summaryrefslogtreecommitdiff
path: root/arch/x86/mm/extable.c
AgeCommit message (Collapse)AuthorFilesLines
2024-04-04x86/extable: Remove unused fixup type EX_TYPE_COPYTong Tiangen1-9/+0
After 034ff37d3407 ("x86: rewrite '__copy_user_nocache' function") rewrote __copy_user_nocache() to use EX_TYPE_UACCESS instead of the EX_TYPE_COPY exception type, there are no more EX_TYPE_COPY users, so remove it. [ bp: Massage commit message. ] Signed-off-by: Tong Tiangen <tongtiangen@huawei.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20240204082627.3892816-2-tongtiangen@huawei.com
2024-02-01x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_userXin Li1-0/+78
If the stack frame contains an invalid user context (e.g. due to invalid SS, a non-canonical RIP, etc.) the ERETU instruction will trap (#SS or #GP). From a Linux point of view, this really should be considered a user space failure, so use the standard fault fixup mechanism to intercept the fault, fix up the exception frame, and redirect execution to fred_entrypoint_user. The end result is that it appears just as if the hardware had taken the exception immediately after completing the transition to user space. Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Shan Kang <shan.kang@intel.com> Link: https://lore.kernel.org/r/20231205105030.8698-30-xin3.li@intel.com
2023-05-03x86-64: mm: clarify the 'positive addresses' user address rulesLinus Torvalds1-2/+2
Dave Hansen found the "(long) addr >= 0" code in the x86-64 access_ok checks somewhat confusing, and suggested using a helper to clarify what the code is doing. So this does exactly that: clarifying what the sign bit check is all about, by adding a helper macro that makes it clear what it is testing. This also adds some explicit comments talking about how even with LAM enabled, any addresses with the sign bit will still GP-fault in the non-canonical region just above the sign bit. This is all what allows us to do the user address checks with just the sign bit, and furthermore be a bit cavalier about accesses that might be done with an additional offset even past that point. (And yes, this talks about 'positive' even though zero is also a valid user address and so technically we should call them 'non-negative'. But I don't think using 'non-negative' ends up being more understandable). Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-05-03x86-64: make access_ok() independent of LAMLinus Torvalds1-6/+34
The linear address masking (LAM) code made access_ok() more complicated, in that it now needs to untag the address in order to verify the access range. See commit 74c228d20a51 ("x86/uaccess: Provide untagged_addr() and remove tags before address check"). We were able to avoid that overhead in the get_user/put_user code paths by simply using the sign bit for the address check, and depending on the GP fault if the address was non-canonical, which made it all independent of LAM. And we can do the same thing for access_ok(): simply check that the user pointer range has the high bit clear. No need to bother with any address bit masking. In fact, we can go a bit further, and just check the starting address for known small accesses ranges: any accesses that overflow will still be in the non-canonical area and will still GP fault. To still make syzkaller catch any potentially unchecked user addresses, we'll continue to warn about GP faults that are caused by accesses in the non-canonical range. But we'll limit that to purely "high bit set and past the one-page 'slop' area". We could probably just do that "check only starting address" for any arbitrary range size: realistically all kernel accesses to user space will be done starting at the low address. But let's leave that kind of optimization for later. As it is, this already allows us to generate simpler code and not worry about any tag bits in the address. The one thing to look out for is the GUP address check: instead of actually copying data in the virtual address range (and thus bad addresses being caught by the GP fault), GUP will look up the page tables manually. As a result, the page table limits need to be checked, and that was previously implicitly done by the access_ok(). With the relaxed access_ok() check, we need to just do an explicit check for TASK_SIZE_MAX in the GUP code instead. The GUP code already needs to do the tag bit unmasking anyway, so there this is all very straightforward, and there are no LAM issues. Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-08-16x86: simplify load_unaligned_zeropad() implementationLinus Torvalds1-0/+55
The exception for the "unaligned access at the end of the page, next page not mapped" never happens, but the fixup code ends up causing trouble for compilers to optimize well. clang in particular ends up seeing it being in the middle of a loop, and tries desperately to optimize the exception fixup code that is never really reached. The simple solution is to just move all the fixups into the exception handler itself, which moves it all out of the hot case code, and means that the compiler never sees it or needs to worry about it. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-07-21x86/extable: Fix ex_handler_msr() print conditionPeter Zijlstra1-7/+9
