summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/cgroup-v2.rst
AgeCommit message (Collapse)AuthorFilesLines
2021-01-22docs/admin-guide/cgroup-v2: fix mount opt renderingKir Kolyshkin1-3/+0
Due to an extra empty line between the option and its description it is rendered not like in other places. Remove the empty lines to fix. Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-11-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-22docs/admin-guide/cgroup-v2: nitKir Kolyshkin1-1/+1
Improper Capitalization. Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-10-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-22doc/admin-guide/cgroup-v2: use tablesKir Kolyshkin1-6/+10
These two places are rendered like a table in the source (rst) code, but they are seen as plain text by formatters, and thus are joined together into a single line, e.g.: > “root” - a partition root “member” - a non-root member of a partition This is definitely not what was intended. To fix, use table formatting, like in other places. Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-9-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-22docs/admin-guide: cgroup-v2: fix cgroup.type renderingKir Kolyshkin1-1/+0
Due to an extra vertical whitespace, this was not recognised as a definition list entry, and thus was not rendered like the rest of cgroupfs files. Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-8-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-22docs/admin-guide: cgroup-v2: typos and spacesKir Kolyshkin1-17/+17
- fix a typo (mempry -> memory) in a file name; - add space before "(" where appropriate. Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-7-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-21docs/scheduler/sched-bwc: note/link cgroup v2Kir Kolyshkin1-0/+4
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20210120001824.385168-6-kolyshkin@gmail.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2021-01-19cgroup: update PSI file description in docsOdin Ugedal1-3/+3
Update PSI file description in cgroup-v2 docs to reflect the current implementation. tj: Changed cpu.pressure from read-only to read-write as suggested by Johannes. Signed-off-by: Odin Ugedal <odin@uged.al> Acked-by: Dan Schatzberg <dschatzberg@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-01-11Documentation: Fix typos found in cgroup-v2.rstJiang Biao1-2/+2
Fix typos found in Documentation/admin-guide/cgroup-v2.rst. Signed-off-by: Jiang Biao <benbjiang@tencent.com> Link: https://lore.kernel.org/r/20210107141118.9530-1-benbjiang@tencent.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-12-15mm: memcontrol: account pagetables per nodeShakeel Butt1-0/+3
For many workloads, pagetable consumption is significant and it makes sense to expose it in the memory.stat for the memory cgroups. However at the moment, the pagetables are accounted per-zone. Converting them to per-node and using the right interface will correctly account for the memory cgroups as well. [akpm@linux-foundation.org: export __mod_lruvec_page_state to modules for arch/mips/kvm/] Link: https://lkml.kernel.org/r/20201130212541.2781790-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: memcontrol: add file_thp, shmem_thp to memory.statJohannes Weiner1-0/+8
As huge page usage in the page cache and for shmem files proliferates in our production environment, the performance monitoring team has asked for per-cgroup stats on those pages. We already track and export anon_thp per cgroup. We already track file THP and shmem THP per node, so making them per-cgroup is only a matter of switching from node to lruvec counters. All callsites are in places where the pages are charged and locked, so page->memcg is stable. [hannes@cmpxchg.org: add documentation] Link: https://lkml.kernel.org/r/20201026174029.GC548555@cmpxchg.org Link: https://lkml.kernel.org/r/20201022151844.489337-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-14mm: memcontrol: add the missing numa_stat interface for cgroup v2Muchun Song1-20/+49
In the cgroup v1, we have a numa_stat interface. This is useful for providing visibility into the numa locality information within an memcg since the pages are allowed to be allocated from any physical node. One of the use cases is evaluating application performance by combining this information with the application's CPU allocation. But the cgroup v2 does not. So this patch adds the missing information. Suggested-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Zefan Li <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20200916100030.71698-2-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26mm: memcontrol: fix missing suffix of workingset_restoreMuchun Song1-7/+18
We forget to add the suffix to the workingset_restore string, so fix it. And also update the documentation of cgroup-v2.rst. Fixes: 170b04b7ae49 ("mm/workingset: prepare the workingset detection infrastructure for anon LRU") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Zefan Li <lizefan@huawei.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20200916100030.71698-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12mm: memcg/percpu: per-memcg percpu memory statisticsRoman Gushchin1-0/+4
Percpu memory can represent a noticeable chunk of the total memory consumption, especially on big machines with many CPUs. Let's track percpu memory usage for each memcg and display it in memory.stat. A percpu allocation is usually scattered over multiple pages (and nodes), and can be significantly smaller than a page. So let's add a byte-sized counter on the memcg level: MEMCG_PERCPU_B. Byte-sized vmstat infra created for slabs can be perfectly reused for percpu case. [guro@fb.com: v3] Link: http://lkml.kernel.org/r/20200623184515.4132564-4-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Dennis Zhou <dennis@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Tobin C. Harding <tobin@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Waiman Long <longman@redhat.com> Cc: Bixuan Cui <cuibixuan@huawei.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Link: http://lkml.kernel.org/r/20200608230819.832349-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-05Merge tag 'docs-5.9' of git://git.lwn.net/linuxLinus Torvalds1-4/+4
Pull documentation updates from Jonathan Corbet: "It's been a busy cycle for documentation - hopefully the busiest for a while to come. Changes include: - Some new Chinese translations - Progress on the battle against double words words and non-HTTPS URLs - Some block-mq documentation - More RST conversions from Mauro. At this point, that task is essentially complete, so we shouldn't see this kind of churn again for a while. Unless we decide to switch to asciidoc or something...:) - Lots of typo fixes, warning fixes, and more" * tag 'docs-5.9' of git://git.lwn.net/linux: (195 commits) scripts/kernel-doc: optionally treat warnings as errors docs: ia64: correct typo mailmap: add entry for <alobakin@marvell.com> doc/zh_CN: add cpu-load Chinese version Documentation/admin-guide: tainted-kernels: fix spelling mistake MAINTAINERS: adjust kprobes.rst entry to new location devices.txt: document rfkill allocation PCI: correct flag name docs: filesystems: vfs: correct flag name docs: filesystems: vfs: correct sync_mode flag names docs: path-lookup: markup fixes for emphasis docs: path-lookup: more markup fixes docs: path-lookup: fix HTML entity mojibake CREDITS: Replace HTTP links with HTTPS ones docs: process: Add an example for creating a fixes tag doc/zh_CN: add Chinese translation prefer section doc/zh_CN: add clearing-warn-once Chinese version doc/zh_CN: add admin-guide index doc:it_IT: process: coding-style.rst: Correct __maybe_unused compiler label futex: MAINTAINERS: Re-add selftests directory ...
