summaryrefslogtreecommitdiff
path: root/arch/loongarch
AgeCommit message (Collapse)AuthorFilesLines
2022-11-21LoongArch: SMP: Change prefix from loongson3 to loongsonHuacai Chen4-39/+39
SMP operations can be shared by Loongson-2 series and Loongson-3 series, so we change the prefix from loongson3 to loongson for all functions and data structures. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-11-21LoongArch: Combine acpi_boot_table_init() and acpi_boot_init()Huacai Chen2-22/+10
Combine acpi_boot_table_init() and acpi_boot_init() since they are very simple, and we don't need to check the return value of acpi_boot_init(). Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-11-21LoongArch: Makefile: Use "grep -E" instead of "egrep"Tiezhu Yang1-1/+1
The latest version of grep claims the egrep is now obsolete so the build now contains warnings that look like: egrep: warning: egrep is obsolescent; using grep -E Fix this up by changing the LoongArch Makefile to use "grep -E" instead. Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-11-18treewide: use get_random_u32_below() instead of deprecated functionJason A. Donenfeld2-2/+2
This is a simple mechanical transformation done by: @@ expression E; @@ - prandom_u32_max + get_random_u32_below (E) Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Reviewed-by: SeongJae Park <sj@kernel.org> # for damon Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-11-09efi/loongarch: Don't jump to kernel entry via the old imageArd Biesheuvel1-0/+2
Currently, the EFI entry code for LoongArch is set up to copy the executable image to the preferred offset, but instead of branching directly into that image, it branches to the local copy of kernel_entry, and relies on the logic in that function to switch to the link time address instead. This is a bit sloppy, and not something we can support once we merge the EFI decompressor with the EFI stub. So let's clean this up a bit, by adding a helper that computes the offset of kernel_entry from the start of the image, and simply adding the result to VMLINUX_LOAD_ADDRESS. And considering that we cannot execute from anywhere else anyway, let's avoid efi_relocate_kernel() and just allocate the pages instead. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Factor out min alignment and preferred kernel load addressArd Biesheuvel1-0/+7
Factor out the expressions that describe the preferred placement of the loaded image as well as the minimum alignment so we can reuse them in the decompressor. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Move screen_info handling to common codeArd Biesheuvel2-11/+22
Currently, arm64, RISC-V and LoongArch rely on the fact that struct screen_info can be accessed directly, due to the fact that the EFI stub and the core kernel are part of the same image. This will change after a future patch, so let's ensure that the screen_info handling is able to deal with this, by adopting the arm32 approach of passing it as a configuration table. While at it, switch to ACPI reclaim memory to hold the screen_info data, which is more appropriate for this kind of allocation. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: loongarch: Drop exports of unused string routinesArd Biesheuvel1-5/+0
Drop the __efistub_ prefixed exports of various routines that the EFI stub on LoongArch does not even use. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Enable efi_printk() in zboot decompressorArd Biesheuvel1-2/+0
Split the efi_printk() routine into its own source file, and provide local implementations of strlen() and strnlen() so that the standalone zboot app can efi_err and efi_info etc. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Clone memcmp() into the stubArd Biesheuvel1-1/+0
We will no longer be able to call into the kernel image once we merge the decompressor with the EFI stub, so we need our own implementation of memcmp(). Let's add the one from lib/string.c and simplify it. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09mm: remove kern_addr_valid() completelyKefeng Wang1-2/+0
Most architectures (except arm64/x86/sparc) simply return 1 for kern_addr_valid(), which is only used in read_kcore(), and it calls copy_from_kernel_nofault() which could check whether the address is a valid kernel address. So as there is no need for kern_addr_valid(), let's remove it. Link: https://lkml.kernel.org/r/20221018074014.185687-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Heiko Carstens <hca@linux.ibm.com> [s390] Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Helge Deller <deller@gmx.de> [parisc] Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc] Acked-by: Guo Ren <guoren@kernel.org> [csky] Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com> Cc: <aou@eecs.berkeley.edu> Cc: Borislav Petkov <bp@alien8.de> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Chris Zankel <chris@zankel.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Jonas Bonn <jonas@southpole.se> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michal Simek <monstr@monstr.eu> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Palmer Dabbelt <palmer@rivosinc.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Henderson <richard.henderson@linaro.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Cc: Xuerui Wang <kernel@xen0n.name> Cc: Yoshinori Sato <ysato@users.osdn.me> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-03Revert "LoongArch: Provisionally add ACPICA data structures"Huacai Chen1-142/+0
This reverts commit af6a1cfa6859dab4a843 ("LoongArch: Provisionally add ACPICA data structures") to fix build error for linux-next on LoongArch, since acpica is merged to linux-pm.git now. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2022-10-29LoongArch: BPF: Avoid declare variables in switch-caseHuacai Chen1-18/+13
Not all compilers support declare variables in switch-case, so move declarations to the beginning of a function. Otherwise we may get such build errors: arch/loongarch/net/bpf_jit.c: In function ‘emit_atomic’: arch/loongarch/net/bpf_jit.c:362:3: error: a label can only be part of a statement and a declaration is not a statement u8 r0 = regmap[BPF_REG_0]; ^~ arch/loongarch/net/bpf_jit.c: In function ‘build_insn’: arch/loongarch/net/bpf_jit.c:727:3: error: a label can only be part of a statement and a declaration is not a statement u8 t7 = -1; ^~ arch/loongarch/net/bpf_jit.c:778:3: error: a label can only be part of a statement and a declaration is not a statement int ret; ^~~ arch/loongarch/net/bpf_jit.c:779:3: error: expected expression before ‘u64’ u64 func_addr; ^~~ arch/loongarch/net/bpf_jit.c:780:3: warning: ISO C90 forbids mixed declarations and code [-Wdeclaration-after-statement] bool func_addr_fixed; ^~~~ arch/loongarch/net/bpf_jit.c:784:11: error: ‘func_addr’ undeclared (first use in this function); did you mean ‘in_addr’? &func_addr, &func_addr_fixed); ^~~~~~~~~ in_addr arch/loongarch/net/bpf_jit.c:784:11: note: each undeclared identifier is reported only once for each function it appears in arch/loongarch/net/bpf_jit.c:814:3: error: a label can only be part of a statement and a declaration is not a statement u64 imm64 = (u64)(insn + 1)->imm << 32 | (u32)insn->imm; ^~~ Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-29LoongArch: Use flexible-array member instead of zero-length arrayYushan Zhou1-1/+1