On Fri, Jun 17, 2022 at 02:08:52PM +0300, Stephane Eranian wrote: > Some changes to the way invalid MSR accesses are reported by the > kernel is causing some problems with messages printed on the > console. > > We have seen several cases of ex_handler_msr() printing invalid MSR > accesses once but the callstack multiple times causing confusion on > the console. > The problem here is that another earlier commit (5.13): > > a358f40600b3 ("once: implement DO_ONCE_LITE for non-fast-path "do once" functionality") > > Modifies all the pr_*_once() calls to always return true claiming > that no caller is ever checking the return value of the functions. > > This is why we are seeing the callstack printed without the > associated printk() msg. Extract the ONCE_IF(cond) part into __ONCE_LTE_IF() and use that to implement DO_ONCE_LITE_IF() and fix the extable code. Fixes: a358f40600b3 ("once: implement DO_ONCE_LITE for non-fast-path "do once" functionality") Reported-by: Stephane Eranian <eranian@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Stephane Eranian <eranian@google.com> Link: https://lkml.kernel.org/r/YqyVFsbviKjVGGZ9@worktop.programming.kicks-ass.net
2022-01-12x86/entry_32: Fix segment exceptionsPeter Zijlstra1-14/+3
The LKP robot reported that commit in Fixes: caused a failure. Turns out the ldt_gdt_32 selftest turns into an infinite loop trying to clear the segment. As discovered by Sean, what happens is that PARANOID_EXIT_TO_KERNEL_MODE in the handle_exception_return path overwrites the entry stack data with the task stack data, restoring the "bad" segment value. Instead of having the exception retry the instruction, have it emulate the full instruction. Replace EX_TYPE_POP_ZERO with EX_TYPE_POP_REG which will do the equivalent of: POP %reg; MOV $imm, %reg. In order to encode the segment registers, add them as registers 8-11 for 32-bit. By setting regs->[defg]s the (nested) RESTORE_REGS will pop this value at the end of the exception handler and by increasing regs->sp, it will have skipped the stack slot. This was debugged by Sean Christopherson <seanjc@google.com>. [ bp: Add EX_REG_GS too. ] Fixes: aa93e2ad7464 ("x86/entry_32: Remove .fixup usage") Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/Yd1l0gInc4zRcnt/@hirez.programming.kicks-ass.net
2021-12-11x86/usercopy: Remove .fixup usagePeter Zijlstra1-0/+9
Typically usercopy does whole word copies followed by a number of byte copies to finish the tail. This means that on exception it needs to compute the remaining length as: words*sizeof(long) + bytes. Create a new extable handler to do just this. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101326.081701085@infradead.org
2021-12-11x86/sgx: Remove .fixup usagePeter Zijlstra1-0/+10
Create EX_TYPE_FAULT_SGX which does as EX_TYPE_FAULT does, except adds this extra bit that SGX really fancies having. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101325.961246679@infradead.org
2021-12-11x86/msr: Remove .fixup usagePeter Zijlstra1-23/+28
Rework the MSR accessors to remove .fixup usage. Add two new extable types (to the 4 already existing msr ones) using the new register infrastructure to record which register should get the error value. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101325.364084212@infradead.org
2021-12-11x86/extable: Extend extable functionalityPeter Zijlstra1-4/+36
In order to remove further .fixup usage, extend the extable infrastructure to take additional information from the extable entry sites. Specifically add _ASM_EXTABLE_TYPE_REG() and EX_TYPE_IMM_REG that extend the existing _ASM_EXTABLE_TYPE() by taking an additional register argument and encoding that and an s16 immediate into the existing s32 type field. This limits the actual types to the first byte, 255 seem plenty. Also add a few flags into the type word, specifically CLEAR_AX and CLEAR_DX which clear the return and extended return register. Notes: - due to the % in our register names it's hard to make it more generally usable as arm64 did. - the s16 is far larger than used in these patches, future extentions can easily shrink this to get more bits. - without the bitfield fix this will not compile, because: 0xFF > -1 and we can't even extract the TYPE field. [nathanchance: Build fix for clang-lto builds: https://lkml.kernel.org/r/20211210234953.3420108-1-nathan@kernel.org ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Link: https://lore.kernel.org/r/20211110101325.303890153@infradead.org
2021-12-11x86/entry_32: Remove .fixup usagePeter Zijlstra1-0/+14
Where possible, push the .fixup into code, at the tail of functions. This is hard for macros since they're used in multiple functions, therefore introduce a new extable handler to pop zeros. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101325.245184699@infradead.org
2021-10-20x86/fpu: Provide a proper function for ex_handler_fprestore()Thomas Gleixner1-3/+2
To make upcoming changes for support of dynamically enabled features simpler, provide a proper function for the exception handler which removes exposure of FPU internals. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211015011540.053515012@linutronix.de
2021-10-20x86/fpu: Remove internal.h dependency from fpu/signal.hThomas Gleixner1-1/+2
In order to remove internal.h make signal.h independent of it. Include asm/fpu/xstate.h to fix a missing update_regset_xstate_info() prototype, which is Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211015011539.844565975@linutronix.de
2021-10-20x86/fpu: Move KVMs FPU swapping to FPU coreThomas Gleixner1-1/+1
Swapping the host/guest FPU is directly fiddling with FPU internals which requires 5 exports. The upcoming support of dynamically enabled states would even need more. Implement a swap function in the FPU core code and export that instead. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: kvm@vger.kernel.org Link: https://lkml.kernel.org/r/20211015011539.076072399@linutronix.de
2021-09-13x86/extable: Provide EX_TYPE_DEFAULT_MCE_SAFE and EX_TYPE_FAULT_MCE_SAFEThomas Gleixner1-0/+2