2020-08-03Merge tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-blockLinus Torvalds1-2/+1
Pull core block updates from Jens Axboe: "Good amount of cleanups and tech debt removals in here, and as a result, the diffstat shows a nice net reduction in code. - Softirq completion cleanups (Christoph) - Stop using ->queuedata (Christoph) - Cleanup bd claiming (Christoph) - Use check_events, moving away from the legacy media change (Christoph) - Use inode i_blkbits consistently (Christoph) - Remove old unused writeback congestion bits (Christoph) - Cleanup/unify submission path (Christoph) - Use bio_uninit consistently, instead of bio_disassociate_blkg (Christoph) - sbitmap cleared bits handling (John) - Request merging blktrace event addition (Jan) - sysfs add/remove race fixes (Luis) - blk-mq tag fixes/optimizations (Ming) - Duplicate words in comments (Randy) - Flush deferral cleanup (Yufen) - IO context locking/retry fixes (John) - struct_size() usage (Gustavo) - blk-iocost fixes (Chengming) - blk-cgroup IO stats fixes (Boris) - Various little fixes" * tag 'for-5.9/block-20200802' of git://git.kernel.dk/linux-block: (135 commits) block: blk-timeout: delete duplicated word block: blk-mq-sched: delete duplicated word block: blk-mq: delete duplicated word block: genhd: delete duplicated words block: elevator: delete duplicated word and fix typos block: bio: delete duplicated words block: bfq-iosched: fix duplicated word iocost_monitor: start from the oldest usage index iocost: Fix check condition of iocg abs_vdebt block: Remove callback typedefs for blk_mq_ops block: Use non _rcu version of list functions for tag_set_list blk-cgroup: show global disk stats in root cgroup io.stat blk-cgroup: make iostat functions visible to stat printing block: improve discard bio alignment in __blkdev_issue_discard() block: change REQ_OP_ZONE_RESET and REQ_OP_ZONE_RESET_ALL to be odd numbers block: defer flush request no matter whether we have elevator block: make blk_timeout_init() static block: remove retry loop in ioc_release_fn() block: remove unnecessary ioc nested locking block: integrate bd_start_claiming into __blkdev_get ...
2020-07-18blk-cgroup: show global disk stats in root cgroup io.statBoris Burkov1-2/+1
In order to improve consistency and usability in cgroup stat accounting, we would like to support the root cgroup's io.stat. Since the root cgroup has processes doing io even if the system has no explicitly created cgroups, we need to be careful to avoid overhead in that case. For that reason, the rstat algorithms don't handle the root cgroup, so just turning the file on wouldn't give correct statistics. To get around this, we simulate flushing the iostat struct by filling it out directly from global disk stats. The result is a root cgroup io.stat file consistent with both /proc/diskstats and io.stat. Note that in order to collect the disk stats, we needed to iterate over devices. To facilitate that, we had to change the linkage of a disk_type to external so that it can be used from blk-cgroup.c to iterate over disks. Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Boris Burkov <boris@bur.io> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-07-05doc: cgroup: add f2fs and xfs to supported list for writebackEric Sandeen1-3/+3
f2fs and xfs have both added support for cgroup writeback: 578c647 f2fs: implement cgroup writeback support adfb5fb xfs: implement cgroup aware writeback so add them to the supported list in the docs. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Link: https://lore.kernel.org/r/c8271324-9132-388c-5242-d7699f011892@redhat.com Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-07-05Documentation/admin-guide: cgroup-v2: drop doubled wordRandy Dunlap1-1/+1
Drop the doubled word "of". Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: linux-doc@vger.kernel.org Cc: cgroups@vger.kernel.org Link: https://lore.kernel.org/r/20200704032020.21923-2-rdunlap@infradead.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-06-26doc: THP CoW fault no longer allocate THPYang Shi1-2/+2
Since commit 3917c80280c9 ("thp: change CoW semantics for anon-THP"), THP CoW page fault is rewritten. Now it just splits pmd then fallback to base page fault, it doesn't try to allocate THP anymore. So it is no longer counted in THP_FAULT_ALLOC. Remove the obsolete statement in documentation about THP CoW allocation to avoid confusion. Link: http://lkml.kernel.org/r/1592424895-5421-1-git-send-email-yang.shi@linux.alibaba.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-08doc: cgroup: update note about conditions when oom killer is invokedKonstantin Khlebnikov1-9/+8
Starting from v4.19 commit 29ef680ae7c2 ("memcg, oom: move out_of_memory back to the charge path") cgroup oom killer is no longer invoked only from page faults. Now it implements the same semantics as global OOM killer: allocation context invokes OOM killer and keeps retrying until success. [akpm@linux-foundation.org: fixes per Randy] Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: http://lkml.kernel.org/r/158894738928.208854.5244393925922074518.stgit@buzz Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-06Merge branch 'for-5.8' of ↵Linus Torvalds1-4/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Just two patches: one to add system-level cpu.stat to the root cgroup for convenience and a trivial comment update" * 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: add cpu.stat file to root cgroup cgroup: Remove stale comments
2020-06-02mm/memcg: automatically penalize tasks with high swap useJakub Kicinski1-0/+20
