summaryrefslogtreecommitdiff
path: root/kernel/rcu/tasks.h
AgeCommit message (Collapse)AuthorFilesLines
2024-02-26rcu-tasks: Maintain real-time response in rcu_tasks_postscan()Paul E. McKenney1-1/+21
The current code will scan the entirety of each per-CPU list of exiting tasks in ->rtp_exit_list with interrupts disabled. This is normally just fine, because each CPU typically won't have very many tasks in this state. However, if a large number of tasks block late in do_exit(), these lists could be arbitrarily long. Low probability, perhaps, but it really could happen. This commit therefore occasionally re-enables interrupts while traversing these lists, inserting a dummy element to hold the current place in the list. In kernels built with CONFIG_PREEMPT_RT=y, this re-enabling happens after each list element is processed, otherwise every one-to-two jiffies. [ paulmck: Apply Frederic Weisbecker feedback. ] Link: https://lore.kernel.org/all/ZdeI_-RfdLR8jlsm@localhost.localdomain/ Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Anna-Maria Behnsen <anna-maria@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-26rcu-tasks: Eliminate deadlocks involving do_exit() and RCU tasksPaul E. McKenney1-16/+28
Holding a mutex across synchronize_rcu_tasks() and acquiring that same mutex in code called from do_exit() after its call to exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop() results in deadlock. This is by design, because tasks that are far enough into do_exit() are no longer present on the tasks list, making it a bit difficult for RCU Tasks to find them, let alone wait on them to do a voluntary context switch. However, such deadlocks are becoming more frequent. In addition, lockdep currently does not detect such deadlocks and they can be difficult to reproduce. In addition, if a task voluntarily context switches during that time (for example, if it blocks acquiring a mutex), then this task is in an RCU Tasks quiescent state. And with some adjustments, RCU Tasks could just as well take advantage of that fact. This commit therefore eliminates these deadlock by replacing the SRCU-based wait for do_exit() completion with per-CPU lists of tasks currently exiting. A given task will be on one of these per-CPU lists for the same period of time that this task would previously have been in the previous SRCU read-side critical section. These lists enable RCU Tasks to find the tasks that have already been removed from the tasks list, but that must nevertheless be waited upon. The RCU Tasks grace period gathers any of these do_exit() tasks that it must wait on, and adds them to the list of holdouts. Per-CPU locking and get_task_struct() are used to synchronize addition to and removal from these lists. Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-26rcu-tasks: Maintain lists to eliminate RCU-tasks/do_exit() deadlocksPaul E. McKenney1-10/+33
This commit continues the elimination of deadlocks involving do_exit() and RCU tasks by causing exit_tasks_rcu_start() to add the current task to a per-CPU list and causing exit_tasks_rcu_stop() to remove the current task from whatever list it is on. These lists will be used to track tasks that are exiting, while still accounting for any RCU-tasks quiescent states that these tasks pass though. [ paulmck: Apply Frederic Weisbecker feedback. ] Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-26rcu-tasks: Initialize data to eliminate RCU-tasks/do_exit() deadlocksPaul E. McKenney1-0/+2
Holding a mutex across synchronize_rcu_tasks() and acquiring that same mutex in code called from do_exit() after its call to exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop() results in deadlock. This is by design, because tasks that are far enough into do_exit() are no longer present on the tasks list, making it a bit difficult for RCU Tasks to find them, let alone wait on them to do a voluntary context switch. However, such deadlocks are becoming more frequent. In addition, lockdep currently does not detect such deadlocks and they can be difficult to reproduce. In addition, if a task voluntarily context switches during that time (for example, if it blocks acquiring a mutex), then this task is in an RCU Tasks quiescent state. And with some adjustments, RCU Tasks could just as well take advantage of that fact. This commit therefore initializes the data structures that will be needed to rely on these quiescent states and to eliminate these deadlocks. Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-26rcu-tasks: Initialize callback lists at rcu_init() timePaul E. McKenney1-6/+18