Provide exception fixup types which can be used to identify fixups which allow in kernel #MC recovery and make them invoke the existing handlers. These will be used at places where #MC recovery is handled correctly by the caller. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210908132525.269689153@linutronix.de
2021-09-13x86/extable: Rework the exception table mechanicsThomas Gleixner1-71/+52
The exception table entries contain the instruction address, the fixup address and the handler address. All addresses are relative. Storing the handler address has a few downsides: 1) Most handlers need to be exported 2) Handlers can be defined everywhere and there is no overview about the handler types 3) MCE needs to check the handler type to decide whether an in kernel #MC can be recovered. The functionality of the handler itself is not in any way special, but for these checks there need to be separate functions which in the worst case have to be exported. Some of these 'recoverable' exception fixups are pretty obscure and just reuse some other handler to spare code. That obfuscates e.g. the #MC safe copy functions. Cleaning that up would require more handlers and exports Rework the exception fixup mechanics by storing a fixup type number instead of the handler address and invoke the proper handler for each fixup type. Also teach the extable sort to leave the type field alone. This makes most handlers static except for special cases like the MCE MSR fixup and the BPF fixup. This allows to add more types for cleaning up the obscure places without adding more handler code and exports. There is a marginal code size reduction for a production config and it removes _eight_ exported symbols. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Alexei Starovoitov <ast@kernel.org> Link: https://lkml.kernel.org/r/20210908132525.211958725@linutronix.de
2021-09-13x86/extable: Tidy up redundant handler functionsThomas Gleixner1-11/+5
No need to have the same code all over the place. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210908132524.963232825@linutronix.de
2021-06-23x86/fpu: Mask PKRU from kernel XRSTOR[S] operationsThomas Gleixner1-1/+1
As the PKRU state is managed separately restoring it from the xstate buffer would be counterproductive as it might either restore a stale value or reinit the PKRU state to 0. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210623121456.606745195@linutronix.de
2021-06-23x86/fpu: Rename copy_kernel_to_fpregs() to restore_fpregs_from_fpstate()Thomas Gleixner1-1/+1
This is not a copy functionality. It restores the register state from the supplied kernel buffer. No functional changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210623121454.716058365@linutronix.de
2021-05-10x86/sev-es: Rename sev-es.{ch} to sev.{ch}Brijesh Singh1-1/+1
SEV-SNP builds upon the SEV-ES functionality while adding new hardware protection. Version 2 of the GHCB specification adds new NAE events that are SEV-SNP specific. Rename the sev-es.{ch} to sev.{ch} so that all SEV* functionality can be consolidated in one place. Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20210427111636.1207-2-brijesh.singh@amd.com
2020-10-14Merge tag 'x86_seves_for_v5.10' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 SEV-ES support from Borislav Petkov: "SEV-ES enhances the current guest memory encryption support called SEV by also encrypting the guest register state, making the registers inaccessible to the hypervisor by en-/decrypting them on world switches. Thus, it adds additional protection to Linux guests against exfiltration, control flow and rollback attacks. With SEV-ES, the guest is in full control of what registers the hypervisor can access. This is provided by a guest-host exchange mechanism based on a new exception vector called VMM Communication Exception (#VC), a new instruction called VMGEXIT and a shared Guest-Host Communication Block which is a decrypted page shared between the guest and the hypervisor. Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so in order for that exception mechanism to work, the early x86 init code needed to be made able to handle exceptions, which, in itself, brings a bunch of very nice cleanups and improvements to the early boot code like an early page fault handler, allowing for on-demand building of the identity mapping. With that, !KASLR configurations do not use the EFI page table anymore but switch to a kernel-controlled one. The main part of this series adds the support for that new exchange mechanism. The goal has been to keep this as much as possibly separate from the core x86 code by concentrating the machinery in two SEV-ES-specific files: arch/x86/kernel/sev-es-shared.c arch/x86/kernel/sev-es.c Other interaction with core x86 code has been kept at minimum and behind static keys to minimize the performance impact on !SEV-ES setups. Work by Joerg Roedel and Thomas Lendacky and others" * tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits) x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer x86/sev-es: Check required CPU features for SEV-ES x86/efi: Add GHCB mappings when SEV-ES is active x86/sev-es: Handle NMI State x86/sev-es: Support CPU offline/online x86/head/64: Don't call verify_cpu() on starting APs x86/smpboot: Load TSS and getcpu GDT entry before loading IDT x86/realmode: Setup AP jump table x86/realmode: Add SEV-ES specific trampoline entry point x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES x86/sev-es: Handle #DB Events x86/sev-es: Handle #AC Events x86/sev-es: Handle VMMCALL Events x86/sev-es: Handle MWAIT/MWAITX Events x86/sev-es: Handle MONITOR/MONITORX Events x86/sev-es: Handle INVD Events x86/sev-es: Handle RDPMC Events x86/sev-es: Handle RDTSC(P) Events ...