Add a memory.swap.high knob, which can be used to protect the system from SWAP exhaustion. The mechanism used for penalizing is similar to memory.high penalty (sleep on return to user space). That is not to say that the knob itself is equivalent to memory.high. The objective is more to protect the system from potentially buggy tasks consuming a lot of swap and impacting other tasks, or even bringing the whole system to stand still with complete SWAP exhaustion. Hopefully without the need to find per-task hard limits. Slowing misbehaving tasks down gradually allows user space oom killers or other protection mechanisms to react. oomd and earlyoom already do killing based on swap exhaustion, and memory.swap.high protection will help implement such userspace oom policies more reliably. We can use one counter for number of pages allocated under pressure to save struct task space and avoid two separate hierarchy walks on the hot path. The exact overage is calculated on return to user space, anyway. Take the new high limit into account when determining if swap is "full". Borrowing the explanation from Johannes: The idea behind "swap full" is that as long as the workload has plenty of swap space available and it's not changing its memory contents, it makes sense to generously hold on to copies of data in the swap device, even after the swapin. A later reclaim cycle can drop the page without any IO. Trading disk space for IO. But the only two ways to reclaim a swap slot is when they're faulted in and the references go away, or by scanning the virtual address space like swapoff does - which is very expensive (one could argue it's too expensive even for swapoff, it's often more practical to just reboot). So at some point in the fill level, we have to start freeing up swap slots on fault/swapin. Otherwise we could eventually run out of swap slots while they're filled with copies of data that is also in RAM. We don't want to OOM a workload because its available swap space is filled with redundant cache. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Chris Down <chris@chrisdown.name> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02mm, memcg: add workingset_restore in memory.statYafang Shao1-0/+4
There's a new workingset counter introduced in commit 1899ad18c607 ("mm: workingset: tell cache transitions from workingset thrashing"). With the help of this counter we can know the workingset is transitioning or thrashing. To leverage the benifit of this counter to memcg, we should introduce it into memory.stat. Then we could know the workingset of the workload inside a memcg better. Bellow is the verification of this new counter in memory.stat. Read a file into the memory and then read it again to make these pages be active. The size of this file is 1G. (memory.max is greater than file size) The counters in memory.stat will be inactive_file 0 active_file 1073639424 workingset_refault 0 workingset_activate 0 workingset_restore 0 workingset_nodereclaim 0 Trigger the memcg reclaim by setting a lower value to memory.high, and then some pages will be demoted into inactive list, and then some pages in the inactive list will be evicted into the storage. inactive_file 498094080 active_file 310063104 workingset_refault 0 workingset_activate 0 workingset_restore 0 workingset_nodereclaim 0 Then recover the memory.high and read the file into memory again. As a result of it, the transitioning will occur. Bellow is the result of this transitioning, inactive_file 498094080 active_file 575397888 workingset_refault 64746 workingset_activate 64746 workingset_restore 64746 workingset_nodereclaim 0 Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Shakeel Butt <shakeelb@google.com> Link: http://lkml.kernel.org/r/20200504153522.11553-1-laoar.shao@gmail.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-28cgroup: add cpu.stat file to root cgroupBoris Burkov1-4/+2
Currently, the root cgroup does not have a cpu.stat file. Add one which is consistent with /proc/stat to capture global cpu statistics that might not fall under cgroup accounting. We haven't done this in the past because the data are already presented in /proc/stat and we didn't want to add overhead from collecting root cgroup stats when cgroups are configured, but no cgroups have been created. By keeping the data consistent with /proc/stat, I think we avoid the first problem, while improving the usability of cgroups stats. We avoid the second problem by computing the contents of cpu.stat from existing data collected for /proc/stat anyway. Signed-off-by: Boris Burkov <boris@bur.io> Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org>
2020-04-02mm: memcontrol: recursive memory.low protectionJohannes Weiner1-0/+11
Right now, the effective protection of any given cgroup is capped by its own explicit memory.low setting, regardless of what the parent says. The reasons for this are mostly historical and ease of implementation: to make delegation of memory.low safe, effective protection is the min() of all memory.low up the tree. Unfortunately, this limitation makes it impossible to protect an entire subtree from another without forcing the user to make explicit protection allocations all the way to the leaf cgroups - something that is highly undesirable in real life scenarios. Consider memory in a data center host. At the cgroup top level, we have a distinction between system management software and the actual workload the system is executing. Both branches are further subdivided into individual services, job components etc. We want to protect the workload as a whole from the system management software, but that doesn't mean we want to protect and prioritize individual workload wrt each other. Their memory demand can vary over time, and we'd want the VM to simply cache the hottest data within the workload subtree. Yet, the current memory.low limitations force us to allocate a fixed amount of protection to each workload component in order to get protection from system management software in general. This results in very inefficient resource distribution. Another concern with mandating downward allocation is that, as the complexity of the cgroup tree grows, it gets harder for the lower levels to be informed about decisions made at the host-level. Consider a container inside a namespace that in turn creates its own nested tree of cgroups to run multiple workloads. It'd be extremely difficult to configure memory.low parameters in those leaf cgroups that on one hand balance pressure among siblings as the container desires, while also reflecting the host-level protection from e.g. rpm upgrades, that lie beyond one or more delegation and namespacing points in the tree. It's highly unusual from a cgroup interface POV that nested levels have to be aware of and reflect decisions made at higher levels for them to be effective. To enable such use cases and scale configurability for complex trees, this patch implements a resource inheritance model for memory that is similar to how the CPU and the IO controller implement work-conserving resource allocations: a share of a resource allocated to a subree always applies to the entire subtree recursively, while allowing, but not mandating, children to further specify distribution rules. That means that if protection is explicitly