Eliminate the following coccicheck warning: ./arch/loongarch/include/asm/ptrace.h:32:15-21: WARNING use flexible-array member instead Reviewed-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Yushan Zhou <katrinzhou@tencent.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-29LoongArch: Remove unused kernel stack paddingJinyang He5-7/+6
The current LoongArch kernel stack is padded as if obeying the MIPS o32 calling convention (32 bytes), signifying the port's MIPS lineage but no longer making sense. Remove the padding for clarity. Reviewed-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Jinyang He <hejinyang@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-21arch/loongarch: Add ARCH_HAS_NMI_SAFE_THIS_CPU_OPS Kconfig optionPaul E. McKenney1-0/+1
The loongarch architecture uses the atomic read-modify-write amadd instruction to implement this_cpu_add(), which is NMI safe. This means that the old and more-efficient srcu_read_lock() may be used in NMI context, without the need for srcu_read_lock_nmisafe(). Therefore, add the new Kconfig option ARCH_HAS_NMI_SAFE_THIS_CPU_OPS to arch/loongarch/Kconfig, which will cause NEED_SRCU_NMI_SAFE to be deselected, thus preserving the current srcu_read_lock() behavior. Link: https://lore.kernel.org/all/20220910221947.171557773@linutronix.de/ Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Suggested-by: Frederic Weisbecker <frederic@kernel.org> Suggested-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: John Ogness <john.ogness@linutronix.de> Cc: Petr Mladek <pmladek@suse.com> Cc: <loongarch@lists.linux.dev>
2022-10-17Merge tag 'random-6.1-rc1-for-linus' of ↵Linus Torvalds2-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull more random number generator updates from Jason Donenfeld: "This time with some large scale treewide cleanups. The intent of this pull is to clean up the way callers fetch random integers. The current rules for doing this right are: - If you want a secure or an insecure random u64, use get_random_u64() - If you want a secure or an insecure random u32, use get_random_u32() The old function prandom_u32() has been deprecated for a while now and is just a wrapper around get_random_u32(). Same for get_random_int(). - If you want a secure or an insecure random u16, use get_random_u16() - If you want a secure or an insecure random u8, use get_random_u8() - If you want secure or insecure random bytes, use get_random_bytes(). The old function prandom_bytes() has been deprecated for a while now and has long been a wrapper around get_random_bytes() - If you want a non-uniform random u32, u16, or u8 bounded by a certain open interval maximum, use prandom_u32_max() I say "non-uniform", because it doesn't do any rejection sampling or divisions. Hence, it stays within the prandom_*() namespace, not the get_random_*() namespace. I'm currently investigating a "uniform" function for 6.2. We'll see what comes of that. By applying these rules uniformly, we get several benefits: - By using prandom_u32_max() with an upper-bound that the compiler can prove at compile-time is ≤65536 or ≤256, internally get_random_u16() or get_random_u8() is used, which wastes fewer batched random bytes, and hence has higher throughput. - By using prandom_u32_max() instead of %, when the upper-bound is not a constant, division is still avoided, because prandom_u32_max() uses a faster multiplication-based trick instead. - By using get_random_u16() or get_random_u8() in cases where the return value is intended to indeed be a u16 or a u8, we waste fewer batched random bytes, and hence have higher throughput. This series was originally done by hand while I was on an airplane without Internet. Later, Kees and I worked on retroactively figuring out what could be done with Coccinelle and what had to be done manually, and then we split things up based on that. So while this touches a lot of files, the actual amount of code that's hand fiddled is comfortably small" * tag 'random-6.1-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: prandom: remove unused functions treewide: use get_random_bytes() when possible treewide: use get_random_u32() when possible treewide: use get_random_{u8,u16}() when possible, part 2 treewide: use get_random_{u8,u16}() when possible, part 1 treewide: use prandom_u32_max() when possible, part 2 treewide: use prandom_u32_max() when possible, part 1
2022-10-14Merge tag 'mm-stable-2022-10-13' of ↵Linus Torvalds1-0/+3
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - fix a race which causes page refcounting errors in ZONE_DEVICE pages (Alistair Popple) - fix userfaultfd test harness instability (Peter Xu) - various other patches in MM, mainly fixes * tag 'mm-stable-2022-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (29 commits) highmem: fix kmap_to_page() for kmap_local_page() addresses mm/page_alloc: fix incorrect PGFREE and PGALLOC for high-order page mm/selftest: uffd: explain the write missing fault check mm/hugetlb: use hugetlb_pte_stable in migration race check mm/hugetlb: fix race condition of uffd missing/minor handling zram: always expose rw_page LoongArch: update local TLB if PTE entry exists mm: use update_mmu_tlb() on the second thread kasan: fix array-bounds warnings in tests hmm-tests: add test for migrate_device_range() nouveau/dmem: evict device private memory during release nouveau/dmem: refactor nouveau_dmem_fault_copy_one() mm/migrate_device.c: add migrate_device_range() mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() mm/memremap.c: take a pgmap reference on page allocation mm: free device private pages have zero refcount mm/memory.c: fix race when faulting a device private page mm/damon: use damon_sz_region() in appropriate place mm/damon: move sz_damon_region to damon_sz_region lib/test_meminit: add checks for the allocation functions ...