2020-10-07x86/mce: Add _ASM_EXTABLE_CPY for copy user accessYouquan Song1-1/+13
_ASM_EXTABLE_UA is a general exception entry to record the exception fixup for all exception spots between kernel and user space access. To enable recovery from machine checks while coping data from user addresses it is necessary to be able to distinguish the places that are looping copying data from those that copy a single byte/word/etc. Add a new macro _ASM_EXTABLE_CPY and use it in place of _ASM_EXTABLE_UA in the copy functions. Record the exception reason number to regs->ax at ex_handler_uaccess which is used to check MCE triggered. The new fixup routine ex_handler_copy() is almost an exact copy of ex_handler_uaccess() The difference is that it sets regs->ax to the trap number. Following patches use this to avoid trying to copy remaining bytes from the tail of the copy and possibly hitting the poison again. New mce.kflags bit MCE_IN_KERNEL_COPYIN will be used by mce_severity() calculation to indicate that a machine check is recoverable because the kernel was copying from user space. Signed-off-by: Youquan Song <youquan.song@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201006210910.21062-4-tony.luck@intel.com
2020-10-07x86/mce: Provide method to find out the type of an exception handlerTony Luck1-4/+8
Avoid a proliferation of ex_has_*_handler() functions by having just one function that returns the type of the handler (if any). Drop the __visible attribute for this function. It is not called from assembler so the attribute is not necessary. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20201006210910.21062-3-tony.luck@intel.com
2020-09-09x86/sev-es: Setup GHCB-based boot #VC handlerJoerg Roedel1-0/+1
Add the infrastructure to handle #VC exceptions when the kernel runs on virtual addresses and has mapped a GHCB. This handler will be used until the runtime #VC handler takes over. Since the handler runs very early, disable instrumentation for sev-es.c. [ bp: Make vc_ghcb_invalidate() __always_inline so that it can be inlined in noinstr functions like __sev_es_nmi_complete(). ] Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20200908123816.GB3764@8bytes.org
2020-06-12x86/entry: Treat BUG/WARN as NMI-like entriesAndy Lutomirski1-2/+13
BUG/WARN are cleverly optimized using UD2 to handle the BUG/WARN out of line in an exception fixup. But if BUG or WARN is issued in a funny RCU context, then the idtentry_enter...() path might helpfully WARN that the RCU context is invalid, which results in infinite recursion. Split the BUG/WARN handling into an nmi_enter()/nmi_exit() path in exc_invalid_op() to increase the chance to survive the experience. [ tglx: Make the declaration match the implementation ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/f8fe40e0088749734b4435b554f73eee53dcf7a8.1591932307.git.luto@kernel.org
2020-03-26kill uaccess_try()Al Viro1-12/+0
finally Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-11-25locking/refcount: Consolidate implementations of refcount_tWill Deacon1-49/+0
The generic implementation of refcount_t should be good enough for everybody, so remove ARCH_HAS_REFCOUNT and REFCOUNT_FULL entirely, leaving the generic implementation enabled unconditionally. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-9-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-21treewide: Add SPDX license identifier for missed filesThomas Gleixner1-0/+1
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-09treewide: Switch printk users from %pf and %pF to %ps and %pS, respectivelySakari Ailus1-2/+2
%pF and %pf are functionally equivalent to %pS and %ps conversion specifiers. The former are deprecated, therefore switch the current users to use the preferred variant. The changes have been produced by the following command: git grep -l '%p[fF]' | grep -v '^\(tools\|Documentation\)/' | \ while read i; do perl -i -pe 's/%pf/%ps/g; s/%pF/%pS/g;' $i; done And verifying the result. Link: http://lkml.kernel.org/r/20190325193229.23390-1-sakari.ailus@linux.intel.com Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: sparclinux@vger.kernel.org Cc: linux-um@lists.infradead.org Cc: xen-devel@lists.xenproject.org Cc: linux-acpi@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Cc: linux-mmc@vger.kernel.org Cc: linux-nvdimm@lists.01.org Cc: linux-pci@vger.kernel.org Cc: linux-scsi@vger.kernel.org Cc: linux-btrfs@vger.kernel.org Cc: linux-f2fs-devel@lists.sourceforge.net Cc: linux-mm@kvack.org Cc: ceph-devel@vger.kernel.org Cc: netdev@vger.kernel.org Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com> Acked-by: David Sterba <dsterba@suse.com> (for btrfs) Acked-by: Mike Rapoport <rppt@linux.ibm.com> (for mm/memblock.c) Acked-by: Bjorn Helgaas <bhelgaas@google.com> (for drivers/pci) Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-03-04x86-64: add warning for non-canonical user access address dereferencesLinus Torvalds1-0/+1