In order for RCU Tasks to reliably maintain per-CPU lists of exiting tasks, those lists must be initialized before it is possible for tasks to exit, especially given that the boot CPU is not necessarily CPU 0 (an example being, powerpc kexec() kernels). And at the time that rcu_init_tasks_generic() is called, a task could potentially exit, unconventional though that sort of thing might be. This commit therefore moves the calls to cblist_init_generic() from functions called from rcu_init_tasks_generic() to a new function named tasks_cblist_init_generic() that is invoked from rcu_init(). This constituted a bug in a commit that never went to mainline, so there is no need for any backporting to -stable. Reported-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-26rcu-tasks: Add data to eliminate RCU-tasks/do_exit() deadlocksPaul E. McKenney1-0/+2
Holding a mutex across synchronize_rcu_tasks() and acquiring that same mutex in code called from do_exit() after its call to exit_tasks_rcu_start() but before its call to exit_tasks_rcu_stop() results in deadlock. This is by design, because tasks that are far enough into do_exit() are no longer present on the tasks list, making it a bit difficult for RCU Tasks to find them, let alone wait on them to do a voluntary context switch. However, such deadlocks are becoming more frequent. In addition, lockdep currently does not detect such deadlocks and they can be difficult to reproduce. In addition, if a task voluntarily context switches during that time (for example, if it blocks acquiring a mutex), then this task is in an RCU Tasks quiescent state. And with some adjustments, RCU Tasks could just as well take advantage of that fact. This commit therefore adds the data structures that will be needed to rely on these quiescent states and to eliminate these deadlocks. Link: https://lore.kernel.org/all/20240118021842.290665-1-chenzhongjin@huawei.com/ Reported-by: Chen Zhongjin <chenzhongjin@huawei.com> Reported-by: Yang Jihong <yangjihong1@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yang Jihong <yangjihong1@huawei.com> Tested-by: Chen Zhongjin <chenzhongjin@huawei.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2023-12-11rcu-tasks: Mark RCU Tasks accesses to current->rcu_tasks_idle_cpuPaul E. McKenney1-2/+2
The task_struct structure's ->rcu_tasks_idle_cpu can be concurrently read and written from the RCU Tasks grace-period kthread and from the CPU on which the task_struct structure's task is running. This commit therefore marks the accesses appropriately. Reported-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
2023-11-02rcu/tasks-trace: Handle new PF_IDLE semanticsFrederic Weisbecker1-1/+1
The commit: cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup") has changed the semantics of what is to be considered an idle task in such a way that the idle task of an offline CPU may not carry the PF_IDLE flag anymore. However RCU-tasks-trace tests the opposite assertion, still assuming that idle tasks carry the PF_IDLE flag during their whole lifecycle. Remove this assumption to avoid spurious warnings but keep the initial test verifying that the idle task is the current task on any offline CPU. Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Fixes: cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup") Suggested-by: Joel Fernandes <joel@joelfernandes.org> Suggested-by: Paul E . McKenney" <paulmck@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-11-02rcu/tasks: Handle new PF_IDLE semanticsFrederic Weisbecker1-2/+28
The commit: cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup") has changed the semantics of what is to be considered an idle task in such a way that CPU boot code preceding the actual idle loop is excluded from it. This has however introduced new potential RCU-tasks stalls when either: 1) Grace period is started before init/0 had a chance to set PF_IDLE, keeping it stuck in the holdout list until idle ever schedules. 