2022-10-13LoongArch: update local TLB if PTE entry existsQi Zheng1-0/+3
Currently, the implementation of update_mmu_tlb() is empty if __HAVE_ARCH_UPDATE_MMU_TLB is not defined. Then if two threads concurrently fault at the same page, the second thread that did not win the race will give up and do nothing. In the LoongArch architecture, this second thread will trigger another fault, and only updates its local TLB. Instead of triggering another fault, it's better to implement update_mmu_tlb() to directly update the local TLB of the second thread. Just do it. Link: https://lkml.kernel.org/r/20220929112318.32393-3-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Suggested-by: Bibo Mao <maobibo@loongson.cn> Acked-by: Huacai Chen <chenhuacai@loongson.cn> Cc: Chris Zankel <chris@zankel.net> Cc: David Hildenbrand <david@redhat.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-10-12Merge tag 'mm-nonmm-stable-2022-10-11' of ↵Linus Torvalds1-3/+0
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - hfs and hfsplus kmap API modernization (Fabio Francesco) - make crash-kexec work properly when invoked from an NMI-time panic (Valentin Schneider) - ntfs bugfixes (Hawkins Jiawei) - improve IPC msg scalability by replacing atomic_t's with percpu counters (Jiebin Sun) - nilfs2 cleanups (Minghao Chi) - lots of other single patches all over the tree! * tag 'mm-nonmm-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits) include/linux/entry-common.h: remove has_signal comment of arch_do_signal_or_restart() prototype proc: test how it holds up with mapping'less process mailmap: update Frank Rowand email address ia64: mca: use strscpy() is more robust and safer init/Kconfig: fix unmet direct dependencies ia64: update config files nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure fork: remove duplicate included header files init/main.c: remove unnecessary (void*) conversions proc: mark more files as permanent nilfs2: remove the unneeded result variable nilfs2: delete unnecessary checks before brelse() checkpatch: warn for non-standard fixes tag style usr/gen_init_cpio.c: remove unnecessary -1 values from int file ipc/msg: mitigate the lock contention with percpu counter percpu: add percpu_counter_add_local and percpu_counter_sub_local fs/ocfs2: fix repeated words in comments relay: use kvcalloc to alloc page array in relay_alloc_page_array proc: make config PROC_CHILDREN depend on PROC_FS fs: uninline inode_maybe_inc_iversion() ...
2022-10-12Merge tag 'loongarch-6.1' of ↵Linus Torvalds56-685/+4696
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson Pull LoongArch updates from Huacai Chen: - Use EXPLICIT_RELOCS (ABIv2.0) - Use generic BUG() handler - Refactor TLB/Cache operations - Add qspinlock support - Add perf events support - Add kexec/kdump support - Add BPF JIT support - Add ACPI-based laptop driver - Update the default config file * tag 'loongarch-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (25 commits) LoongArch: Update Loongson-3 default config file LoongArch: Add ACPI-based generic laptop driver LoongArch: Add BPF JIT support LoongArch: Add some instruction opcodes and formats LoongArch: Move {signed,unsigned}_imm_check() to inst.h LoongArch: Add kdump support LoongArch: Add kexec support LoongArch: Use generic BUG() handler LoongArch: Add SysRq-x (TLB Dump) support LoongArch: Add perf events support LoongArch: Add qspinlock support LoongArch: Use TLB for ioremap() LoongArch: Support access filter to /dev/mem interface LoongArch: Refactor cache probe and flush methods LoongArch: mm: Refactor TLB exception handlers LoongArch: Support R_LARCH_GOT_PC_{LO12,HI20} in modules LoongArch: Support PC-relative relocations in modules LoongArch: Define ELF relocation types added in ABIv2.0 LoongArch: Adjust symbol addressing for AS_HAS_EXPLICIT_RELOCS LoongArch: Add Kconfig option AS_HAS_EXPLICIT_RELOCS ...
