continue;
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, i);
+ group_get(group);
+
+ /* If there was unhandled faults on the VM, force processing of
+ * CSG IRQs, so we can flag the faulty queue.
+ */
+ if (panthor_vm_has_unhandled_faults(group->vm)) {
+ sched_process_csg_irq_locked(ptdev, i);
+
+ /* No fatal fault reported, flag all queues as faulty. */
+ if (!group->fatal_queues)
+ group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
+ }
+
+ tick_ctx_insert_old_group(sched, ctx, group, full_tick);
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
+ csg_iface->output->ack ^ CSG_STATUS_UPDATE,
+ CSG_STATUS_UPDATE);
+ }
+
+ ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
+ if (ret) {
+ panthor_device_schedule_reset(ptdev);
+ ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
+ }
+}
+
+#define NUM_INSTRS_PER_SLOT 16
+
+static void
+group_term_post_processing(struct panthor_group *group)
+{
+ struct panthor_job *job, *tmp;
+ LIST_HEAD(faulty_jobs);
+ bool cookie;
+ u32 i = 0;
+
+ if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
+ return;
+
+ cookie = dma_fence_begin_signalling();
+ for (i = 0; i < group->queue_count; i++) {
+ struct panthor_queue *queue = group->queues[i];
+ struct panthor_syncobj_64b *syncobj;
+ int err;
+
+ if (group->fatal_queues & BIT(i))
+ err = -EINVAL;
+ else if (group->timedout)
+ err = -ETIMEDOUT;
+ else
+ err = -ECANCELED;
+
+ if (!queue)
+ continue;
+
+ spin_lock(&queue->fence_ctx.lock);
+ list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
+ list_move_tail(&job->node, &faulty_jobs);
+ dma_fence_set_error(job->done_fence, err);
+ dma_fence_signal_locked(job->done_fence);
+ }
+ spin_unlock(&queue->fence_ctx.lock);
+
+ /* Manually update the syncobj seqno to unblock waiters. */
+ syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
+ syncobj->status = ~0;
+ syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
+ sched_queue_work(group->ptdev->scheduler, sync_upd);
+ }
+ dma_fence_end_signalling(cookie);
+
+ list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
+ list_del_init(&job->node);
+ panthor_job_put(&job->base);
+ }
+}
+
+static void group_term_work(struct work_struct *work)
+{
+ struct panthor_group *group =
+ container_of(work, struct panthor_group, term_work);
+
+ group_term_post_processing(group);
+ group_put(group);
+}
+
+static void
+tick_ctx_cleanup(struct panthor_scheduler *sched,
+ struct panthor_sched_tick_ctx *ctx)
+{
+ struct panthor_group *group, *tmp;
+ u32 i;
+
+ for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
+ list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
+ /* If everything went fine, we should only have groups
+ * to be terminated in the old_groups lists.
+ */
+ drm_WARN_ON(&group->ptdev->base, !ctx->csg_upd_failed_mask &&
+ group_can_run(group));
+
+ if (!group_can_run(group)) {
+ list_del_init(&group->run_node);
+ list_del_init(&group->wait_node);
+ group_queue_work(group, term);
+ } else if (group->csg_id >= 0) {
+ list_del_init(&group->run_node);
+ } else {
+ list_move(&group->run_node,
+ group_is_idle(group) ?
+ &sched->groups.idle[group->priority] :
+ &sched->groups.runnable[group->priority]);
+ }
+ group_put(group);
+ }
+ }
+
+ for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
+ /* If everything went fine, the groups to schedule lists should
+ * be empty.
+ */
+ drm_WARN_ON(&group->ptdev->base,
+ !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
+
+ list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
+ if (group->csg_id >= 0) {
+ list_del_init(&group->run_node);
+ } else {
+ list_move(&group->run_node,
+ group_is_idle(group) ?
+ &sched->groups.idle[group->priority] :
+ &sched->groups.runnable[group->priority]);
+ }
+ group_put(group);
+ }
+ }
+}
+
+static void
+tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
+{
+ struct panthor_group *group, *tmp;
+ struct panthor_device *ptdev = sched->ptdev;
+ struct panthor_csg_slot *csg_slot;
+ int prio, new_csg_prio = MAX_CSG_PRIO, i;
+ u32 free_csg_slots = 0;
+ struct panthor_csg_slots_upd_ctx upd_ctx;
+ int ret;
+
+ csgs_upd_ctx_init(&upd_ctx);
+
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ /* Suspend or terminate evicted groups. */
+ list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
+ bool term = !group_can_run(group);
+ int csg_id = group->csg_id;
+
+ if (drm_WARN_ON(&ptdev->base, csg_id < 0))
+ continue;
+
+ csg_slot = &sched->csg_slots[csg_id];
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
+ term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
+ CSG_STATE_MASK);
+ }
+
+ /* Update priorities on already running groups. */
+ list_for_each_entry(group, &ctx->groups[prio], run_node) {
+ struct panthor_fw_csg_iface *csg_iface;
+ int csg_id = group->csg_id;
+
+ if (csg_id < 0) {
+ new_csg_prio--;
+ continue;
+ }
+
+ csg_slot = &sched->csg_slots[csg_id];
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ if (csg_slot->priority == new_csg_prio) {
+ new_csg_prio--;
+ continue;
+ }
+
+ panthor_fw_update_reqs(csg_iface, endpoint_req,
+ CSG_EP_REQ_PRIORITY(new_csg_prio),
+ CSG_EP_REQ_PRIORITY_MASK);
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
+ csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
+ CSG_ENDPOINT_CONFIG);
+ new_csg_prio--;
+ }
+ }
+
+ ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
+ if (ret) {
+ panthor_device_schedule_reset(ptdev);
+ ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
+ return;
+ }
+
+ /* Unbind evicted groups. */
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
+ /* This group is gone. Process interrupts to clear
+ * any pending interrupts before we start the new
+ * group.