2) Grace period is started when some possible CPUs have never been online, keeping their idle tasks stuck in the holdout list until the CPU ever boots up. 3) Similar to 1) but with secondary CPUs: Grace period is started concurrently with secondary CPU booting, putting its idle task in the holdout list because PF_IDLE isn't yet observed on it. It stays then stuck in the holdout list until that CPU ever schedules. The effect is mitigated here by the hotplug AP thread that must run to bring the CPU up. Fix this with handling the new semantics of PF_IDLE, keeping in mind that it may or may not be set on an idle task. Take advantage of that to strengthen the coverage of an RCU-tasks quiescent state within an idle task, excluding the CPU boot code from it. Only the code running within the idle loop is now a quiescent state, along with offline CPUs. Fixes: cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup") Suggested-by: Joel Fernandes <joel@joelfernandes.org> Suggested-by: Paul E . McKenney" <paulmck@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-10-23Merge branches 'rcu/torture', 'rcu/fixes', 'rcu/docs', 'rcu/refscale', ↵Frederic Weisbecker1-3/+8
'rcu/tasks' and 'rcu/stall' into rcu/next rcu/torture: RCU torture, locktorture and generic torture infrastructure rcu/fixes: Generic and misc fixes rcu/docs: RCU documentation updates rcu/refscale: RCU reference scalability test updates rcu/tasks: RCU tasks updates rcu/stall: Stall detection updates
2023-09-13rcu: Dump memory object info if callback function is invalidZhen Lei1-0/+1
When a structure containing an RCU callback rhp is (incorrectly) freed and reallocated after rhp is passed to call_rcu(), it is not unusual for rhp->func to be set to NULL. This defeats the debugging prints used by __call_rcu_common() in kernels built with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y, which expect to identify the offending code using the identity of this function. And in kernels build without CONFIG_DEBUG_OBJECTS_RCU_HEAD=y, things are even worse, as can be seen from this splat: Unable to handle kernel NULL pointer dereference at virtual address 0 ... ... PC is at 0x0 LR is at rcu_do_batch+0x1c0/0x3b8 ... ... (rcu_do_batch) from (rcu_core+0x1d4/0x284) (rcu_core) from (__do_softirq+0x24c/0x344) (__do_softirq) from (__irq_exit_rcu+0x64/0x108) (__irq_exit_rcu) from (irq_exit+0x8/0x10) (irq_exit) from (__handle_domain_irq+0x74/0x9c) (__handle_domain_irq) from (gic_handle_irq+0x8c/0x98) (gic_handle_irq) from (__irq_svc+0x5c/0x94) (__irq_svc) from (arch_cpu_idle+0x20/0x3c) (arch_cpu_idle) from (default_idle_call+0x4c/0x78) (default_idle_call) from (do_idle+0xf8/0x150) (do_idle) from (cpu_startup_entry+0x18/0x20) (cpu_startup_entry) from (0xc01530) This commit therefore adds calls to mem_dump_obj(rhp) to output some information, for example: slab kmalloc-256 start ffff410c45019900 pointer offset 0 size 256 This provides the rough size of the memory block and the offset of the rcu_head structure, which as least provides at least a few clues to help locate the problem. If the problem is reproducible, additional slab debugging can be enabled, for example, CONFIG_DEBUG_SLAB=y, which can provide significantly more information. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-09-11rcu-tasks: Make rcu_tasks_lazy_ms staticJiapeng Chong1-1/+1
The rcu_tasks_lazy_ms variable is not used outside the file tasks.h, so this commit marks it static. kernel/rcu/tasks.h:1085:5: warning: symbol 'rcu_tasks_lazy_ms' was not declared. Should it be static? Reported-by: Abaci Robot <abaci@linux.alibaba.com> Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=6086 Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-09-11rcu-tasks: Pull sampling of ->percpu_dequeue_lim out of loopPaul E. McKenney1-1/+3
The rcu_tasks_need_gpcb() samples ->percpu_dequeue_lim as part of the condition clause of a "for" loop, which is a bit confusing. This commit therefore hoists this sampling out of the loop, using the result loaded in the condition clause. So why does this work in the face of a concurrent switch from single-CPU queueing to per-CPU queueing? o The call_rcu_tasks_generic() that makes the change has already enqueued its callback, which means that all of the other CPU's callback queues are empty. o For the call_rcu_tasks_generic() that first notices the switch to per-CPU queues, the smp_store_release() used to update ->percpu_enqueue_lim pairs with the raw_spin_trylock_rcu_node()'s full barrier that is between the READ_ONCE(rtp->percpu_enqueue_shift) and the rcu_segcblist_enqueue() that enqueues the callback. o Because this CPU's queue is empty (unless it happens to be the original single queue, in which case there is no need for synchronization), this call_rcu_tasks_generic() will