2022-10-12LoongArch: Update Loongson-3 default config fileHuacai Chen1-8/+55
1, Enable ZBOOT, KEXEC and BPF_JIT; 2, Add more patition types; 3, Add some USB Type-C options; 4, Add some common network options; 5, Add some Bluetooth device drivers; 6, Remove obsolete config options (for some detailed information, see Link). Link: https://lore.kernel.org/kernel-janitors/20220929090645.1389-1-lukas.bulwahn@gmail.com/ Co-developed-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Co-developed-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Youling Tang <tangyouling@loongson.cn> Co-developed-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add BPF JIT supportTiezhu Yang7-0/+1700
BPF programs are normally handled by a BPF interpreter, add BPF JIT support for LoongArch to allow the kernel to generate native code when a program is loaded into the kernel. This will significantly speed-up processing of BPF programs. Co-developed-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add some instruction opcodes and formatsTiezhu Yang1-5/+174
According to the "Table of Instruction Encoding" in LoongArch Reference Manual [1], add some instruction opcodes and formats which are used in the BPF JIT for LoongArch. [1] https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#table-of-instruction-encoding Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Move {signed,unsigned}_imm_check() to inst.hTiezhu Yang2-10/+10
{signed,unsigned}_imm_check() will also be used in the bpf jit, so move them from module.c to inst.h, this is preparation for later patches. Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add kdump supportYouling Tang9-8/+227
This patch adds support for kdump. In kdump case the normal kernel will reserve a region for the crash kernel and jump there on panic. Arch-specific functions are added to allow for implementing a crash dump file interface, /proc/vmcore, which can be viewed as a ELF file. A user-space tool, such as kexec-tools, is responsible for allocating a separate region for the core's ELF header within the crash kdump kernel memory and filling it in when executing kexec_load(). Then, its location will be advertised to the crash dump kernel via a command line argument "elfcorehdr=", and the crash dump kernel will preserve this region for later use with arch_reserve_vmcore() at boot time. At the same time, the crash kdump kernel is also limited within the "crashkernel" area via a command line argument "mem=", so as not to destroy the original kernel dump data. In the crash dump kernel environment, /proc/vmcore is used to access the primary kernel's memory with copy_oldmem_page(). I tested kdump on LoongArch machines (Loongson-3A5000) and it works as expected (suggested crashkernel parameter is "crashkernel=512M@2560M"), you may test it by triggering a crash through /proc/sysrq-trigger: $ sudo kexec -p /boot/vmlinux-kdump --reuse-cmdline --append="nr_cpus=1" # echo c > /proc/sysrq-trigger Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add kexec supportYouling Tang6-1/+400
Add three new files, kexec.h, machine_kexec.c and relocate_kernel.S to the LoongArch architecture, so as to add support for the kexec re-boot mechanism (CONFIG_KEXEC) on LoongArch platforms. Kexec supports loading vmlinux.elf in ELF format and vmlinux.efi in PE format. I tested kexec on LoongArch machines (Loongson-3A5000) and it works as expected: $ sudo kexec -l /boot/vmlinux.efi --reuse-cmdline $ sudo kexec -e Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Use generic BUG() handlerYouling Tang4-12/+84
Inspired by commit 9fb7410f955("arm64/BUG: Use BRK instruction for generic BUG traps"), do similar for LoongArch to use generic BUG() handler. This patch uses the BREAK software breakpoint instruction to generate a trap instead, similarly to most other arches, with the generic BUG code generating the dmesg boilerplate. This allows bug metadata to be moved to a separate table and reduces the amount of inline code at BUG() and WARN() sites. This also avoids clobbering any registers before they can be dumped. To mitigate the size of the bug table further, this patch makes use of the existing infrastructure for encoding addresses within the bug table as 32-bit relative pointers instead of absolute pointers. (Note: this limits the max kernel size to 2GB.) Before patch: [ 3018.338013] lkdtm: Performing direct entry BUG [ 3018.342445] Kernel bug detected[#5]: [ 3018.345992] CPU: 2 PID: 865 Comm: cat Tainted: G D 6.0.0-rc6+ #35 After patch: [ 125.585985] lkdtm: Performing direct entry BUG [ 125.590433] ------------[ cut here ]------------ [ 125.595020] kernel BUG at drivers/misc/lkdtm/bugs.c:78! [ 125.600211] Oops - BUG[#1]: [ 125.602980] CPU: 3 PID: 410 Comm: cat Not tainted 6.0.0-rc6+ #36 Out-of-line file/line data information obtained compared to before. Signed-off-by: Youling Tang <tangyouling@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add SysRq-x (TLB Dump) supportHuacai Chen2-0/+67
Add SysRq-x (TLB Dump) support for LoongArch, which is useful for debugging. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add perf events supportHuacai Chen6-1/+987