This adds a warning (once) for any kernel dereference that has a user exception handler, but accesses a non-canonical address. It basically is a simpler - and more limited - version of commit 9da3f2b74054 ("x86/fault: BUG() when uaccess helpers fault on kernel addresses") that got reverted. Note that unlike that original commit, this only causes a warning, because there are real situations where we currently can do this (notably speculative argument fetching for uprobes etc). Also, unlike that original commit, this _only_ triggers for #GP accesses, so the cases of valid kernel pointers that cross into a non-mapped page aren't affected. The intent of this is two-fold: - the uprobe/tracing accesses really do need to be more careful. In particular, from a portability standpoint it's just wrong to think that "a pointer is a pointer", and use the same logic for any random pointer value you find on the stack. It may _work_ on x86-64, but it doesn't necessarily work on other architectures (where the same pointer value can be either a kernel pointer _or_ a user pointer, and you really need to be much more careful in how you try to access it) The warning can hopefully end up being a reminder that just any random pointer access won't do. - Kees in particular wanted a way to actually report invalid uses of wild pointers to user space accessors, instead of just silently failing them. Automated fuzzers want a way to get reports if the kernel ever uses invalid values that the fuzzer fed it. The non-canonical address range is a fair chunk of the address space, and with this you can teach syzkaller to feed in invalid pointer values and find cases where we do not properly validate user addresses (possibly due to bad uses of "set_fs()"). Acked-by: Kees Cook <keescook@chromium.org> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-25Revert "x86/fault: BUG() when uaccess helpers fault on kernel addresses"Linus Torvalds1-58/+0
This reverts commit 9da3f2b74054406f87dff7101a569217ffceb29b. It was well-intentioned, but wrong. Overriding the exception tables for instructions for random reasons is just wrong, and that is what the new code did. It caused problems for tracing, and it caused problems for strncpy_from_user(), because the new checks made perfectly valid use cases break, rather than catch things that did bad things. Unchecked user space accesses are a problem, but that's not a reason to add invalid checks that then people have to work around with silly flags (in this case, that 'kernel_uaccess_faults_ok' flag, which is just an odd way to say "this commit was wrong" and was sprinked into random places to hide the wrongness). The real fix to unchecked user space accesses is to get rid of the special "let's not check __get_user() and __put_user() at all" logic. Make __{get|put}_user() be just aliases to the regular {get|put}_user() functions, and make it impossible to access user space without having the proper checks in places. The raison d'être of the special double-underscore versions used to be that the range check was expensive, and if you did multiple user accesses, you'd do the range check up front (like the signal frame handling code, for example). But SMAP (on x86) and PAN (on ARM) have made that optimization pointless, because the _real_ expense is the "set CPU flag to allow user space access". Do let's not break the valid cases to catch invalid cases that shouldn't even exist. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kees Cook <keescook@chromium.org> Cc: Tobin C. Harding <tobin@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Jann Horn <jannh@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-03x86/fault: BUG() when uaccess helpers fault on kernel addressesJann Horn1-0/+58
There have been multiple kernel vulnerabilities that permitted userspace to pass completely unchecked pointers through to userspace accessors: - the waitid() bug - commit 96ca579a1ecc ("waitid(): Add missing access_ok() checks") - the sg/bsg read/write APIs - the infiniband read/write APIs These don't happen all that often, but when they do happen, it is hard to test for them properly; and it is probably also hard to discover them with fuzzing. Even when an unmapped kernel address is supplied to such buggy code, it just returns -EFAULT instead of doing a proper BUG() or at least WARN(). Try to make such misbehaving code a bit more visible by refusing to do a fixup in the pagefault handler code when a userspace accessor causes a #PF on a kernel address and the current context isn't whitelisted. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: dvyukov@google.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180828201421.157735-7-jannh@google.com
2018-09-03x86/fault: Plumb error code and fault address through to fault handlersJann Horn1-15/+35
This is preparation for looking at trap number and fault address in the handlers for uaccess errors. No functional change. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: linux-kernel@vger.kernel.org Cc: dvyukov@google.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180828201421.157735-6-jannh@google.com
2018-09-03x86/extable: Introduce _ASM_EXTABLE_UA for uaccess fixupsJann Horn1-0/+8
Currently, most fixups for attempting to access userspace memory are handled using _ASM_EXTABLE, which is also used for various other types of fixups (e.g. safe MSR access, IRET failures, and a bunch of other things). In order to make it possible to add special safety checks to uaccess fixups (in particular, checking whether the fault address is actually in userspace), introduce a new exception table handler ex_handler_uaccess() and wire it up to all the user access fixups (excluding ones that already use _ASM_EXTABLE_EX). Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: dvyukov@google.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180828201421.157735-5-jannh@google.com
2018-01-14x86/extable: Mark exception handler functions visibleAndi Kleen1-17/+17
Mark the C exception handler functions that are directly called through exception tables visible. LTO needs to know they are accessed from assembler. [ tglx: Mopped up the wrecked argument alignment. Sigh.... ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20171222001821.2157-6-andi@firstfloor.org