+ */
+ if (group->csg_id >= 0)
+ sched_process_csg_irq_locked(ptdev, group->csg_id);
+
+ group_unbind_locked(group);
+ }
+ }
+
+ for (i = 0; i < sched->csg_slot_count; i++) {
+ if (!sched->csg_slots[i].group)
+ free_csg_slots |= BIT(i);
+ }
+
+ csgs_upd_ctx_init(&upd_ctx);
+ new_csg_prio = MAX_CSG_PRIO;
+
+ /* Start new groups. */
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ list_for_each_entry(group, &ctx->groups[prio], run_node) {
+ int csg_id = group->csg_id;
+ struct panthor_fw_csg_iface *csg_iface;
+
+ if (csg_id >= 0) {
+ new_csg_prio--;
+ continue;
+ }
+
+ csg_id = ffs(free_csg_slots) - 1;
+ if (drm_WARN_ON(&ptdev->base, csg_id < 0))
+ break;
+
+ csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
+ csg_slot = &sched->csg_slots[csg_id];
+ group_bind_locked(group, csg_id);
+ csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
+ group->state == PANTHOR_CS_GROUP_SUSPENDED ?
+ CSG_STATE_RESUME : CSG_STATE_START,
+ CSG_STATE_MASK);
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
+ csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
+ CSG_ENDPOINT_CONFIG);
+ free_csg_slots &= ~BIT(csg_id);
+ }
+ }
+
+ ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
+ if (ret) {
+ panthor_device_schedule_reset(ptdev);
+ ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
+ return;
+ }
+
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
+ list_del_init(&group->run_node);
+
+ /* If the group has been destroyed while we were
+ * scheduling, ask for an immediate tick to
+ * re-evaluate as soon as possible and get rid of
+ * this dangling group.
+ */
+ if (group->destroyed)
+ ctx->immediate_tick = true;
+ group_put(group);
+ }
+
+ /* Return evicted groups to the idle or run queues. Groups
+ * that can no longer be run (because they've been destroyed
+ * or experienced an unrecoverable error) will be scheduled
+ * for destruction in tick_ctx_cleanup().
+ */
+ list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
+ if (!group_can_run(group))
+ continue;
+
+ if (group_is_idle(group))
+ list_move_tail(&group->run_node, &sched->groups.idle[prio]);
+ else
+ list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
+ group_put(group);
+ }
+ }
+
+ sched->used_csg_slot_count = ctx->group_count;
+ sched->might_have_idle_groups = ctx->idle_group_count > 0;
+}
+
+static u64
+tick_ctx_update_resched_target(struct panthor_scheduler *sched,
+ const struct panthor_sched_tick_ctx *ctx)
+{
+ /* We had space left, no need to reschedule until some external event happens. */
+ if (!tick_ctx_is_full(sched, ctx))
+ goto no_tick;
+
+ /* If idle groups were scheduled, no need to wake up until some external
+ * event happens (group unblocked, new job submitted, ...).
+ */
+ if (ctx->idle_group_count)
+ goto no_tick;
+
+ if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
+ goto no_tick;
+
+ /* If there are groups of the same priority waiting, we need to
+ * keep the scheduler ticking, otherwise, we'll just wait for
+ * new groups with higher priority to be queued.
+ */
+ if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
+ u64 resched_target = sched->last_tick + sched->tick_period;
+
+ if (time_before64(sched->resched_target, sched->last_tick) ||
+ time_before64(resched_target, sched->resched_target))
+ sched->resched_target = resched_target;
+
+ return sched->resched_target - sched->last_tick;
+ }
+
+no_tick:
+ sched->resched_target = U64_MAX;
+ return U64_MAX;
+}
+
+static void tick_work(struct work_struct *work)
+{
+ struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
+ tick_work.work);
+ struct panthor_device *ptdev = sched->ptdev;
+ struct panthor_sched_tick_ctx ctx;
+ u64 remaining_jiffies = 0, resched_delay;
+ u64 now = get_jiffies_64();
+ int prio, ret, cookie;
+
+ if (!drm_dev_enter(&ptdev->base, &cookie))
+ return;
+
+ ret = pm_runtime_resume_and_get(ptdev->base.dev);
+ if (drm_WARN_ON(&ptdev->base, ret))
+ goto out_dev_exit;
+
+ if (time_before64(now, sched->resched_target))
+ remaining_jiffies = sched->resched_target - now;
+
+ mutex_lock(&sched->lock);
+ if (panthor_device_reset_is_pending(sched->ptdev))
+ goto out_unlock;
+
+ tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
+ if (ctx.csg_upd_failed_mask)
+ goto out_cleanup_ctx;
+
+ if (remaining_jiffies) {
+ /* Scheduling forced in the middle of a tick. Only RT groups
+ * can preempt non-RT ones. Currently running RT groups can't be
+ * preempted.
