summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_buf_item.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_buf_item.c')
-rw-r--r--fs/xfs/xfs_buf_item.c106
1 files changed, 19 insertions, 87 deletions
diff --git a/fs/xfs/xfs_buf_item.c b/fs/xfs/xfs_buf_item.c
index 1545657c3ca0..9e75e8d6042e 100644
--- a/fs/xfs/xfs_buf_item.c
+++ b/fs/xfs/xfs_buf_item.c
@@ -410,7 +410,6 @@ xfs_buf_item_unpin(
{
struct xfs_buf_log_item *bip = BUF_ITEM(lip);
xfs_buf_t *bp = bip->bli_buf;
- struct xfs_ail *ailp = lip->li_ailp;
int stale = bip->bli_flags & XFS_BLI_STALE;
int freed;
@@ -452,10 +451,10 @@ xfs_buf_item_unpin(
}
/*
- * If we get called here because of an IO error, we may
- * or may not have the item on the AIL. xfs_trans_ail_delete()
- * will take care of that situation.
- * xfs_trans_ail_delete() drops the AIL lock.
+ * If we get called here because of an IO error, we may or may
+ * not have the item on the AIL. xfs_trans_ail_delete() will
+ * take care of that situation. xfs_trans_ail_delete() drops
+ * the AIL lock.
*/
if (bip->bli_flags & XFS_BLI_STALE_INODE) {
xfs_buf_do_callbacks(bp);
@@ -463,47 +462,23 @@ xfs_buf_item_unpin(
list_del_init(&bp->b_li_list);
bp->b_iodone = NULL;
} else {
- spin_lock(&ailp->ail_lock);
- xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
+ xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
xfs_buf_item_relse(bp);
ASSERT(bp->b_log_item == NULL);
}
xfs_buf_relse(bp);
} else if (freed && remove) {
/*
- * There are currently two references to the buffer - the active
- * LRU reference and the buf log item. What we are about to do
- * here - simulate a failed IO completion - requires 3
- * references.
- *
- * The LRU reference is removed by the xfs_buf_stale() call. The
- * buf item reference is removed by the xfs_buf_iodone()
- * callback that is run by xfs_buf_do_callbacks() during ioend
- * processing (via the bp->b_iodone callback), and then finally
- * the ioend processing will drop the IO reference if the buffer
- * is marked XBF_ASYNC.
- *
- * Hence we need to take an additional reference here so that IO
- * completion processing doesn't free the buffer prematurely.
+ * The buffer must be locked and held by the caller to simulate
+ * an async I/O failure.
*/
xfs_buf_lock(bp);
xfs_buf_hold(bp);
bp->b_flags |= XBF_ASYNC;
- xfs_buf_ioerror(bp, -EIO);
- bp->b_flags &= ~XBF_DONE;
- xfs_buf_stale(bp);
- xfs_buf_ioend(bp);
+ xfs_buf_ioend_fail(bp);
}
}
-/*
- * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
- * seconds so as to not spam logs too much on repeated detection of the same
- * buffer being bad..
- */
-
-static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
-
STATIC uint
xfs_buf_item_push(
struct xfs_log_item *lip,
@@ -533,11 +508,10 @@ xfs_buf_item_push(
trace_xfs_buf_item_push(bip);
/* has a previous flush failed due to IO errors? */
- if ((bp->b_flags & XBF_WRITE_FAIL) &&
- ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
- xfs_warn(bp->b_mount,
-"Failing async write on buffer block 0x%llx. Retrying async write.",
- (long long)bp->b_bn);
+ if (bp->b_flags & XBF_WRITE_FAIL) {
+ xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
+ "Failing async write on buffer block 0x%llx. Retrying async write.",
+ (long long)bp->b_bn);
}
if (!xfs_buf_delwri_queue(bp, buffer_list))
@@ -584,7 +558,7 @@ xfs_buf_item_put(
* state.
*/
if (aborted)
- xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
+ xfs_trans_ail_delete(lip, 0);
xfs_buf_item_relse(bip->bli_buf);
return true;
}
@@ -1229,61 +1203,19 @@ xfs_buf_iodone(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
- struct xfs_ail *ailp = lip->li_ailp;
-
ASSERT(BUF_ITEM(lip)->bli_buf == bp);
xfs_buf_rele(bp);
/*
- * If we are forcibly shutting down, this may well be
- * off the AIL already. That's because we simulate the
- * log-committed callbacks to unpin these buffers. Or we may never
- * have put this item on AIL because of the transaction was
- * aborted forcibly. xfs_trans_ail_delete() takes care of these.
+ * If we are forcibly shutting down, this may well be off the AIL
+ * already. That's because we simulate the log-committed callbacks to
+ * unpin these buffers. Or we may never have put this item on AIL
+ * because of the transaction was aborted forcibly.
+ * xfs_trans_ail_delete() takes care of these.
*
* Either way, AIL is useless if we're forcing a shutdown.
*/
- spin_lock(&ailp->ail_lock);
- xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
+ xfs_trans_ail_delete(lip, SHUTDOWN_CORRUPT_INCORE);
xfs_buf_item_free(BUF_ITEM(lip));
}
-
-/*
- * Requeue a failed buffer for writeback.
- *
- * We clear the log item failed state here as well, but we have to be careful
- * about reference counts because the only active reference counts on the buffer
- * may be the failed log items. Hence if we clear the log item failed state
- * before queuing the buffer for IO we can release all active references to
- * the buffer and free it, leading to use after free problems in
- * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
- * order we process them in - the buffer is locked, and we own the buffer list
- * so nothing on them is going to change while we are performing this action.
- *
- * Hence we can safely queue the buffer for IO before we clear the failed log
- * item state, therefore always having an active reference to the buffer and
- * avoiding the transient zero-reference state that leads to use-after-free.
- *
- * Return true if the buffer was added to the buffer list, false if it was
- * already on the buffer list.
- */
-bool
-xfs_buf_resubmit_failed_buffers(
- struct xfs_buf *bp,
- struct list_head *buffer_list)
-{
- struct xfs_log_item *lip;
- bool ret;
-
- ret = xfs_buf_delwri_queue(bp, buffer_list);
-
- /*
- * XFS_LI_FAILED set/clear is protected by ail_lock, caller of this
- * function already have it acquired
- */
- list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
- xfs_clear_li_failed(lip);
-
- return ret;
-}