2017-12-07Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-1/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull misc x86 fixes from Ingo Molnar: - make CR4 handling irq-safe, which bug vmware guests ran into - don't crash on early IRQs in Xen guests - don't crash secondary CPU bringup if #UD assisted WARN()ings are triggered - make X86_BUG_FXSAVE_LEAK optional on newer AMD CPUs that have the fix - fix AMD Fam17h microcode loading - fix broadcom_postcore_init() if ACPI is disabled - fix resume regression in __restore_processor_context() - fix Sparse warnings - fix a GCC-8 warning * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/vdso: Change time() prototype to match __vdso_time() x86: Fix Sparse warnings about non-static functions x86/power: Fix some ordering bugs in __restore_processor_context() x86/PCI: Make broadcom_postcore_init() check acpi_disabled x86/microcode/AMD: Add support for fam17h microcode loading x86/cpufeatures: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD x86/idt: Load idt early in start_secondary x86/xen: Support early interrupts in xen pv guests x86/tlb: Disable interrupts when changing CR4 x86/tlb: Refactor CR4 setting and shadow write
2017-12-06locking/refcounts: Do not force refcount_t usage as GPL-only exportKees Cook1-1/+1
The refcount_t protection on x86 was not intended to use the stricter GPL export. This adjusts the linkage again to avoid a regression in the availability of the refcount API. Reported-by: Dave Airlie <airlied@gmail.com> Fixes: 7a46ec0e2f48 ("locking/refcounts, x86/asm: Implement fast refcount overflow protection") Cc: stable@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-28x86/xen: Support early interrupts in xen pv guestsJuergen Gross1-1/+3
Add early interrupt handlers activated by idt_setup_early_handler() to the handlers supported by Xen pv guests. This will allow for early WARN() calls not crashing the guest. Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: boris.ostrovsky@oracle.com Link: https://lkml.kernel.org/r/20171124084221.30172-1-jgross@suse.com
2017-09-28locking/refcounts, x86/asm: Use unique .text section for refcount exceptionsKees Cook1-1/+6
Using .text.unlikely for refcount exceptions isn't safe because gcc may move entire functions into .text.unlikely (e.g. in6_dev_dev()), which would cause any uses of a protected refcount_t function to stay inline with the function, triggering the protection unconditionally: .section .text.unlikely,"ax",@progbits .type in6_dev_get, @function in6_dev_getx: .LFB4673: .loc 2 4128 0 .cfi_startproc ... lock; incl 480(%rbx) js 111f .pushsection .text.unlikely 111: lea 480(%rbx), %rcx 112: .byte 0x0f, 0xff .popsection 113: This creates a unique .text..refcount section and adds an additional test to the exception handler to WARN in the case of having none of OF, SF, nor ZF set so we can see things like this more easily in the future. The double dot for the section name keeps it out of the TEXT_MAIN macro namespace, to avoid collisions and so it can be put at the end with text.unlikely to keep the cold code together. See commit: cb87481ee89db ("kbuild: linker script do not match C names unless LD_DEAD_CODE_DATA_ELIMINATION is configured") ... which matches C names: [a-zA-Z0-9_] but not ".". Reported-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch <linux-arch@vger.kernel.org> Fixes: 7a46ec0e2f48 ("locking/refcounts, x86/asm: Implement fast refcount overflow protection") Link: http://lkml.kernel.org/r/1504382986-49301-2-git-send-email-keescook@chromium.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-25x86/fpu: Reinitialize FPU registers if restoring FPU state failsEric Biggers1-0/+24
Userspace can change the FPU state of a task using the ptrace() or rt_sigreturn() system calls. Because reserved bits in the FPU state can cause the XRSTOR instruction to fail, the kernel has to carefully validate that no reserved bits or other invalid values are being set. Unfortunately, there have been bugs in this validation code. For example, we were not checking that the 'xcomp_bv' field in the xstate_header was 0. As-is, such bugs are exploitable to read the FPU registers of other processes on the system. To do so, an attacker can create a task, assign to it an invalid FPU state, then spin in a loop and monitor the values of the FPU registers. Because the task's FPU registers are not being restored, sometimes the FPU registers will have the values from another process. This is likely to continue to be a problem in the future because the validation done by the CPU instructions like XRSTOR is not immediately visible to kernel developers. Nor will invalid FPU states ever be encountered during ordinary use --- they will only be seen during fuzzing or exploits. There can even be reserved bits outside the xstate_header which are easy to forget about. For example, the MXCSR register contains reserved bits, which were not validated by the KVM_SET_XSAVE ioctl until commit a575813bfe4b ("KVM: x86: Fix load damaged SSEx MXCSR register"). Therefore, mitigate this class of vulnerability by restoring the FPU registers from init_fpstate if restoring from the task's state fails. We actually used to do this, but it was (perhaps unwisely) removed by commit 9ccc27a5d297 ("x86/fpu: Remove error return values from copy_kernel_to_*regs() functions"). This new patch is also a bit different. First, it only clears the registers, not also the bad in-memory state; this is simpler and makes it easier to make the mitigation cover all callers of __copy_kernel_to_fpregs(). Second, it does the register clearing in an exception handler so that no extra instructions are added to context switches. In fact, we *remove* instructions, since previously we were always zeroing the register containing 'err' even if CONFIG_X86_DEBUG_FPU was disabled. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Kevin Hao <haokexin@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Halcrow <mhalcrow@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Yu-cheng Yu <yu-cheng.yu@intel.com> Cc: kernel-hardening@lists.openwall.com Link: http://lkml.kernel.org/r/20170922174156.16780-4-ebiggers3@gmail.com Link: http://lkml.kernel.org/r/20170923130016.21448-27-mingo@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-04Merge branch 'locking-core-for-linus' of ↵Linus Torvalds1-0/+42