+ */
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
+ prio >= 0 && !tick_ctx_is_full(sched, &ctx);
+ prio--) {
+ tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
+ true, true);
+ if (prio == PANTHOR_CSG_PRIORITY_RT) {
+ tick_ctx_pick_groups_from_list(sched, &ctx,
+ &sched->groups.runnable[prio],
+ true, false);
+ }
+ }
+ }
+
+ /* First pick non-idle groups */
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
+ prio >= 0 && !tick_ctx_is_full(sched, &ctx);
+ prio--) {
+ tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
+ true, false);
+ tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
+ }
+
+ /* If we have free CSG slots left, pick idle groups */
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
+ prio >= 0 && !tick_ctx_is_full(sched, &ctx);
+ prio--) {
+ /* Check the old_group queue first to avoid reprogramming the slots */
+ tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
+ tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
+ false, false);
+ }
+
+ tick_ctx_apply(sched, &ctx);
+ if (ctx.csg_upd_failed_mask)
+ goto out_cleanup_ctx;
+
+ if (ctx.idle_group_count == ctx.group_count) {
+ panthor_devfreq_record_idle(sched->ptdev);
+ if (sched->pm.has_ref) {
+ pm_runtime_put_autosuspend(ptdev->base.dev);
+ sched->pm.has_ref = false;
+ }
+ } else {
+ panthor_devfreq_record_busy(sched->ptdev);
+ if (!sched->pm.has_ref) {
+ pm_runtime_get(ptdev->base.dev);
+ sched->pm.has_ref = true;
+ }
+ }
+
+ sched->last_tick = now;
+ resched_delay = tick_ctx_update_resched_target(sched, &ctx);
+ if (ctx.immediate_tick)
+ resched_delay = 0;
+
+ if (resched_delay != U64_MAX)
+ sched_queue_delayed_work(sched, tick, resched_delay);
+
+out_cleanup_ctx:
+ tick_ctx_cleanup(sched, &ctx);
+
+out_unlock:
+ mutex_unlock(&sched->lock);
+ pm_runtime_mark_last_busy(ptdev->base.dev);
+ pm_runtime_put_autosuspend(ptdev->base.dev);
+
+out_dev_exit:
+ drm_dev_exit(cookie);
+}
+
+static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
+{
+ struct panthor_queue *queue = group->queues[queue_idx];
+ union {
+ struct panthor_syncobj_64b sync64;
+ struct panthor_syncobj_32b sync32;
+ } *syncobj;
+ bool result;
+ u64 value;
+
+ syncobj = panthor_queue_get_syncwait_obj(group, queue);
+ if (!syncobj)
+ return -EINVAL;
+
+ value = queue->syncwait.sync64 ?
+ syncobj->sync64.seqno :
+ syncobj->sync32.seqno;
+
+ if (queue->syncwait.gt)
+ result = value > queue->syncwait.ref;
+ else
+ result = value <= queue->syncwait.ref;
+
+ if (result)
+ panthor_queue_put_syncwait_obj(queue);
+
+ return result;
+}
+
+static void sync_upd_work(struct work_struct *work)
+{
+ struct panthor_scheduler *sched = container_of(work,
+ struct panthor_scheduler,
+ sync_upd_work);
+ struct panthor_group *group, *tmp;
+ bool immediate_tick = false;
+
+ mutex_lock(&sched->lock);
+ list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
+ u32 tested_queues = group->blocked_queues;
+ u32 unblocked_queues = 0;
+
+ while (tested_queues) {
+ u32 cs_id = ffs(tested_queues) - 1;
+ int ret;
+
+ ret = panthor_queue_eval_syncwait(group, cs_id);
+ drm_WARN_ON(&group->ptdev->base, ret < 0);
+ if (ret)
+ unblocked_queues |= BIT(cs_id);
+
+ tested_queues &= ~BIT(cs_id);
+ }
+
+ if (unblocked_queues) {
+ group->blocked_queues &= ~unblocked_queues;
+
+ if (group->csg_id < 0) {
+ list_move(&group->run_node,
+ &sched->groups.runnable[group->priority]);
+ if (group->priority == PANTHOR_CSG_PRIORITY_RT)
+ immediate_tick = true;
+ }
+ }
+
+ if (!group->blocked_queues)
+ list_del_init(&group->wait_node);
+ }
+ mutex_unlock(&sched->lock);
+
+ if (immediate_tick)
+ sched_queue_delayed_work(sched, tick, 0);
+}
+
+static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
+{
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct list_head *queue = &sched->groups.runnable[group->priority];
+ u64 delay_jiffies = 0;
+ bool was_idle;
+ u64 now;
+
+ if (!group_can_run(group))
+ return;
+
+ /* All updated queues are blocked, no need to wake up the scheduler. */
+ if ((queue_mask & group->blocked_queues) == queue_mask)
+ return;
+
+ was_idle = group_is_idle(group);
+ group->idle_queues &= ~queue_mask;
+
+ /* Don't mess up with the lists if we're in a middle of a reset. */
+ if (atomic_read(&sched->reset.in_progress))
+ return;
+
+ if (was_idle && !group_is_idle(group))
+ list_move_tail(&group->run_node, queue);
+
+ /* RT groups are preemptive. */
+ if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
+ sched_queue_delayed_work(sched, tick, 0);
+ return;
+ }
+
+ /* Some groups might be idle, force an immediate tick to
+ * re-evaluate.
+ */
+ if (sched->might_have_idle_groups) {
+ sched_queue_delayed_work(sched, tick, 0);
+ return;
+ }
+
+ /* Scheduler is ticking, nothing to do. */
+ if (sched->resched_target != U64_MAX) {
+ /* If there are free slots, force immediating ticking. */
+ if (sched->used_csg_slot_count < sched->csg_slot_count)
+ sched_queue_delayed_work(sched, tick, 0);
+
+ return;
+ }
+
+ /* Scheduler tick was off, recalculate the resched_target based on the
+ * last tick event, and queue the scheduler work.
+ */
+ now = get_jiffies_64();
+ sched->resched_target = sched->last_tick + sched->tick_period;
+ if (sched->used_csg_slot_count == sched->csg_slot_count &&
+ time_before64(now, sched->resched_target))
+ delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
+
+ sched_queue_delayed_work(sched, tick, delay_jiffies);
+}
+
+static void queue_stop(struct panthor_queue *queue,
+ struct panthor_job *bad_job)
+{
+ drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
+}
+
+static void queue_start(struct panthor_queue *queue)
+{
+ struct panthor_job *job;
+
+ /* Re-assign the parent fences. */
+ list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
+ job->base.s_fence->parent = dma_fence_get(job->done_fence);
+
+ drm_sched_start(&queue->scheduler, true);
+}
+
+static void panthor_group_stop(struct panthor_group *group)
+{
+ struct panthor_scheduler *sched = group->ptdev->scheduler;
+
+ lockdep_assert_held(&sched->reset.lock);
+
+ for (u32 i = 0; i < group->queue_count; i++)
+ queue_stop(group->queues[i], NULL);
+
+ group_get(group);
+ list_move_tail(&group->run_node, &sched->reset.stopped_groups);
+}
+
+static void panthor_group_start(struct panthor_group *group)
+{
+ struct panthor_scheduler *sched = group->ptdev->scheduler;
+
+ lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
+
+ for (u32 i = 0; i < group->queue_count; i++)
+ queue_start(group->queues[i]);
+
+ if (group_can_run(group)) {
+ list_move_tail(&group->run_node,
+ group_is_idle(group) ?