allocated among siblings, those configured shares are being followed during page reclaim just like they are now. However, if the memory.low set at a higher level is not fully claimed by the children in that subtree, the "floating" remainder is applied to each cgroup in the tree in proportion to its size. Since reclaim pressure is applied in proportion to size as well, each child in that tree gets the same boost, and the effect is neutral among siblings - with respect to each other, they behave as if no memory control was enabled at all, and the VM simply balances the memory demands optimally within the subtree. But collectively those cgroups enjoy a boost over the cgroups in neighboring trees. E.g. a leaf cgroup with a memory.low setting of 0 no longer means that it's not getting a share of the hierarchically assigned resource, just that it doesn't claim a fixed amount of it to protect from its siblings. This allows us to recursively protect one subtree (workload) from another (system management), while letting subgroups compete freely among each other - without having to assign fixed shares to each leaf, and without nested groups having to echo higher-level settings. The floating protection composes naturally with fixed protection. Consider the following example tree: A A: low = 2G / \ A1: low = 1G A1 A2 A2: low = 0G As outside pressure is applied to this tree, A1 will enjoy a fixed protection from A2 of 1G, but the remaining, unclaimed 1G from A is split evenly among A1 and A2, coming out to 1.5G and 0.5G. There is a slight risk of regressing theoretical setups where the top-level cgroups don't know about the true budgeting and set bogusly high "bypass" values that are meaningfully allocated down the tree. Such setups would rely on unclaimed protection to be discarded, and distributing it would change the intended behavior. Be safe and hide the new behavior behind a mount option, 'memory_recursiveprot'. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-02doc: cgroup: improve formatting of referencesJakub Kicinski1-4/+4
Annotate references to other documents to make them clickable. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20200228000653.1572553-6-kuba@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-03-02doc: cgroup: improve formatting of cpuset examplesJakub Kicinski1-2/+2
We need literal sections otherwise the entire example is rendered as a single line. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20200228000653.1572553-5-kuba@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-03-02doc: cgroup: improve formatting of io exampleJakub Kicinski1-1/+1
We need a literal section, like few paragraphs below. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20200228000653.1572553-4-kuba@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-03-02doc: cgroup: improve formatting of mem statsJakub Kicinski1-12/+0
If there is an empty line between item and description Sphinx does not emphasize the item. First half of the list does not have the empty line and is emphasized correctly. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20200228000653.1572553-3-kuba@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2020-03-02doc: cgroup: improve formattingJakub Kicinski1-1/+1
Fix tabs vs spaces issue which cases the line to be considered a new list entry. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lore.kernel.org/r/20200228000653.1572553-2-kuba@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2019-12-16mm: hugetlb controller for cgroups v2Giuseppe Scrivano1-0/+29
In the effort of supporting cgroups v2 into Kubernetes, I stumped on the lack of the hugetlb controller. When the controller is enabled, it exposes four new files for each hugetlb size on non-root cgroups: - hugetlb.<hugepagesize>.current - hugetlb.<hugepagesize>.max - hugetlb.<hugepagesize>.events - hugetlb.<hugepagesize>.events.local The differences with the legacy hierarchy are in the file names and using the value "max" instead of "-1" to disable a limit. The file .limit_in_bytes is renamed to .max. The file .usage_in_bytes is renamed to .current. .failcnt is not provided as a single file anymore, but its value can be read through the new flat-keyed files .events and .events.local, through the "max" key. Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2019-12-02Merge tag 'docs-5.5a' of git://git.lwn.net/linuxLinus Torvalds1-3/+4
Pull Documentation updates from Jonathan Corbet: "Here are the main documentation changes for 5.5: - Various kerneldoc script enhancements. - More RST conversions; those are slowing down as we run out of things to convert, but we're a ways from done still. - Dan's "maintainer profile entry" work landed at last. Now we just need to get maintainers to fill in the profiles... - A reworking of the parallel build setup to work better with a variety of systems (and to not take over huge systems entirely in particular). - The MAINTAINERS file is now converted to RST during the build. Hopefully nobody ever tries to print this thing, or they will need to load a lot of paper. - A script and documentation making it easy for maintainers to add Link: tags at commit time. Also included is the removal of a bunch of spurious CR characters" * tag 'docs-5.5a' of git://git.lwn.net/linux: (91 commits) docs: remove a bunch of stray CRs docs: fix up the maintainer profile document libnvdimm, MAINTAINERS: Maintainer Entry Profile Maintainer Handbook: Maintainer Entry Profile MAINTAINERS: Reclaim the P: tag for Maintainer Entry Profile docs, parallelism: Rearrange how jobserver reservations are made docs, parallelism: Do not leak blocking mode to other readers docs, parallelism: Fix failure path and add comment Documentation: Remove bootmem_debug from kernel-parameters.txt Documentation: security: core.rst: fix warnings Documentation/process/howto/kokr: Update for 4.x -> 5.x versioning Documentation/translation: Use Korean for Korean translation title docs/memory-barriers.txt: Remove remaining references to mmiowb() docs/memory-barriers.txt/kokr: Update I/O section to be clearer about CPU vs thread docs/memory-barriers.txt/kokr: Fix style, spacing and grammar in I/O section Documentation/kokr: Kill all references to mmiowb() docs/memory-barriers.txt/kokr: Rewrite "KERNEL I/O BARRIER EFFECTS" section docs: Add initial documentation for devfreq Documentation: Document how to get links with git am docs: Add request_irq() documentation ...