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: - Add 'cross-release' support to lockdep, which allows APIs like completions, where it's not the 'owner' who releases the lock, to be tracked. It's all activated automatically under CONFIG_PROVE_LOCKING=y. - Clean up (restructure) the x86 atomics op implementation to be more readable, in preparation of KASAN annotations. (Dmitry Vyukov) - Fix static keys (Paolo Bonzini) - Add killable versions of down_read() et al (Kirill Tkhai) - Rework and fix jump_label locking (Marc Zyngier, Paolo Bonzini) - Rework (and fix) tlb_flush_pending() barriers (Peter Zijlstra) - Remove smp_mb__before_spinlock() and convert its usages, introduce smp_mb__after_spinlock() (Peter Zijlstra) * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (56 commits) locking/lockdep/selftests: Fix mixed read-write ABBA tests sched/completion: Avoid unnecessary stack allocation for COMPLETION_INITIALIZER_ONSTACK() acpi/nfit: Fix COMPLETION_INITIALIZER_ONSTACK() abuse locking/pvqspinlock: Relax cmpxchg's to improve performance on some architectures smp: Avoid using two cache lines for struct call_single_data locking/lockdep: Untangle xhlock history save/restore from task independence locking/refcounts, x86/asm: Disable CONFIG_ARCH_HAS_REFCOUNT for the time being futex: Remove duplicated code and fix undefined behaviour Documentation/locking/atomic: Finish the document... locking/lockdep: Fix workqueue crossrelease annotation workqueue/lockdep: 'Fix' flush_work() annotation locking/lockdep/selftests: Add mixed read-write ABBA tests mm, locking/barriers: Clarify tlb_flush_pending() barriers locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE and CONFIG_LOCKDEP_COMPLETIONS truly non-interactive locking/lockdep: Explicitly initialize wq_barrier::done::map locking/lockdep: Rename CONFIG_LOCKDEP_COMPLETE to CONFIG_LOCKDEP_COMPLETIONS locking/lockdep: Reword title of LOCKDEP_CROSSRELEASE config locking/lockdep: Make CONFIG_LOCKDEP_CROSSRELEASE part of CONFIG_PROVE_LOCKING locking/refcounts, x86/asm: Implement fast refcount overflow protection locking/lockdep: Fix the rollback and overwrite detection logic in crossrelease ...
2017-08-17locking/refcounts, x86/asm: Implement fast refcount overflow protectionKees Cook1-0/+42
This implements refcount_t overflow protection on x86 without a noticeable performance impact, though without the fuller checking of REFCOUNT_FULL. This is done by duplicating the existing atomic_t refcount implementation but with normally a single instruction added to detect if the refcount has gone negative (e.g. wrapped past INT_MAX or below zero). When detected, the handler saturates the refcount_t to INT_MIN / 2. With this overflow protection, the erroneous reference release that would follow a wrap back to zero is blocked from happening, avoiding the class of refcount-overflow use-after-free vulnerabilities entirely. Only the overflow case of refcounting can be perfectly protected, since it can be detected and stopped before the reference is freed and left to be abused by an attacker. There isn't a way to block early decrements, and while REFCOUNT_FULL stops increment-from-zero cases (which would be the state _after_ an early decrement and stops potential double-free conditions), this fast implementation does not, since it would require the more expensive cmpxchg loops. Since the overflow case is much more common (e.g. missing a "put" during an error path), this protection provides real-world protection. For example, the two public refcount overflow use-after-free exploits published in 2016 would have been rendered unexploitable: http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/ http://cyseclabs.com/page?n=02012016 This implementation does, however, notice an unchecked decrement to zero (i.e. caller used refcount_dec() instead of refcount_dec_and_test() and it resulted in a zero). Decrements under zero are noticed (since they will have resulted in a negative value), though this only indicates that a use-after-free may have already happened. Such notifications are likely avoidable by an attacker that has already exploited a use-after-free vulnerability, but it's better to have them reported than allow such conditions to remain universally silent. On first overflow detection, the refcount value is reset to INT_MIN / 2 (which serves as a saturation value) and a report and stack trace are produced. When operations detect only negative value results (such as changing an already saturated value), saturation still happens but no notification is performed (since the value was already saturated). On the matter of races, since the entire range beyond INT_MAX but before 0 is negative, every operation at INT_MIN / 2 will trap, leaving no overflow-only race condition. As for performance, this implementation adds a single "js" instruction to the regular execution flow of a copy of the standard atomic_t refcount operations. (The non-"and_test" refcount_dec() function, which is uncommon in regular refcount design patterns, has an additional "jz" instruction to detect reaching exactly zero.) Since this is a forward jump, it is by default the non-predicted path, which will be reinforced by dynamic branch prediction. The result is this protection having virtually no measurable change in performance over standard atomic_t operations. The error path, located in .text.unlikely, saves the refcount location and then uses UD0 to fire a refcount exception handler, which resets the refcount, handles reporting, and returns to regular execution. This keeps the changes to .text