+ &sched->groups.idle[group->priority] :
+ &sched->groups.runnable[group->priority]);
+ } else {
+ list_del_init(&group->run_node);
+ list_del_init(&group->wait_node);
+ group_queue_work(group, term);
+ }
+
+ group_put(group);
+}
+
+static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+
+ sched_queue_delayed_work(sched, tick, 0);
+}
+
+/**
+ * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
+ */
+void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
+{
+ /* Force a tick to immediately kill faulty groups. */
+ if (ptdev->scheduler)
+ panthor_sched_immediate_tick(ptdev);
+}
+
+void panthor_sched_resume(struct panthor_device *ptdev)
+{
+ /* Force a tick to re-evaluate after a resume. */
+ panthor_sched_immediate_tick(ptdev);
+}
+
+void panthor_sched_suspend(struct panthor_device *ptdev)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_csg_slots_upd_ctx upd_ctx;
+ struct panthor_group *group;
+ u32 suspended_slots;
+ u32 i;
+
+ mutex_lock(&sched->lock);
+ csgs_upd_ctx_init(&upd_ctx);
+ for (i = 0; i < sched->csg_slot_count; i++) {
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
+
+ if (csg_slot->group) {
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
+ group_can_run(csg_slot->group) ?
+ CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
+ CSG_STATE_MASK);
+ }
+ }
+
+ suspended_slots = upd_ctx.update_mask;
+
+ csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
+ suspended_slots &= ~upd_ctx.timedout_mask;
+
+ if (upd_ctx.timedout_mask) {
+ u32 slot_mask = upd_ctx.timedout_mask;
+
+ drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
+ csgs_upd_ctx_init(&upd_ctx);
+ while (slot_mask) {
+ u32 csg_id = ffs(slot_mask) - 1;
+
+ csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
+ CSG_STATE_TERMINATE,
+ CSG_STATE_MASK);
+ slot_mask &= ~BIT(csg_id);
+ }
+
+ csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
+
+ slot_mask = upd_ctx.timedout_mask;
+ while (slot_mask) {
+ u32 csg_id = ffs(slot_mask) - 1;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+
+ /* Terminate command timedout, but the soft-reset will
+ * automatically terminate all active groups, so let's
+ * force the state to halted here.
+ */
+ if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED)
+ csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
+ slot_mask &= ~BIT(csg_id);
+ }
+ }
+
+ /* Flush L2 and LSC caches to make sure suspend state is up-to-date.
+ * If the flush fails, flag all queues for termination.
+ */
+ if (suspended_slots) {
+ bool flush_caches_failed = false;
+ u32 slot_mask = suspended_slots;
+
+ if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
+ flush_caches_failed = true;
+
+ while (slot_mask) {
+ u32 csg_id = ffs(slot_mask) - 1;
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
+
+ if (flush_caches_failed)
+ csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
+ else
+ csg_slot_sync_update_locked(ptdev, csg_id);
+
+ slot_mask &= ~BIT(csg_id);
+ }
+ }
+
+ for (i = 0; i < sched->csg_slot_count; i++) {
+ struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
+
+ group = csg_slot->group;
+ if (!group)
+ continue;
+
+ group_get(group);
+
+ if (group->csg_id >= 0)
+ sched_process_csg_irq_locked(ptdev, group->csg_id);
+
+ group_unbind_locked(group);
+
+ drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
+
+ if (group_can_run(group)) {
+ list_add(&group->run_node,
+ &sched->groups.idle[group->priority]);
+ } else {
+ /* We don't bother stopping the scheduler if the group is
+ * faulty, the group termination work will finish the job.
+ */
+ list_del_init(&group->wait_node);
+ group_queue_work(group, term);
+ }
+ group_put(group);
+ }
+ mutex_unlock(&sched->lock);
+}
+
+void panthor_sched_pre_reset(struct panthor_device *ptdev)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_group *group, *group_tmp;
+ u32 i;
+
+ mutex_lock(&sched->reset.lock);
+ atomic_set(&sched->reset.in_progress, true);
+
+ /* Cancel all scheduler works. Once this is done, these works can't be
+ * scheduled again until the reset operation is complete.
+ */
+ cancel_work_sync(&sched->sync_upd_work);
+ cancel_delayed_work_sync(&sched->tick_work);
+
+ panthor_sched_suspend(ptdev);
+
+ /* Stop all groups that might still accept jobs, so we don't get passed
+ * new jobs while we're resetting.
+ */
+ for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
+ /* All groups should be in the idle lists. */
+ drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
+ list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
+ panthor_group_stop(group);
+ }
+
+ for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
+ list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
+ panthor_group_stop(group);
+ }
+
+ mutex_unlock(&sched->reset.lock);
+}
+
+void panthor_sched_post_reset(struct panthor_device *ptdev)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_group *group, *group_tmp;
+
+ mutex_lock(&sched->reset.lock);
+
+ list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node)
+ panthor_group_start(group);
+
+ /* We're done resetting the GPU, clear the reset.in_progress bit so we can
+ * kick the scheduler.