2019-12-01Documentation/admin-guide/cgroup-v2.rst: document why inactive_X + active_X ↵Chris Down1-1/+6
may not equal X This has confused a significant number of people using cgroups inside Facebook, and some of those outside as well judging by posts like this[0] (although it's not a problem unique to cgroup v2). If shmem handling in particular becomes more coherent at some point in the future -- although that seems unlikely now -- we can change the wording here. [0]: https://unix.stackexchange.com/q/525092/10762 Link: http://lkml.kernel.org/r/20191111144958.GA11914@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-26Merge branch 'for-5.5' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "There are several notable changes here: - Single thread migrating itself has been optimized so that it doesn't need threadgroup rwsem anymore. - Freezer optimization to avoid unnecessary frozen state changes. - cgroup ID unification so that cgroup fs ino is the only unique ID used for the cgroup and can be used to directly look up live cgroups through filehandle interface on 64bit ino archs. On 32bit archs, cgroup fs ino is still the only ID in use but it is only unique when combined with gen. - selftest and other changes" * 'for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits) writeback: fix -Wformat compilation warnings docs: cgroup: mm: Fix spelling of "list" cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root() cgroup: use cgrp->kn->id as the cgroup ID kernfs: use 64bit inos if ino_t is 64bit kernfs: implement custom exportfs ops and fid type kernfs: combine ino/id lookup functions into kernfs_find_and_get_node_by_id() kernfs: convert kernfs_node->id from union kernfs_node_id to u64 kernfs: kernfs_find_and_get_node_by_ino() should only look up activated nodes kernfs: use dumber locking for kernfs_find_and_get_node_by_ino() netprio: use css ID instead of cgroup ID writeback: use ino_t for inodes in tracepoints kernfs: fix ino wrap-around detection kselftests: cgroup: Avoid the reuse of fd after it is deallocated cgroup: freezer: don't change task and cgroups status unnecessarily cgroup: use cgroup->last_bstat instead of cgroup->bstat_pending for consistency cgroup: remove cgroup_enable_task_cg_lists() optimization cgroup: pids: use atomic64_t for pids->limit selftests: cgroup: Run test_core under interfering stress selftests: cgroup: Add task migration tests ...
2019-11-18docs: cgroup: mm: Fix spelling of "list"Chris Down1-1/+1
Signed-off-by: Chris Down <chris@chrisdown.name> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Cc: cgroups@vger.kernel.org Cc: linux-mm@kvack.org Cc: kernel-team@fb.com Signed-off-by: Tejun Heo <tj@kernel.org>
2019-10-29Merge tag 'v5.4-rc4' into docs-nextJonathan Corbet1-5/+14
I need to pick up the independent changes made to Documentation/core-api/memory-allocation.rst to be able to merge further work without creating a total mess.
2019-10-08mm, memcg: proportional memory.{low,min} reclaimChris Down1-6/+14
cgroup v2 introduces two memory protection thresholds: memory.low (best-effort) and memory.min (hard protection). While they generally do what they say on the tin, there is a limitation in their implementation that makes them difficult to use effectively: that cliff behaviour often manifests when they become eligible for reclaim. This patch implements more intuitive and usable behaviour, where we gradually mount more reclaim pressure as cgroups further and further exceed their protection thresholds. This cliff edge behaviour happens because we only choose whether or not to reclaim based on whether the memcg is within its protection limits (see the use of mem_cgroup_protected in shrink_node), but we don't vary our reclaim behaviour based on this information. Imagine the following timeline, with the numbers the lruvec size in this zone: 1. memory.low=1000000, memory.current=999999. 0 pages may be scanned. 2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned. 3. memory.low=1000000, memory.current=1000001. 1000001* pages may be scanned. (?!) * Of course, we won't usually scan all available pages in the zone even without this patch because of scan control priority, over-reclaim protection, etc. However, as shown by the tests at the end, these techniques don't sufficiently throttle such an extreme change in input, so cliff-like behaviour isn't really averted by their existence alone. Here's an example of how this plays out in practice. At Facebook, we are trying to protect various workloads from "system" software, like configuration management tools, metric collectors, etc (see this[0] case study). In order to find a suitable memory.low value, we start by determining the expected memory range within which the workload will be comfortable operating. This isn't an exact science -- memory usage deemed "comfortable" will vary over time due to user behaviour, differences in composition of work, etc, etc. As such we need to ballpark memory.low, but doing this is currently problematic: 1. If we end up setting it too low for the workload, it won't have *any* effect (see discussion above). The group will receive the full weight of reclaim and won't have any priority while competing with the less important system software, as if we had no memory.low configured at all. 2. Because of this behaviour, we end up erring on the side of setting it too high, such that the comfort range is reliably covered. However, protected memory is completely unavailable to the rest of the system, so we might cause undue memory and IO pressure there when we *know* we have some elasticity in the workload. 