do an irq_work_queue() to schedule a handler for the needed rcuwait_wake_up() call. This call will be ordered after the first call_rcu_tasks_generic() function's change to ->percpu_dequeue_lim. o This rcuwait_wake_up() will either happen before or after the set_current_state() in rcuwait_wait_event(). If it happens before, the "condition" argument's call to rcu_tasks_need_gpcb() will be ordered after the original change, and all callbacks on all CPUs will be visible. Otherwise, if it happens after, then the grace-period kthread's state will be set back to running, which will result in a later call to rcuwait_wait_event() and thus to rcu_tasks_need_gpcb(), which will again see the change. So it all works out. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-09-11rcu-tasks: Add printk()s to localize boot-time self-test hangPaul E. McKenney1-1/+3
Currently, rcu_tasks_initiate_self_tests() prints a message and then initiates self tests on up to three different RCU Tasks flavors. If one of the flavors has a grace-period hang, it is not easy to work out which of the three hung. This commit therefore prints a message prior to each individual test. Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-08-17Merge branches 'doc.2023.07.14b', 'fixes.2023.08.16a', ↵Paul E. McKenney1-19/+117
'rcu-tasks.2023.07.24a', 'rcuscale.2023.07.14b', 'refscale.2023.07.14b', 'torture.2023.08.14a' and 'torturescripts.2023.07.20a' into HEAD doc.2023.07.14b: Documentation updates. fixes.2023.08.16a: Miscellaneous fixes. rcu-tasks.2023.07.24a: RCU Tasks updates. rcuscale.2023.07.14b: RCU (updater) scalability test updates. refscale.2023.07.14b: Reference (reader) scalability test updates. torture.2023.08.14a: Other torture-test updates. torturescripts.2023.07.20a: Other torture-test scripting updates.
2023-08-15rcu-tasks: Fix boot-time RCU tasks debug-only deadlockPaul E. McKenney1-0/+2
In kernels built with CONFIG_PROVE_RCU=y (for example, lockdep kernels), the following sequence of events can occur: o rcu_init_tasks_generic() is invoked just before init is spawned. It invokes rcu_spawn_tasks_kthread() and friends. o rcu_spawn_tasks_kthread() invokes rcu_spawn_tasks_kthread_generic(), which uses kthread_run() to create the needed kthread. o Control returns to rcu_init_tasks_generic(), which, because this is a CONFIG_PROVE_RCU=y kernel, invokes the version of the rcu_tasks_initiate_self_tests() function that actually does something, including invoking synchronize_rcu_tasks(), which in turn invokes synchronize_rcu_tasks_generic(). o synchronize_rcu_tasks_generic() sees that the ->kthread_ptr is still NULL, because the newly spawned kthread has not yet started. o The new kthread starts, preempting synchronize_rcu_tasks_generic() just after its check. This kthread invokes rcu_tasks_one_gp(), which acquires ->tasks_gp_mutex, and, seeing no work, blocks in rcuwait_wait_event(). Note that this step requires either a preemptible kernel or a fault-injection-style sleep at the beginning of mutex_lock(). o synchronize_rcu_tasks_generic() resumes and invokes rcu_tasks_one_gp(). o rcu_tasks_one_gp() attempts to acquire ->tasks_gp_mutex, which is still held by the newly spawned kthread's rcu_tasks_one_gp() function. Deadlock. Because the only reason for ->tasks_gp_mutex is to handle pre-kthread synchronous grace periods, this commit avoids this deadlock by having rcu_tasks_one_gp() momentarily release ->tasks_gp_mutex while invoking rcuwait_wait_event(). This allows the call to rcu_tasks_one_gp() from synchronize_rcu_tasks_generic() proceed. Note that it is not necessary to release the mutex anywhere else in rcu_tasks_one_gp() because rcuwait_wait_event() is the only function that can block indefinitely. Reported-by: Guenter Roeck <linux@roeck-us.net> Reported-by: Roy Hopkins <rhopkins@suse.de> Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Roy Hopkins <rhopkins@suse.de>
2023-08-01rcu-tasks: Permit use of debug-objects with RCU Tasks flavorsPaul E. McKenney1-10/+6