+ */
+ atomic_set(&sched->reset.in_progress, false);
+ mutex_unlock(&sched->reset.lock);
+
+ sched_queue_delayed_work(sched, tick, 0);
+
+ sched_queue_work(sched, sync_upd);
+}
+
+static void group_sync_upd_work(struct work_struct *work)
+{
+ struct panthor_group *group =
+ container_of(work, struct panthor_group, sync_upd_work);
+ struct panthor_job *job, *job_tmp;
+ LIST_HEAD(done_jobs);
+ u32 queue_idx;
+ bool cookie;
+
+ cookie = dma_fence_begin_signalling();
+ for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
+ struct panthor_queue *queue = group->queues[queue_idx];
+ struct panthor_syncobj_64b *syncobj;
+
+ if (!queue)
+ continue;
+
+ syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj));
+
+ spin_lock(&queue->fence_ctx.lock);
+ list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
+ if (!job->call_info.size)
+ continue;
+
+ if (syncobj->seqno < job->done_fence->seqno)
+ break;
+
+ list_move_tail(&job->node, &done_jobs);
+ dma_fence_signal_locked(job->done_fence);
+ }
+ spin_unlock(&queue->fence_ctx.lock);
+ }
+ dma_fence_end_signalling(cookie);
+
+ list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
+ list_del_init(&job->node);
+ panthor_job_put(&job->base);
+ }
+
+ group_put(group);
+}
+
+static struct dma_fence *
+queue_run_job(struct drm_sched_job *sched_job)
+{
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+ struct panthor_group *group = job->group;
+ struct panthor_queue *queue = group->queues[job->queue_idx];
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ u32 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
+ u32 ringbuf_insert = queue->iface.input->insert & (ringbuf_size - 1);
+ u64 addr_reg = ptdev->csif_info.cs_reg_count -
+ ptdev->csif_info.unpreserved_cs_reg_count;
+ u64 val_reg = addr_reg + 2;
+ u64 sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
+ job->queue_idx * sizeof(struct panthor_syncobj_64b);
+ u32 waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
+ struct dma_fence *done_fence;
+ int ret;
+
+ u64 call_instrs[NUM_INSTRS_PER_SLOT] = {
+ /* MOV32 rX+2, cs.latest_flush */
+ (2ull << 56) | (val_reg << 48) | job->call_info.latest_flush,
+
+ /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
+ (36ull << 56) | (0ull << 48) | (val_reg << 40) | (0 << 16) | 0x233,
+
+ /* MOV48 rX:rX+1, cs.start */
+ (1ull << 56) | (addr_reg << 48) | job->call_info.start,
+
+ /* MOV32 rX+2, cs.size */
+ (2ull << 56) | (val_reg << 48) | job->call_info.size,
+
+ /* WAIT(0) => waits for FLUSH_CACHE2 instruction */
+ (3ull << 56) | (1 << 16),
+
+ /* CALL rX:rX+1, rX+2 */
+ (32ull << 56) | (addr_reg << 40) | (val_reg << 32),
+
+ /* MOV48 rX:rX+1, sync_addr */
+ (1ull << 56) | (addr_reg << 48) | sync_addr,
+
+ /* MOV48 rX+2, #1 */
+ (1ull << 56) | (val_reg << 48) | 1,
+
+ /* WAIT(all) */
+ (3ull << 56) | (waitall_mask << 16),
+
+ /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
+ (51ull << 56) | (0ull << 48) | (addr_reg << 40) | (val_reg << 32) | (0 << 16) | 1,
+
+ /* ERROR_BARRIER, so we can recover from faults at job
+ * boundaries.
+ */
+ (47ull << 56),
+ };
+
+ /* Need to be cacheline aligned to please the prefetcher. */
+ static_assert(sizeof(call_instrs) % 64 == 0,
+ "call_instrs is not aligned on a cacheline");
+
+ /* Stream size is zero, nothing to do => return a NULL fence and let
+ * drm_sched signal the parent.
+ */
+ if (!job->call_info.size)
+ return NULL;
+
+ ret = pm_runtime_resume_and_get(ptdev->base.dev);
+ if (drm_WARN_ON(&ptdev->base, ret))
+ return ERR_PTR(ret);
+
+ mutex_lock(&sched->lock);
+ if (!group_can_run(group)) {
+ done_fence = ERR_PTR(-ECANCELED);
+ goto out_unlock;
+ }
+
+ dma_fence_init(job->done_fence,
+ &panthor_queue_fence_ops,
+ &queue->fence_ctx.lock,
+ queue->fence_ctx.id,
+ atomic64_inc_return(&queue->fence_ctx.seqno));
+
+ memcpy(queue->ringbuf->kmap + ringbuf_insert,
+ call_instrs, sizeof(call_instrs));
+
+ panthor_job_get(&job->base);
+ spin_lock(&queue->fence_ctx.lock);
+ list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
+ spin_unlock(&queue->fence_ctx.lock);
+
+ job->ringbuf.start = queue->iface.input->insert;
+ job->ringbuf.end = job->ringbuf.start + sizeof(call_instrs);
+
+ /* Make sure the ring buffer is updated before the INSERT
+ * register.
+ */
+ wmb();
+
+ queue->iface.input->extract = queue->iface.output->extract;
+ queue->iface.input->insert = job->ringbuf.end;
+
+ if (group->csg_id < 0) {
+ /* If the queue is blocked, we want to keep the timeout running, so we
+ * can detect unbounded waits and kill the group when that happens.
+ * Otherwise, we suspend the timeout so the time we spend waiting for
+ * a CSG slot is not counted.
+ */
+ if (!(group->blocked_queues & BIT(job->queue_idx)) &&
+ !queue->timeout_suspended) {
+ queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler);
+ queue->timeout_suspended = true;
+ }
+
+ group_schedule_locked(group, BIT(job->queue_idx));
+ } else {
+ gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
+ if (!sched->pm.has_ref &&
+ !(group->blocked_queues & BIT(job->queue_idx))) {
+ pm_runtime_get(ptdev->base.dev);
+ sched->pm.has_ref = true;
+ }
+ }
+
+ done_fence = dma_fence_get(job->done_fence);
+
+out_unlock:
+ mutex_unlock(&sched->lock);
+ pm_runtime_mark_last_busy(ptdev->base.dev);
+ pm_runtime_put_autosuspend(ptdev->base.dev);
+
+ return done_fence;
+}
+
+static enum drm_gpu_sched_stat
+queue_timedout_job(struct drm_sched_job *sched_job)
+{
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+ struct panthor_group *group = job->group;
+ struct panthor_device *ptdev = group->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_queue *queue = group->queues[job->queue_idx];
+
+ drm_warn(&ptdev->base, "job timeout\n");
+
+ drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
+
+ queue_stop(queue, job);
+
+ mutex_lock(&sched->lock);
+ group->timedout = true;
+ if (group->csg_id >= 0) {
+ sched_queue_delayed_work(ptdev->scheduler, tick, 0);
+ } else {
+ /* Remove from the run queues, so the scheduler can't
+ * pick the group on the next tick.