3. Even if we get the value totally right, smack in the middle of the comfort zone, we get extreme jumps between no pressure and full pressure that cause unpredictable pressure spikes in the workload due to the current binary reclaim behaviour. With this patch, we can set it to our ballpark estimation without too much worry. Any undesirable behaviour, such as too much or too little reclaim pressure on the workload or system will be proportional to how far our estimation is off. This means we can set memory.low much more conservatively and thus waste less resources *without* the risk of the workload falling off a cliff if we overshoot. As a more abstract technical description, this unintuitive behaviour results in having to give high-priority workloads a large protection buffer on top of their expected usage to function reliably, as otherwise we have abrupt periods of dramatically increased memory pressure which hamper performance. Having to set these thresholds so high wastes resources and generally works against the principle of work conservation. In addition, having proportional memory reclaim behaviour has other benefits. Most notably, before this patch it's basically mandatory to set memory.low to a higher than desirable value because otherwise as soon as you exceed memory.low, all protection is lost, and all pages are eligible to scan again. By contrast, having a gradual ramp in reclaim pressure means that you now still get some protection when thresholds are exceeded, which means that one can now be more comfortable setting memory.low to lower values without worrying that all protection will be lost. This is important because workingset size is really hard to know exactly, especially with variable workloads, so at least getting *some* protection if your workingset size grows larger than you expect increases user confidence in setting memory.low without a huge buffer on top being needed. Thanks a lot to Johannes Weiner and Tejun Heo for their advice and assistance in thinking about how to make this work better. In testing these changes, I intended to verify that: 1. Changes in page scanning become gradual and proportional instead of binary. To test this, I experimented stepping further and further down memory.low protection on a workload that floats around 19G workingset when under memory.low protection, watching page scan rates for the workload cgroup: +------------+-----------------+--------------------+--------------+ | memory.low | test (pgscan/s) | control (pgscan/s) | % of control | +------------+-----------------+--------------------+--------------+ | 21G | 0 | 0 | N/A | | 17G | 867 | 3799 | 23% | | 12G | 1203 | 3543 | 34% | | 8G | 2534 | 3979 | 64% | | 4G | 3980 | 4147 | 96% | | 0 | 3799 | 3980 | 95% | +------------+-----------------+--------------------+--------------+ As you can see, the test kernel (with a kernel containing this patch) ramps up page scanning significantly more gradually than the control kernel (without this patch). 2. More gradual ramp up in reclaim aggression doesn't result in premature OOMs. To test this, I wrote a script that slowly increments the number of pages held by stress(1)'s --vm-keep mode until a production system entered severe overall memory contention. This script runs in a highly protected slice taking up the majority of available system memory. Watching vmstat revealed that page scanning continued essentially nominally between test and control, without causing forward reclaim progress to become arrested. [0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project [akpm@linux-foundation.org: reflow block comments to fit in 80 cols] [chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection] Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-01docs: fix memory.low description in cgroup-v2.rstJon Haslam1-3/+3
The current cgroup-v2.rst file contains an incorrect description of when memory is reclaimed from a cgroup that is using the 'memory.low' mechanism. This fix simply corrects the text to reflect the actual implementation. Fixes: 7854207fe954 ("mm/docs: describe memory.low refinements") Signed-off-by: Jon Haslam <jonhaslam@fb.com> Acked-by: Roman Gushchin <guro@fb.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2019-09-18Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-blockLinus Torvalds1-0/+97
Pull block updates from Jens Axboe: - Two NVMe pull requests: - ana log parse fix from Anton - nvme quirks support for Apple devices from Ben - fix missing bio completion tracing for multipath stack devices from Hannes and Mikhail - IP TOS settings for nvme rdma and tcp transports from Israel - rq_dma_dir cleanups from Israel - tracing for Get LBA Status command from Minwoo - Some nvme-tcp cleanups from Minwoo, Potnuri and Myself - Some consolidation between the fabrics transports for handling the CAP register - reset race with ns scanning fix for fabrics (move fabrics commands to a dedicated request queue with a different lifetime from the admin request queue)." - controller reset and namespace scan races fixes - nvme discovery log change uevent support - naming improvements from Keith - multiple discovery controllers reject fix from James - some regular cleanups from various people - Series fixing (and re-fixing) null_blk debug printing and nr_devices checks (André) - A few pull requests from Song, with fixes from Andy, Guoqing, Guilherme, Neil, Nigel, and Yufen. - REQ_OP_ZONE_RESET_ALL support (Chaitanya) - Bio merge handling unification (Christoph) - Pick default elevator correctly for devices with special needs (Damien) - Block stats fixes (Hou) - Timeout and support devices nbd fixes (Mike) - Series fixing races around elevator switching and device add/remove (Ming) - sed-opal cleanups (Revanth) - Per device weight support for BFQ (Fam) - Support for blk-iocost, a new model that can properly account cost of IO workloads. (Tejun) - blk-cgroup writeback fixes (Tejun) - paride queue init fixes (zhengbin) - blk_set_runtime_active() cleanup (Stanley) - Block segment mapping optimizations (Bart) - lightnvm fixes (Hans/Minwoo/YueHaibing) - Various little fixes and cleanups * tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits) null_blk: format pr_* logs with pr_fmt null_blk: match the type of parameter nr_devices null_blk: do not fail the module load with zero devices block: also check RQF_STATS in blk_mq_need_time_stamp() block: make rq sector size accessible for block stats bfq: Fix bfq linkage error raid5: use bio_end_sector in r5_next_bio raid5: remove STRIPE_OPS_REQ_PENDING md: add feature flag MD_FEATURE_RAID0_LAYOUT md/raid0: avoid RAID0 data corruption due to layout confusion. raid5: don't set STRIPE_HANDLE to stripe which is in batch list raid5: don't increment read_errors on EILSEQ return nvmet: fix a wrong error status returned in error log page nvme: send discovery log page change events to userspace nvme: add uevent variables for controller devices nvme: enable aen regardless of the presence of I/O queues nvme-fabrics: allow discovery subsystems accept a kato nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery() nvme: Remove redundant assignment of cq vector nvme: Assign subsys instance from first ctrl ...