The perf events infrastructure of LoongArch is very similar to old MIPS- based Loongson, so most of the codes are derived from MIPS. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add qspinlock supportHuacai Chen4-3/+26
On NUMA system, the performance of qspinlock is better than generic spinlock. Below is the UnixBench test results on a 8 nodes (4 cores per node, 32 cores in total) machine. A. With generic spinlock: System Benchmarks Index Values BASELINE RESULT INDEX Dhrystone 2 using register variables 116700.0 449574022.5 38523.9 Double-Precision Whetstone 55.0 85190.4 15489.2 Execl Throughput 43.0 14696.2 3417.7 File Copy 1024 bufsize 2000 maxblocks 3960.0 143157.8 361.5 File Copy 256 bufsize 500 maxblocks 1655.0 37631.8 227.4 File Copy 4096 bufsize 8000 maxblocks 5800.0 444814.2 766.9 Pipe Throughput 12440.0 5047490.7 4057.5 Pipe-based Context Switching 4000.0 2021545.7 5053.9 Process Creation 126.0 23829.8 1891.3 Shell Scripts (1 concurrent) 42.4 33756.7 7961.5 Shell Scripts (8 concurrent) 6.0 4062.9 6771.5 System Call Overhead 15000.0 2479748.6 1653.2 ======== System Benchmarks Index Score 2955.6 B. With qspinlock: System Benchmarks Index Values BASELINE RESULT INDEX Dhrystone 2 using register variables 116700.0 449467876.9 38514.8 Double-Precision Whetstone 55.0 85174.6 15486.3 Execl Throughput 43.0 14769.1 3434.7 File Copy 1024 bufsize 2000 maxblocks 3960.0 146150.5 369.1 File Copy 256 bufsize 500 maxblocks 1655.0 37496.8 226.6 File Copy 4096 bufsize 8000 maxblocks 5800.0 447527.0 771.6 Pipe Throughput 12440.0 5175989.2 4160.8 Pipe-based Context Switching 4000.0 2207747.8 5519.4 Process Creation 126.0 25125.5 1994.1 Shell Scripts (1 concurrent) 42.4 33461.2 7891.8 Shell Scripts (8 concurrent) 6.0 4024.7 6707.8 System Call Overhead 15000.0 2917278.6 1944.9 ======== System Benchmarks Index Score 3040.1 Signed-off-by: Rui Wang <wangrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Use TLB for ioremap()Huacai Chen7-56/+184
We can support more cache attributes (e.g., CC, SUC and WUC) and page protection when we use TLB for ioremap(). The implementation is based on GENERIC_IOREMAP. The existing simple ioremap() implementation has better performance so we keep it and introduce ARCH_IOREMAP to control the selection. We move pagetable_init() earlier to make early ioremap() works, and we modify the PCI ecam mapping because the TLB-based version of ioremap() will actually take the size into account. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Support access filter to /dev/mem interfaceHuacai Chen3-0/+34
Accidental access to /dev/mem is obviously disastrous, but specific access can be used by people debugging the kernel. So select GENERIC_ LIB_DEVMEM_IS_ALLOWED, as well as define ARCH_HAS_VALID_PHYS_ADDR_RANGE and related helpers, to support access filter to /dev/mem interface. Signed-off-by: Weihao Li <liweihao@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Refactor cache probe and flush methodsHuacai Chen10-267/+236
Current cache probe and flush methods have some drawbacks: 1, Assume there are 3 cache levels and only 3 levels; 2, Assume L1 = I + D, L2 = V, L3 = S, V is exclusive, S is inclusive. However, the fact is I + D, I + D + V, I + D + S and I + D + V + S are all valid. So, refactor the cache probe and flush methods to adapt more types of cache hierarchy. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: mm: Refactor TLB exception handlersRui Wang1-290/+247
This patch simplifies TLB load, store and modify exception handlers: 1. Reduce instructions, such as alu/csr and memory access; 2. Execute tlb search instruction only in the fast path; 3. Return directly from the fast path for both normal and huge pages; 4. Re-tab the assembly for better vertical alignment. And fixes the concurrent modification issue of fast path for huge pages. This issue will occur in the following steps: CPU-1 (In TLB exception) CPU-2 (In THP splitting) 1: Load PMD entry (HUGE=1) 2: Goto huge path 3: Store PMD entry (HUGE=0) 4: Reload PMD entry (HUGE=0) 5: Fill TLB entry (PA is incorrect) This patch also slightly improves the TLB processing performance: * Normal pages: 2.15%, Huge pages: 1.70%. #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> int main(int argc, char *argv[]) { size_t page_size; size_t mem_size; size_t off; void *base; int flags; int i; if (argc < 2) { fprintf(stderr, "%s MEM_SIZE [HUGE]\n", argv[0]); return -1; } page_size = sysconf(_SC_PAGESIZE); flags = MAP_PRIVATE | MAP_ANONYMOUS; mem_size = strtoul(argv[1], NULL, 10); if (argc > 2) flags |= MAP_HUGETLB; for (i = 0; i < 10; i++) { base = mmap(NULL, mem_size, PROT_READ, flags, -1, 0); if (base == MAP_FAILED) { fprintf(stderr, "Map memory failed!\n"); return -1; } for (off = 0; off < mem_size; off += page_size) *(volatile int *)(base + off); munmap(base, mem_size); } return 0; } Signed-off-by: Rui Wang <wangrui@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Support R_LARCH_GOT_PC_{LO12,HI20} in modulesXi Ruoyao4-7/+99