+ */
+ list_del_init(&group->run_node);
+ list_del_init(&group->wait_node);
+
+ group_queue_work(group, term);
+ }
+ mutex_unlock(&sched->lock);
+
+ queue_start(queue);
+
+ return DRM_GPU_SCHED_STAT_NOMINAL;
+}
+
+static void queue_free_job(struct drm_sched_job *sched_job)
+{
+ drm_sched_job_cleanup(sched_job);
+ panthor_job_put(sched_job);
+}
+
+static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
+ .run_job = queue_run_job,
+ .timedout_job = queue_timedout_job,
+ .free_job = queue_free_job,
+};
+
+static struct panthor_queue *
+group_create_queue(struct panthor_group *group,
+ const struct drm_panthor_queue_create *args)
+{
+ struct drm_gpu_scheduler *drm_sched;
+ struct panthor_queue *queue;
+ int ret;
+
+ if (args->pad[0] || args->pad[1] || args->pad[2])
+ return ERR_PTR(-EINVAL);
+
+ if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
+ !is_power_of_2(args->ringbuf_size))
+ return ERR_PTR(-EINVAL);
+
+ if (args->priority > CSF_MAX_QUEUE_PRIO)
+ return ERR_PTR(-EINVAL);
+
+ queue = kzalloc(sizeof(*queue), GFP_KERNEL);
+ if (!queue)
+ return ERR_PTR(-ENOMEM);
+
+ queue->fence_ctx.id = dma_fence_context_alloc(1);
+ spin_lock_init(&queue->fence_ctx.lock);
+ INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
+
+ queue->priority = args->priority;
+
+ queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
+ args->ringbuf_size,
+ DRM_PANTHOR_BO_NO_MMAP,
+ DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
+ DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
+ PANTHOR_VM_KERNEL_AUTO_VA);
+ if (IS_ERR(queue->ringbuf)) {
+ ret = PTR_ERR(queue->ringbuf);
+ goto err_free_queue;
+ }
+
+ ret = panthor_kernel_bo_vmap(queue->ringbuf);
+ if (ret)
+ goto err_free_queue;
+
+ queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
+ &queue->iface.input,
+ &queue->iface.output,
+ &queue->iface.input_fw_va,
+ &queue->iface.output_fw_va);
+ if (IS_ERR(queue->iface.mem)) {
+ ret = PTR_ERR(queue->iface.mem);
+ goto err_free_queue;
+ }
+
+ ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops,
+ group->ptdev->scheduler->wq, 1,
+ args->ringbuf_size / (NUM_INSTRS_PER_SLOT * sizeof(u64)),
+ 0, msecs_to_jiffies(JOB_TIMEOUT_MS),
+ group->ptdev->reset.wq,
+ NULL, "panthor-queue", group->ptdev->base.dev);
+ if (ret)
+ goto err_free_queue;
+
+ drm_sched = &queue->scheduler;
+ ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
+
+ return queue;
+
+err_free_queue:
+ group_free_queue(group, queue);
+ return ERR_PTR(ret);
+}
+
+#define MAX_GROUPS_PER_POOL 128
+
+int panthor_group_create(struct panthor_file *pfile,
+ const struct drm_panthor_group_create *group_args,
+ const struct drm_panthor_queue_create *queue_args)
+{
+ struct panthor_device *ptdev = pfile->ptdev;
+ struct panthor_group_pool *gpool = pfile->groups;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
+ struct panthor_group *group = NULL;
+ u32 gid, i, suspend_size;
+ int ret;
+
+ if (group_args->pad)
+ return -EINVAL;
+
+ if (group_args->priority > PANTHOR_CSG_PRIORITY_HIGH)
+ return -EINVAL;
+
+ if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
+ (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
+ (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
+ return -EINVAL;
+
+ if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
+ hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
+ hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
+ return -EINVAL;
+
+ group = kzalloc(sizeof(*group), GFP_KERNEL);
+ if (!group)
+ return -ENOMEM;
+
+ spin_lock_init(&group->fatal_lock);
+ kref_init(&group->refcount);
+ group->state = PANTHOR_CS_GROUP_CREATED;
+ group->csg_id = -1;
+
+ group->ptdev = ptdev;
+ group->max_compute_cores = group_args->max_compute_cores;
+ group->compute_core_mask = group_args->compute_core_mask;
+ group->max_fragment_cores = group_args->max_fragment_cores;
+ group->fragment_core_mask = group_args->fragment_core_mask;
+ group->max_tiler_cores = group_args->max_tiler_cores;
+ group->tiler_core_mask = group_args->tiler_core_mask;
+ group->priority = group_args->priority;
+
+ INIT_LIST_HEAD(&group->wait_node);
+ INIT_LIST_HEAD(&group->run_node);
+ INIT_WORK(&group->term_work, group_term_work);
+ INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
+ INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
+ INIT_WORK(&group->release_work, group_release_work);
+
+ group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
+ if (!group->vm) {
+ ret = -EINVAL;
+ goto err_put_group;
+ }
+
+ suspend_size = csg_iface->control->suspend_size;
+ group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
+ if (IS_ERR(group->suspend_buf)) {
+ ret = PTR_ERR(group->suspend_buf);
+ group->suspend_buf = NULL;
+ goto err_put_group;
+ }
+
+ suspend_size = csg_iface->control->protm_suspend_size;
+ group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
+ if (IS_ERR(group->protm_suspend_buf)) {
+ ret = PTR_ERR(group->protm_suspend_buf);
+ group->protm_suspend_buf = NULL;
+ goto err_put_group;
+ }
+
+ group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
+ group_args->queues.count *
+ sizeof(struct panthor_syncobj_64b),