size minimal, avoiding return jumps and open-coded calls to the error reporting routine. Example assembly comparison: refcount_inc() before: .text: ffffffff81546149: f0 ff 45 f4 lock incl -0xc(%rbp) refcount_inc() after: .text: ffffffff81546149: f0 ff 45 f4 lock incl -0xc(%rbp) ffffffff8154614d: 0f 88 80 d5 17 00 js ffffffff816c36d3 ... .text.unlikely: ffffffff816c36d3: 48 8d 4d f4 lea -0xc(%rbp),%rcx ffffffff816c36d7: 0f ff (bad) These are the cycle counts comparing a loop of refcount_inc() from 1 to INT_MAX and back down to 0 (via refcount_dec_and_test()), between unprotected refcount_t (atomic_t), fully protected REFCOUNT_FULL (refcount_t-full), and this overflow-protected refcount (refcount_t-fast): 2147483646 refcount_inc()s and 2147483647 refcount_dec_and_test()s: cycles protections atomic_t 82249267387 none refcount_t-fast 82211446892 overflow, untested dec-to-zero refcount_t-full 144814735193 overflow, untested dec-to-zero, inc-from-zero This code is a modified version of the x86 PAX_REFCOUNT atomic_t overflow defense from the last public patch of PaX/grsecurity, based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Thanks to PaX Team for various suggestions for improvement for repurposing this code to be a refcount-only protection. Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Eric Biggers <ebiggers3@gmail.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Hans Liljestrand <ishkamiel@gmail.com> Cc: James Bottomley <James.Bottomley@hansenpartnership.com> Cc: Jann Horn <jannh@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Serge E. Hallyn <serge@hallyn.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: arozansk@redhat.com Cc: axboe@kernel.dk Cc: kernel-hardening@lists.openwall.com Cc: linux-arch <linux-arch@vger.kernel.org> Link: http://lkml.kernel.org/r/20170815161924.GA133115@beast Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-07-30x86/asm/32: Remove a bunch of '& 0xffff' from pt_regs segment readsAndy Lutomirski1-1/+1
Now that pt_regs properly defines segment fields as 16-bit on 32-bit CPUs, there's no need to mask off the high word. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-12x86/debug: Handle early WARN_ONs properPeter Zijlstra1-0/+3
Hans managed to trigger a WARN very early in the boot which killed his (Virtual) box. The reason is that the recent rework of WARN() to use UD0 forgot to add the fixup_bug() call to early_fixup_exception(). As a result the kernel does not handle the WARN_ON injected UD0 exception and panics. Add the missing fixup call, so early UD's injected by WARN() get handled. Fixes: 9a93848fe787 ("x86/debug: Implement __WARN() using UD0") Reported-and-tested-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Frank Mehnert <frank.mehnert@oracle.com> Cc: Hans de Goede <hdegoede@redhat.com> Cc: Michael Thayer <michael.thayer@oracle.com> Link: http://lkml.kernel.org/r/20170612180108.w4vgu2ckucmllf3a@hirez.programming.kicks-ass.net
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar1-0/+2
<linux/sched/debug.h> We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/debug.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-12-24Replace <asm/uaccess.h> with <linux/uaccess.h> globallyLinus Torvalds1-1/+1
This was entirely automated, using the script by Al: PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h) to do the replacement at the end of the merge window. Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-21x86/traps: Ignore high word of regs->cs in early_fixup_exception()Andy Lutomirski1-1/+6
On the 80486 DX, it seems that some exceptions may leave garbage in the high bits of CS. This causes sporadic failures in which early_fixup_exception() refuses to fix up an exception. As far as I can tell, this has been buggy for a long time, but the problem seems to have been exacerbated by commits: 1e02ce4cccdc ("x86: Store a per-cpu shadow copy of CR4") e1bfc11c5a6f ("x86/init: Fix cr4_init_shadow() on CR4-less machines") This appears to have broken for as long as we've had early exception handling. [ Note to stable maintainers: This patch is needed all the way back to 3.4, but it will only apply to 4.6 and up, as it depends on commit: 0e861fbb5bda ("x86/head: Move early exception panic code into early_fixup_exception()") If you want to backport to kernels before 4.6, please don't backport the prerequisites (there was a big chain of them that rewrote a lot of the early exception machinery); instead, ask me and I can send you a one-liner that will apply. ] Reported-by: Matthew Whitehead <tedheadster@gmail.com> Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: 4c5023a3fa2e ("x86-32: Handle exception table entries during early boot") Link: http://lkml.kernel.org/r/cb32c69920e58a1a58e7b5cad975038a69c0ce7d.1479609510.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-20x86: Migrate exception table users off module.h and onto extable.hPaul Gortmaker1-1/+1
These files were only including module.h for exception table related functions. We've now separated that content out into its own file "extable.h" so now move over to that and avoid all the extra header content in module.h that we don't really need to compile these files. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Acked-by: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/20160919210418.30243-1-paul.gortmaker@windriver.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-07-26Merge branch 'x86-debug-for-linus' of ↵Linus Torvalds1-5/+8
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 stackdump update from Ingo Molnar: "A number of stackdump enhancements" * 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/dumpstack: Add show_stack_regs() and use it printk: Make the printk*once() variants return a value x86/dumpstack: Honor supplied @regs arg