GCC >= 13 and GNU assembler >= 2.40 use these relocations to address external symbols, so we need to add them. Let the module loader emit GOT entries for data symbols so we would be able to handle GOT relocations. The GOT entry is just the data's symbol address. In module.lds, emit a stub .got section for a section header entry. The actual content of the section entry will be filled at runtime by module_ frob_arch_sections(). Tested-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Support PC-relative relocations in modulesXi Ruoyao2-1/+75
Binutils >= 2.40 uses R_LARCH_B26 instead of R_LARCH_SOP_PUSH_PLT_PCREL, and R_LARCH_PCALA* instead of R_LARCH_SOP_PUSH_PCREL. Handle R_LARCH_B26 and R_LARCH_PCALA* in the module loader. For R_LARCH_ B26, also create a PLT entry as needed. Tested-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Define ELF relocation types added in ABIv2.0Xi Ruoyao2-1/+38
These relocation types are used by GNU binutils >= 2.40 and GCC >= 13. Add their definitions so we will be able to use them in later patches. Link: https://github.com/loongson/LoongArch-Documentation/pull/57 Tested-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Adjust symbol addressing for AS_HAS_EXPLICIT_RELOCSXi Ruoyao4-6/+37
If explicit relocation hints are used by the toolchain, -Wa,-mla-* options will be useless for the C code. So only use them for the !CONFIG_AS_HAS_EXPLICIT_RELOCS case. Replace "la" with "la.pcrel" in head.S to keep the semantic consistent with new and old toolchains for the low level startup code. For per-CPU variables, the "address" of the symbol is actually an offset from $r21. The value is near the loading address of main kernel image, but far from the loading address of modules. So we use model("extreme") attibute to tell the compiler that a PC-relative addressing with 32-bit offset is not sufficient for local per-CPU variables. The behavior with different assemblers and compilers are summarized in the following table: AS has CC has explicit relocs explicit relocs * Behavior ============================================================== No No Use la.* macros. No change from Linux 6.0. -------------------------------------------------------------- No Yes Disable explicit relocs. No change from Linux 6.0. -------------------------------------------------------------- Yes No Not supported. -------------------------------------------------------------- Yes Yes Enable explicit relocs. No -Wa,-mla* options used. ============================================================== *: We assume CC must have model attribute if it has explicit relocs. Both features are added in GCC 13 development cycle, so any GCC release >= 13 should be OK. Using early GCC 13 development snapshots may produce modules with unsupported relocations. Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=f09482a Link: https://gcc.gnu.org/r13-1834 Link: https://gcc.gnu.org/r13-2199 Tested-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Add Kconfig option AS_HAS_EXPLICIT_RELOCSXi Ruoyao1-0/+3
GNU as >= 2.40 and GCC >= 13 will support using explicit relocation hints in the assembly code, instead of la.* macros. The usage of explicit relocation hints can improve code generation so it's enabled by default by GCC >= 13. Introduce a Kconfig option AS_HAS_EXPLICIT_RELOCS as the switch for "use explicit relocation hints or not". Tested-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Kconfig: Fix spelling mistake "delibrately" -> "deliberately"Colin Ian King1-1/+1
There is a spelling mistake in a commented section. Fix it. Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Mark __xchg() and __cmpxchg() as __always_inlineHuacai Chen1-4/+4
Commit ac7c3e4ff401 ("compiler: enable CONFIG_OPTIMIZE_INLINING forcibly") allows compiler to uninline functions marked as 'inline'. In case of __xchg()/__cmpxchg() this would cause to reference BUILD_BUG(), which is an error case for catching bugs and will not happen for correct code, if __xchg()/__cmpxchg() is inlined. This bug can be produced with CONFIG_DEBUG_SECTION_MISMATCH enabled, and the solution is similar to below commits: 46f1619500d0225 ("MIPS: include: Mark __xchg as __always_inline"), 88356d09904bc60 ("MIPS: include: Mark __cmpxchg as __always_inline"). Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Flush TLB earlier at initializationHuacai Chen1-2/+3
Move local_flush_tlb_all() earlier (just after setup_ptwalker() and before page allocation). This can avoid stale TLB entries misguiding the later page allocation. Without this patch the second kernel of kexec/kdump fails to boot SMP. BTW, move output_pgtable_bits_defines() into tlb_init() since it has nothing to do with tlb handler setup. Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Do not create sysfs control file for io master CPUsTiezhu Yang3-6/+7
Now io master CPUs are not hotpluggable on LoongArch, but in the current code only /sys/devices/system/cpu/cpu0/online is not created. Let us set the hotpluggable field of all the io master CPUs as 0, then prevent to create sysfs control file for all the io master CPUs which confuses some user space tools. This is similar with commit 9cce844abf07 ("MIPS: CPU#0 is not hotpluggable"). Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12LoongArch: Fix cpu name after CPU-hotplugJianmin Lv1-1/+3