+ DRM_PANTHOR_BO_NO_MMAP,
+ DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
+ DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
+ PANTHOR_VM_KERNEL_AUTO_VA);
+ if (IS_ERR(group->syncobjs)) {
+ ret = PTR_ERR(group->syncobjs);
+ goto err_put_group;
+ }
+
+ ret = panthor_kernel_bo_vmap(group->syncobjs);
+ if (ret)
+ goto err_put_group;
+
+ memset(group->syncobjs->kmap, 0,
+ group_args->queues.count * sizeof(struct panthor_syncobj_64b));
+
+ for (i = 0; i < group_args->queues.count; i++) {
+ group->queues[i] = group_create_queue(group, &queue_args[i]);
+ if (IS_ERR(group->queues[i])) {
+ ret = PTR_ERR(group->queues[i]);
+ group->queues[i] = NULL;
+ goto err_put_group;
+ }
+
+ group->queue_count++;
+ }
+
+ group->idle_queues = GENMASK(group->queue_count - 1, 0);
+
+ ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
+ if (ret)
+ goto err_put_group;
+
+ mutex_lock(&sched->reset.lock);
+ if (atomic_read(&sched->reset.in_progress)) {
+ panthor_group_stop(group);
+ } else {
+ mutex_lock(&sched->lock);
+ list_add_tail(&group->run_node,
+ &sched->groups.idle[group->priority]);
+ mutex_unlock(&sched->lock);
+ }
+ mutex_unlock(&sched->reset.lock);
+
+ return gid;
+
+err_put_group:
+ group_put(group);
+ return ret;
+}
+
+int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
+{
+ struct panthor_group_pool *gpool = pfile->groups;
+ struct panthor_device *ptdev = pfile->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_group *group;
+
+ group = xa_erase(&gpool->xa, group_handle);
+ if (!group)
+ return -EINVAL;
+
+ for (u32 i = 0; i < group->queue_count; i++) {
+ if (group->queues[i])
+ drm_sched_entity_destroy(&group->queues[i]->entity);
+ }
+
+ mutex_lock(&sched->reset.lock);
+ mutex_lock(&sched->lock);
+ group->destroyed = true;
+ if (group->csg_id >= 0) {
+ sched_queue_delayed_work(sched, tick, 0);
+ } else if (!atomic_read(&sched->reset.in_progress)) {
+ /* Remove from the run queues, so the scheduler can't
+ * pick the group on the next tick.
+ */
+ list_del_init(&group->run_node);
+ list_del_init(&group->wait_node);
+ group_queue_work(group, term);
+ }
+ mutex_unlock(&sched->lock);
+ mutex_unlock(&sched->reset.lock);
+
+ group_put(group);
+ return 0;
+}
+
+int panthor_group_get_state(struct panthor_file *pfile,
+ struct drm_panthor_group_get_state *get_state)
+{
+ struct panthor_group_pool *gpool = pfile->groups;
+ struct panthor_device *ptdev = pfile->ptdev;
+ struct panthor_scheduler *sched = ptdev->scheduler;
+ struct panthor_group *group;
+
+ if (get_state->pad)
+ return -EINVAL;
+
+ group = group_get(xa_load(&gpool->xa, get_state->group_handle));
+ if (!group)
+ return -EINVAL;
+
+ memset(get_state, 0, sizeof(*get_state));
+
+ mutex_lock(&sched->lock);
+ if (group->timedout)
+ get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
+ if (group->fatal_queues) {
+ get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
+ get_state->fatal_queues = group->fatal_queues;
+ }
+ mutex_unlock(&sched->lock);
+
+ group_put(group);
+ return 0;
+}
+
+int panthor_group_pool_create(struct panthor_file *pfile)
+{
+ struct panthor_group_pool *gpool;
+
+ gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
+ if (!gpool)
+ return -ENOMEM;
+
+ xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
+ pfile->groups = gpool;
+ return 0;
+}
+
+void panthor_group_pool_destroy(struct panthor_file *pfile)
+{
+ struct panthor_group_pool *gpool = pfile->groups;
+ struct panthor_group *group;
+ unsigned long i;
+
+ if (IS_ERR_OR_NULL(gpool))
+ return;
+
+ xa_for_each(&gpool->xa, i, group)
+ panthor_group_destroy(pfile, i);
+
+ xa_destroy(&gpool->xa);
+ kfree(gpool);
+ pfile->groups = NULL;
+}
+
+static void job_release(struct kref *ref)
+{
+ struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
+
+ drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
+
+ if (job->base.s_fence)
+ drm_sched_job_cleanup(&job->base);
+
+ if (job->done_fence && job->done_fence->ops)
+ dma_fence_put(job->done_fence);
+ else
+ dma_fence_free(job->done_fence);
+
+ group_put(job->group);
+
+ kfree(job);
+}
+
+struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
+{
+ if (sched_job) {
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+
+ kref_get(&job->refcount);
+ }
+
+ return sched_job;
+}
+
+void panthor_job_put(struct drm_sched_job *sched_job)
+{
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+
+ if (sched_job)
+ kref_put(&job->refcount, job_release);
+}
+
+struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
+{
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+
+ return job->group->vm;
+}
+
+struct drm_sched_job *
+panthor_job_create(struct panthor_file *pfile,
+ u16 group_handle,
+ const struct drm_panthor_queue_submit *qsubmit)
+{
+ struct panthor_group_pool *gpool = pfile->groups;
+ struct panthor_job *job;
+ int ret;
+
+ if (qsubmit->pad)
+ return ERR_PTR(-EINVAL);
+
+ /* If stream_addr is zero, so stream_size should be. */
+ if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
+ return ERR_PTR(-EINVAL);
+
+ /* Make sure the address is aligned on 64-byte (cacheline) and the size is
+ * aligned on 8-byte (instruction size).