2019-09-03sched/uclamp: Extend CPU's cgroup controllerPatrick Bellasi1-0/+34
The cgroup CPU bandwidth controller allows to assign a specified (maximum) bandwidth to the tasks of a group. However this bandwidth is defined and enforced only on a temporal base, without considering the actual frequency a CPU is running on. Thus, the amount of computation completed by a task within an allocated bandwidth can be very different depending on the actual frequency the CPU is running that task. The amount of computation can be affected also by the specific CPU a task is running on, especially when running on asymmetric capacity systems like Arm's big.LITTLE. With the availability of schedutil, the scheduler is now able to drive frequency selections based on actual task utilization. Moreover, the utilization clamping support provides a mechanism to bias the frequency selection operated by schedutil depending on constraints assigned to the tasks currently RUNNABLE on a CPU. Giving the mechanisms described above, it is now possible to extend the cpu controller to specify the minimum (or maximum) utilization which should be considered for tasks RUNNABLE on a cpu. This makes it possible to better defined the actual computational power assigned to task groups, thus improving the cgroup CPU bandwidth controller which is currently based just on time constraints. Extend the CPU controller with a couple of new attributes uclamp.{min,max} which allow to enforce utilization boosting and capping for all the tasks in a group. Specifically: - uclamp.min: defines the minimum utilization which should be considered i.e. the RUNNABLE tasks of this group will run at least at a minimum frequency which corresponds to the uclamp.min utilization - uclamp.max: defines the maximum utilization which should be considered i.e. the RUNNABLE tasks of this group will run up to a maximum frequency which corresponds to the uclamp.max utilization These attributes: a) are available only for non-root nodes, both on default and legacy hierarchies, while system wide clamps are defined by a generic interface which does not depends on cgroups. This system wide interface enforces constraints on tasks in the root node. b) enforce effective constraints at each level of the hierarchy which are a restriction of the group requests considering its parent's effective constraints. Root group effective constraints are defined by the system wide interface. This mechanism allows each (non-root) level of the hierarchy to: - request whatever clamp values it would like to get - effectively get only up to the maximum amount allowed by its parent c) have higher priority than task-specific clamps, defined via sched_setattr(), thus allowing to control and restrict task requests. Add two new attributes to the cpu controller to collect "requested" clamp values. Allow that at each non-root level of the hierarchy. Keep it simple by not caring now about "effective" values computation and propagation along the hierarchy. Update sysctl_sched_uclamp_handler() to use the newly introduced uclamp_mutex so that we serialize system default updates with cgroup relate updates. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Michal Koutny <mkoutny@suse.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190822132811.31294-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-29blkcg: add tools/cgroup/iocost_coef_gen.pyTejun Heo1-0/+3
Add a script which can be used to generate device-specific iocost linear model coefficients. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-29blkcg: implement blk-iocostTejun Heo1-0/+94
This patchset implements IO cost model based work-conserving proportional controller. While io.latency provides the capability to comprehensively prioritize and protect IOs depending on the cgroups, its protection is binary - the lowest latency target cgroup which is suffering is protected at the cost of all others. In many use cases including stacking multiple workload containers in a single system, it's necessary to distribute IO capacity with better granularity. One challenge of controlling IO resources is the lack of trivially observable cost metric. The most common metrics - bandwidth and iops - can be off by orders of magnitude depending on the device type and IO pattern. However, the cost isn't a complete mystery. Given several key attributes, we can make fairly reliable predictions on how expensive a given stream of IOs would be, at least compared to other IO patterns. The function which determines the cost of a given IO is the IO cost model for the device. This controller distributes IO capacity based on the costs estimated by such model. The more accurate the cost model the better but the controller adapts based on IO completion latency and as long as the relative costs across differents IO patterns are consistent and sensible, it'll adapt to the actual performance of the device. Currently, the only implemented cost model is a simple linear one with a few sets of default parameters for different classes of device. This covers most common devices reasonably well. All the infrastructure to tune and add different cost models is already in place and a later patch will also allow using bpf progs for cost models. Please see the top comment in blk-iocost.c and documentation for more details. v2: Rebased on top of RQ_ALLOC_TIME changes and folded in Rik's fix for a divide-by-zero bug in current_hweight() triggered by zero inuse_sum. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Andy Newell <newella@fb.com> Cc: Josef Bacik <jbacik@fb.com> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-07-16Merge tag 'docs/v5.3-1' of ↵Linus Torvalds1-4/+4
git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media Pull rst conversion of docs from Mauro Carvalho Chehab: "As agreed with Jon, I'm sending this big series directly to you, c/c him, as this series required a special care, in order to avoid conflicts with other trees" * tag 'docs/v5.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media: (77 commits) docs: kbuild: fix build with pdf and fix some minor issues docs: block: fix pdf output docs: arm: fix a breakage with pdf output docs: don't use nested tables docs: gpio: add sysfs interface to the admin-guide docs: locking: add it to the main index docs: add some directories to the main documentation index docs: add SPDX tags to new index files docs: add a memory-devices subdir to driver-api docs: phy: place documentation under driver-api docs: serial: move it to the driver-api docs: driver-api: add remaining converted dirs to it docs: driver-api: add xilinx driver API documentation docs: driver-api: add a series of orphaned documents docs: admin-guide: add a series of orphaned documents docs: cgroup-v1: add it to the admin-guide book docs: aoe: add it to the driver-api book docs: add some documentation dirs to the driver-api book docs: driver-model: move it to the driver-api book docs: lp855x-driver.rst: add it to the driver-api book ...