Don't overwrite the SMBIOS-provided CPU name on coming back from CPU- hotplug (including S3/S4) if it is already initialized. Reviewed-by: WANG Xuerui <git@xen0n.name> Signed-off-by: Jianmin Lv <lvjianmin@loongson.cn> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
2022-10-12treewide: use prandom_u32_max() when possible, part 1Jason A. Donenfeld2-2/+2
Rather than incurring a division or requesting too many random bytes for the given range, use the prandom_u32_max() function, which only takes the minimum required bytes from the RNG and avoids divisions. This was done mechanically with this coccinelle script: @basic@ expression E; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; typedef u64; @@ ( - ((T)get_random_u32() % (E)) + prandom_u32_max(E) | - ((T)get_random_u32() & ((E) - 1)) + prandom_u32_max(E * XXX_MAKE_SURE_E_IS_POW2) | - ((u64)(E) * get_random_u32() >> 32) + prandom_u32_max(E) | - ((T)get_random_u32() & ~PAGE_MASK) + prandom_u32_max(PAGE_SIZE) ) @multi_line@ identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; identifier RAND; expression E; @@ - RAND = get_random_u32(); ... when != RAND - RAND %= (E); + RAND = prandom_u32_max(E); // Find a potential literal @literal_mask@ expression LITERAL; type T; identifier get_random_u32 =~ "get_random_int|prandom_u32|get_random_u32"; position p; @@ ((T)get_random_u32()@p & (LITERAL)) // Add one to the literal. @script:python add_one@ literal << literal_mask.LITERAL; RESULT; @@ value = None if literal.startswith('0x'): value = int(literal, 16) elif literal[0] in '123456789': value = int(literal, 10) if value is None: print("I don't know how to handle %s" % (literal)) cocci.include_match(False) elif value == 2**32 - 1 or value == 2**31 - 1 or value == 2**24 - 1 or value == 2**16 - 1 or value == 2**8 - 1: print("Skipping 0x%x for cleanup elsewhere" % (value)) cocci.include_match(False) elif value & (value + 1) != 0: print("Skipping 0x%x because it's not a power of two minus one" % (value)) cocci.include_match(False) elif literal.startswith('0x'): coccinelle.RESULT = cocci.make_expr("0x%x" % (value + 1)) else: coccinelle.RESULT = cocci.make_expr("%d" % (value + 1)) // Replace the literal mask with the calculated result. @plus_one@ expression literal_mask.LITERAL; position literal_mask.p; expression add_one.RESULT; identifier FUNC; @@ - (FUNC()@p & (LITERAL)) + prandom_u32_max(RESULT) @collapse_ret@ type T; identifier VAR; expression E; @@ { - T VAR; - VAR = (E); - return VAR; + return E; } @drop_var@ type T; identifier VAR; @@ { - T VAR; ... when != VAR } Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Yury Norov <yury.norov@gmail.com> Reviewed-by: KP Singh <kpsingh@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> # for ext4 and sbitmap Reviewed-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> # for drbd Acked-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390 Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2022-10-11Merge tag 'mm-stable-2022-10-08' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
2022-10-10Merge tag 'bitmap-6.1-rc1' of https://github.com/norov/linuxLinus Torvalds1-1/+1
Pull bitmap updates from Yury Norov: - Fix unsigned comparison to -1 in CPUMAP_FILE_MAX_BYTES (Phil Auld) - cleanup nr_cpu_ids vs nr_cpumask_bits mess (me) This series cleans that mess and adds new config FORCE_NR_CPUS that allows to optimize cpumask subsystem if the number of CPUs is known at compile-time. - optimize find_bit() functions (me) Reworks find_bit() functions based on new FIND_{FIRST,NEXT}_BIT() macros. - add find_nth_bit() (me) Adds find_nth_bit(), which is ~70 times faster than bitcounting with for_each() loop: for_each_set_bit(bit, mask, size) if (n-- == 0) return bit; Also adds bitmap_weight_and() to let people replace this pattern: tmp = bitmap_alloc(nbits); bitmap_and(tmp, map1, map2, nbits); weight = bitmap_weight(tmp, nbits); bitmap_free(tmp); with a single bitmap_weight_and() call. - repair cpumask_check() (me) After switching cpumask to use nr_cpu_ids, cpumask_check() started generating many false-positive warnings. This series fixes it. - Add for_each_cpu_andnot() and for_each_cpu_andnot() (Valentin Schneider) Extends the API with one more function and applies it in sched/core. * tag 'bitmap-6.1-rc1' of https://github.com/norov/linux: (28 commits) sched/core: Merge cpumask_andnot()+for_each_cpu() into for_each_cpu_andnot() lib/test_cpumask: Add for_each_cpu_and(not) tests cpumask: Introduce for_each_cpu_andnot() lib/find_bit: Introduce find_next_andnot_bit() cpumask: fix checking valid cpu range lib/bitmap: add tests for for_each() loops lib/find: optimize for_each() macros lib/bitmap: introduce for_each_set_bit_wrap() macro lib/find_bit: add find_next{,_and}_bit_wrap cpumask: switch for_each_cpu{,_not} to use for_each_bit() net: fix cpu_max_bits_warn() usage in netif_attrmask_next{,_and} cpumask: add cpumask_nth_{,and,andnot} lib/bitmap: remove bitmap_ord_to_pos lib/bitmap: add tests for find_nth_bit() lib: add find_nth{,_and,_andnot}_bit() lib/bitmap: add bitmap_weight_and() lib/bitmap: don't call __bitmap_weight() in kernel code tools: sync find_bit() implementation lib/find_bit: optimize find_next_bit() functions lib/find_bit: create find_first_zero_bit_le() ...