+ */
+ if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
+ return ERR_PTR(-EINVAL);
+
+ /* bits 24:30 must be zero. */
+ if (qsubmit->latest_flush & GENMASK(30, 24))
+ return ERR_PTR(-EINVAL);
+
+ job = kzalloc(sizeof(*job), GFP_KERNEL);
+ if (!job)
+ return ERR_PTR(-ENOMEM);
+
+ kref_init(&job->refcount);
+ job->queue_idx = qsubmit->queue_index;
+ job->call_info.size = qsubmit->stream_size;
+ job->call_info.start = qsubmit->stream_addr;
+ job->call_info.latest_flush = qsubmit->latest_flush;
+ INIT_LIST_HEAD(&job->node);
+
+ job->group = group_get(xa_load(&gpool->xa, group_handle));
+ if (!job->group) {
+ ret = -EINVAL;
+ goto err_put_job;
+ }
+
+ if (job->queue_idx >= job->group->queue_count ||
+ !job->group->queues[job->queue_idx]) {
+ ret = -EINVAL;
+ goto err_put_job;
+ }
+
+ job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
+ if (!job->done_fence) {
+ ret = -ENOMEM;
+ goto err_put_job;
+ }
+
+ ret = drm_sched_job_init(&job->base,
+ &job->group->queues[job->queue_idx]->entity,
+ 1, job->group);
+ if (ret)
+ goto err_put_job;
+
+ return &job->base;
+
+err_put_job:
+ panthor_job_put(&job->base);
+ return ERR_PTR(ret);
+}
+
+void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
+{
+ struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
+
+ /* Still not sure why we want USAGE_WRITE for external objects, since I
+ * was assuming this would be handled through explicit syncs being imported
+ * to external BOs with DMA_BUF_IOCTL_IMPORT_SYNC_FILE, but other drivers
+ * seem to pass DMA_RESV_USAGE_WRITE, so there must be a good reason.
+ */
+ panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
+ DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE);
+}
+
+void panthor_sched_unplug(struct panthor_device *ptdev)
+{
+ struct panthor_scheduler *sched = ptdev->scheduler;
+
+ cancel_delayed_work_sync(&sched->tick_work);
+
+ mutex_lock(&sched->lock);
+ if (sched->pm.has_ref) {
+ pm_runtime_put(ptdev->base.dev);
+ sched->pm.has_ref = false;
+ }
+ mutex_unlock(&sched->lock);
+}
+
+static void panthor_sched_fini(struct drm_device *ddev, void *res)
+{
+ struct panthor_scheduler *sched = res;
+ int prio;
+
+ if (!sched || !sched->csg_slot_count)
+ return;
+
+ cancel_delayed_work_sync(&sched->tick_work);
+
+ if (sched->wq)
+ destroy_workqueue(sched->wq);
+
+ if (sched->heap_alloc_wq)
+ destroy_workqueue(sched->heap_alloc_wq);
+
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
+ drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
+ }
+
+ drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
+}
+
+int panthor_sched_init(struct panthor_device *ptdev)
+{
+ struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
+ struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
+ struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
+ struct panthor_scheduler *sched;
+ u32 gpu_as_count, num_groups;
+ int prio, ret;
+
+ sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
+ if (!sched)
+ return -ENOMEM;
+
+ /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
+ * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
+ */
+ num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
+
+ /* The FW-side scheduler might deadlock if two groups with the same
+ * priority try to access a set of resources that overlaps, with part
+ * of the resources being allocated to one group and the other part to
+ * the other group, both groups waiting for the remaining resources to
+ * be allocated. To avoid that, it is recommended to assign each CSG a
+ * different priority. In theory we could allow several groups to have
+ * the same CSG priority if they don't request the same resources, but
+ * that makes the scheduling logic more complicated, so let's clamp
+ * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
+ */
+ num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
+
+ /* We need at least one AS for the MCU and one for the GPU contexts. */
+ gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
+ if (!gpu_as_count) {
+ drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
+ gpu_as_count + 1);
+ return -EINVAL;
+ }
+
+ sched->ptdev = ptdev;
+ sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
+ sched->csg_slot_count = num_groups;
+ sched->cs_slot_count = csg_iface->control->stream_num;
+ sched->as_slot_count = gpu_as_count;
+ ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
+ ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
+ ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
+
+ sched->last_tick = 0;
+ sched->resched_target = U64_MAX;
+ sched->tick_period = msecs_to_jiffies(10);
+ INIT_DELAYED_WORK(&sched->tick_work, tick_work);
+ INIT_WORK(&sched->sync_upd_work, sync_upd_work);
+ INIT_WORK(&sched->fw_events_work, process_fw_events_work);
+
+ ret = drmm_mutex_init(&ptdev->base, &sched->lock);
+ if (ret)
+ return ret;
+
+ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
+ INIT_LIST_HEAD(&sched->groups.runnable[prio]);
+ INIT_LIST_HEAD(&sched->groups.idle[prio]);
+ }
+ INIT_LIST_HEAD(&sched->groups.waiting);
+
+ ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
+ if (ret)
+ return ret;
+
+ INIT_LIST_HEAD(&sched->reset.stopped_groups);
+
+ /* sched->heap_alloc_wq will be used for heap chunk allocation on
+ * tiler OOM events, which means we can't use the same workqueue for
+ * the scheduler because works queued by the scheduler are in
+ * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
+ * work around this limitation.
+ *
+ * FIXME: Ultimately, what we need is a failable/non-blocking GEM
+ * allocation path that we can call when a heap OOM is reported. The
+ * FW is smart enough to fall back on other methods if the kernel can't
+ * allocate memory, and fail the tiling job if none of these
+ * countermeasures worked.
+ *
+ * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
+ * system is running out of memory.
+ */
+ sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
+ sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
+ if (!sched->wq || !sched->heap_alloc_wq) {
+ panthor_sched_fini(&ptdev->base, sched);
+ drm_err(&ptdev->base, "Failed to allocate the workqueues");
+ return -ENOMEM;
+ }
+
+ ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
+ if (ret)
+ return ret;
+
+ ptdev->scheduler = sched;
+ return 0;
+}