2019-07-16Merge tag 'for-linus-20190715' of git://git.kernel.dk/linux-blockLinus Torvalds1-1/+1
Pull more block updates from Jens Axboe: "A later pull request with some followup items. I had some vacation coming up to the merge window, so certain things items were delayed a bit. This pull request also contains fixes that came in within the last few days of the merge window, which I didn't want to push right before sending you a pull request. This contains: - NVMe pull request, mostly fixes, but also a few minor items on the feature side that were timing constrained (Christoph et al) - Report zones fixes (Damien) - Removal of dead code (Damien) - Turn on cgroup psi memstall (Josef) - block cgroup MAINTAINERS entry (Konstantin) - Flush init fix (Josef) - blk-throttle low iops timing fix (Konstantin) - nbd resize fixes (Mike) - nbd 0 blocksize crash fix (Xiubo) - block integrity error leak fix (Wenwen) - blk-cgroup writeback and priority inheritance fixes (Tejun)" * tag 'for-linus-20190715' of git://git.kernel.dk/linux-block: (42 commits) MAINTAINERS: add entry for block io cgroup null_blk: fixup ->report_zones() for !CONFIG_BLK_DEV_ZONED block: Limit zone array allocation size sd_zbc: Fix report zones buffer allocation block: Kill gfp_t argument of blkdev_report_zones() block: Allow mapping of vmalloc-ed buffers block/bio-integrity: fix a memory leak bug nvme: fix NULL deref for fabrics options nbd: add netlink reconfigure resize support nbd: fix crash when the blksize is zero block: Disable write plugging for zoned block devices block: Fix elevator name declaration block: Remove unused definitions nvme: fix regression upon hot device removal and insertion blk-throttle: fix zero wait time for iops throttled group block: Fix potential overflow in blk_report_zones() blkcg: implement REQ_CGROUP_PUNT blkcg, writeback: Implement wbc_blkcg_css() blkcg, writeback: Add wbc->no_cgroup_owner blkcg, writeback: Rename wbc_account_io() to wbc_account_cgroup_owner() ...
2019-07-15docs: cgroup-v1: add it to the admin-guide bookMauro Carvalho Chehab1-1/+1
Those files belong to the admin guide, so add them. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-07-15docs: accounting: convert to ReSTMauro Carvalho Chehab1-3/+3
Rename the accounting documentation files to ReST, add an index for them and adjust in order to produce a nice html output via the Sphinx build system. At its new index.rst, let's add a :orphan: while this is not linked to the main index.rst file, in order to avoid build warnings. Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-07-12mm, memcg: introduce memory.events.localShakeel Butt1-0/+10
The memory controller in cgroup v2 exposes memory.events file for each memcg which shows the number of times events like low, high, max, oom and oom_kill have happened for the whole tree rooted at that memcg. Users can also poll or register notification to monitor the changes in that file. Any event at any level of the tree rooted at memcg will notify all the listeners along the path till root_mem_cgroup. There are existing users which depend on this behavior. However there are users which are only interested in the events happening at a specific level of the memcg tree and not in the events in the underlying tree rooted at that memcg. One such use-case is a centralized resource monitor which can dynamically adjust the limits of the jobs running on a system. The jobs can create their sub-hierarchy for their own sub-tasks. The centralized monitor is only interested in the events at the top level memcgs of the jobs as it can then act and adjust the limits of the jobs. Using the current memory.events for such centralized monitor is very inconvenient. The monitor will keep receiving events which it is not interested and to find if the received event is interesting, it has to read memory.event files of the next level and compare it with the top level one. So, let's introduce memory.events.local to the memcg which shows and notify for the events at the memcg level. Now, does memory.stat and memory.pressure need their local versions. IMHO no due to the no internal process contraint of the cgroup v2. The memory.stat file of the top level memcg of a job shows the stats and vmevents of the whole tree. The local stats or vmevents of the top level memcg will only change if there is a process running in that memcg but v2 does not allow that. Similarly for memory.pressure there will not be any process in the internal nodes and thus no chance of local pressure. Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Chris Down <chris@chrisdown.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-10blkcg, writeback: Rename wbc_account_io() to wbc_account_cgroup_owner()Tejun Heo1-1/+1
wbc_account_io() does a very specific job - try to see which cgroup is actually dirtying an inode and transfer its ownership to the majority dirtier if needed. The name is too generic and confusing. Let's rename it to something more specific. Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-07-09Merge branch 'for-5.3' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Documentation updates and the addition of cgroup_parse_float() which will be used by new controllers including blk-iocost" * 'for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: docs: cgroup-v1: convert docs to ReST and rename to *.rst cgroup: Move cgroup_parse_float() implementation out of CONFIG_SYSFS cgroup: add cgroup_parse_float()
2019-06-02mm, memcg: consider subtrees in memory.eventsChris Down1-0/+9
memory.stat and other files already consider subtrees in their output, and we should too in order to not present an inconsistent interface. The current situation is fairly confusing, because people interacting with cgroups expect hierarchical behaviour in the vein of memory.stat, cgroup.events, and other files. For example, this causes confusion when debugging reclaim events under low, as currently these always read "0" at non-leaf memcg nodes, which frequently causes people to misdiagnose breach behaviour. The same confusion applies to other counters in this file when debugging issues. Aggregation is done at write time instead of at read-time since these counters aren't hot (unlike memory.stat which is per-page, so it does it at read time), and it makes sense to bundle this with the file notifications. After this patch, events are propagated up the hierarchy: [root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events low 0 high 0 max 0 oom 0 oom_kill 0 [root@ktst ~]# systemd-run -p MemoryMax=1 true Running as unit: run-r251162a189fb4562b9dabfdc9b0422f5.service [root@ktst ~]# cat /sys/fs/cgroup/system.slice/memory.events low 0 high 0 max 7 oom 1 oom_kill 1 As this is a change in behaviour, this can be reverted to the old behaviour by mounting with the `memory_localevents' flag set. However, we use the new behaviour by default as there's a lack of evidence that there are any current users of memory.events that would find this change undesirable. akpm: this is a behaviour change, so Cc:stable. THis is so that forthcoming distros which use cgroup v2 are more likely to pick up the revised behaviour. Link: http://lkml.kernel.org/r/20190208224419.GA24772@chrisdown.name Signed-off-by: Chris Down <chris@chrisdown.name> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>