2022-10-10Merge tag 'kbuild-v6.1' of ↵Linus Torvalds2-4/+2
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Remove potentially incomplete targets when Kbuid is interrupted by SIGINT etc in case GNU Make may miss to do that when stderr is piped to another program. - Rewrite the single target build so it works more correctly. - Fix rpm-pkg builds with V=1. - List top-level subdirectories in ./Kbuild. - Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in kallsyms. - Avoid two different modules in lib/zstd/ having shared code, which potentially causes building the common code as build-in and modular back-and-forth. - Unify two modpost invocations to optimize the build process. - Remove head-y syntax in favor of linker scripts for placing particular sections in the head of vmlinux. - Bump the minimal GNU Make version to 3.82. - Clean up misc Makefiles and scripts. * tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits) docs: bump minimal GNU Make version to 3.82 ia64: simplify esi object addition in Makefile Revert "kbuild: Check if linker supports the -X option" kbuild: rebuild .vmlinux.export.o when its prerequisite is updated kbuild: move modules.builtin(.modinfo) rules to Makefile.vmlinux_o zstd: Fixing mixed module-builtin objects kallsyms: ignore __kstrtab_* and __kstrtabns_* symbols kallsyms: take the input file instead of reading stdin kallsyms: drop duplicated ignore patterns from kallsyms.c kbuild: reuse mksysmap output for kallsyms mksysmap: update comment about __crc_* kbuild: remove head-y syntax kbuild: use obj-y instead extra-y for objects placed at the head kbuild: hide error checker logs for V=1 builds kbuild: re-run modpost when it is updated kbuild: unify two modpost invocations kbuild: move vmlinux.o rule to the top Makefile kbuild: move .vmlinux.objs rule to Makefile.modpost kbuild: list sub-directories in ./Kbuild Makefile.compiler: replace cc-ifversion with compiler-specific macros ...
2022-10-09Merge tag 'efi-next-for-v6.1' of ↵Linus Torvalds13-35/+233
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "A bit more going on than usual in the EFI subsystem. The main driver for this has been the introduction of the LoonArch architecture last cycle, which inspired some cleanup and refactoring of the EFI code. Another driver for EFI changes this cycle and in the future is confidential compute. The LoongArch architecture does not use either struct bootparams or DT natively [yet], and so passing information between the EFI stub and the core kernel using either of those is undesirable. And in general, overloading DT has been a source of issues on arm64, so using DT for this on new architectures is a to avoid for the time being (even if we might converge on something DT based for non-x86 architectures in the future). For this reason, in addition to the patch that enables EFI boot for LoongArch, there are a number of refactoring patches applied on top of which separate the DT bits from the generic EFI stub bits. These changes are on a separate topich branch that has been shared with the LoongArch maintainers, who will include it in their pull request as well. This is not ideal, but the best way to manage the conflicts without stalling LoongArch for another cycle. Another development inspired by LoongArch is the newly added support for EFI based decompressors. Instead of adding yet another arch-specific incarnation of this pattern for LoongArch, we are introducing an EFI app based on the existing EFI libstub infrastructure that encapulates the decompression code we use on other architectures, but in a way that is fully generic. This has been developed and tested in collaboration with distro and systemd folks, who are eager to start using this for systemd-boot and also for arm64 secure boot on Fedora. Note that the EFI zimage files this introduces can also be decompressed by non-EFI bootloaders if needed, as the image header describes the location of the payload inside the image, and the type of compression that was used. (Note that Fedora's arm64 GRUB is buggy [0] so you'll need a recent version or switch to systemd-boot in order to use this.) Finally, we are adding TPM measurement of the kernel command line provided by EFI. There is an oversight in the TCG spec which results in a blind spot for command line arguments passed to loaded images, which means that either the loader or the stub needs to take the measurement. Given the combinatorial explosion I am anticipating when it comes to firmware/bootloader stacks and firmware based attestation protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now when it comes to EFI measured boot, which is that the kernel measures the initrd and command line. Intermediate loaders can measure additional assets if needed, but with the baseline in place, we can deploy measured boot in a meaningful way even if you boot into Linux straight from the EFI firmware. Summary: - implement EFI boot support for LoongArch - implement generic EFI compressed boot support for arm64, RISC-V and LoongArch, none of which implement a decompressor today - measure the kernel command line into the TPM if measured boot is in effect - refactor the EFI stub code in order to isolate DT dependencies for architectures other than x86 - avoid calling SetVirtualAddressMap() on arm64 if the configured size of the VA space guarantees that doing so is unnecessary - move some ARM specific code out of the generic EFI source files - unmap kernel code from the x86 mixed mode 1:1 page tables" * tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits) efi/arm64: libstub: avoid SetVirtualAddressMap() when possible efi: zboot: create MemoryMapped() device path for the parent if needed efi: libstub: fix up the last remaining open coded boot service call efi/arm: libstub: move ARM specific code out of generic routines efi/libstub: measure EFI LoadOptions efi/libstub: refactor the initrd measuring functions efi/loongarch: libstub: remove dependency on flattened DT efi: libstub: install boot-time memory map as config table efi: libstub: remove DT dependency from generic stub efi: libstub: unify initrd loading between architectures efi: libstub: remove pointless goto kludge efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap efi: libstub: avoid efi_get_memory_map() for allocating the virt map efi: libstub: drop pointless get_memory_map() call efi: libstub: fix type confusion for load_options_size arm64: efi: enable generic EFI compressed boot loongarch: efi: enable generic EFI compressed boot riscv: efi: enable generic EFI compressed boot efi/libstub: implement generic EFI zboot efi/libstub: move efi_system_table global var into separate object ...