Currently, cblist_init_generic() holds a raw spinlock when invoking INIT_WORK(). This fails in kernels built with CONFIG_DEBUG_OBJECTS=y due to memory allocation being forbidden while holding a raw spinlock. But the only reason for holding the raw spinlock is to synchronize with early boot calls to call_rcu_tasks(), call_rcu_tasks_rude, and, last but not least, call_rcu_tasks_trace(). These calls also invoke cblist_init_generic() in order to support early boot queueing of callbacks. Except that there are no early boot calls to either of these three functions, and the BPF guys confirm that they have no plans to add any such calls. This commit therefore removes the synchronization and adds a WARN_ON_ONCE() to catch the case of now-prohibited early boot RCU Tasks callback queueing. If early boot queueing is needed, an "initialized" flag may be added to the rcu_tasks structure. Then queueing a callback before this flag is set would initialize the callback list (if needed) and queue the callback. The decision as to where to queue the callback given the possibility of non-zero boot CPUs is left as an exercise for the reader. Reported-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcuscale: Add RCU Tasks Rude testingPaul E. McKenney1-0/+7
Add a "tasks-rude" option to the rcuscale.scale_type module parameter. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcuscale: Measure RCU Tasks Trace grace-period kthread CPU timePaul E. McKenney1-0/+6
This commit causes RCU Tasks Trace to output the CPU time consumed by its grace-period kthread. The CPU time is whatever is in the designated task's current->stime field, and thus is controlled by whatever CPU-time accounting scheme is in effect. This output appears in microseconds as follows on the console: rcu_scale: Grace-period kthread CPU time: 42367.037 [ paulmck: Apply Willy Tarreau feedback. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcuscale: Measure grace-period kthread CPU timePaul E. McKenney1-0/+6
This commit adds the ability to output the CPU time consumed by the grace-period kthread for the RCU variant under test. The CPU time is whatever is in the designated task's current->stime field, and thus is controlled by whatever CPU-time accounting scheme is in effect. This output appears in microseconds as follows on the console: rcu_scale: Grace-period kthread CPU time: 42367.037 [ paulmck: Apply feedback from Stephen Rothwell and kernel test robot. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Yujie Liu <yujie.liu@intel.com>
2023-07-15rcu-tasks: Cancel callback laziness if too many callbacksPaul E. McKenney1-2/+5
The various RCU Tasks flavors now do lazy grace periods when there are only asynchronous grace period requests. By default, the system will let 250 milliseconds elapse after the first call_rcu_tasks*() callbacki is queued before starting a grace period. In contrast, synchronous grace period requests such as synchronize_rcu_tasks*() will start a grace period immediately. However, invoking one of the call_rcu_tasks*() functions in a too-tight loop can result in a callback flood, which in turn can exhaust memory if grace periods are delayed for too long. This commit therefore sets a limit so that the grace-period kthread will be awakened when any CPU's callback list expands to contain rcupdate.rcu_task_lazy_lim callbacks elements (defaulting to 32, set to -1 to disable), the grace-period kthread will be awakened, thus cancelling any ongoing laziness and getting out in front of the potential callback flood. Cc: Alexei Starovoitov <ast@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcu-tasks: Add kernel boot parameters for callback lazinessPaul E. McKenney1-0/+15
This commit adds kernel boot parameters for callback laziness, allowing the RCU Tasks flavors to be individually adjusted. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcu-tasks: Remove redundant #ifdef CONFIG_TASKS_RCUPaul E. McKenney1-2/+0
The kernel/rcu/tasks.h file has a #endif immediately followed by an Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-07-15rcu-tasks: Treat only synchronous grace periods urgentlyPaul E. McKenney1-8/+73
The performance requirements on RCU Tasks, and in particular on RCU Tasks Trace, have evolved over time as the workloads have evolved. The current implementation is designed to provide low grace-period latencies, and also to accommodate short-duration floods of callbacks. However, current workloads can also provide a constant background callback-queuing rate of a few hundred call_rcu_tasks_trace() invocations per second. This results in continuous back-to-back RCU Tasks Trace grace periods, which in turn can consume the better part of 10% of a CPU. One could take the attitude that there are several tens of other CPUs on the systems running such workloads, but energy efficiency is a thing. On these systems, although asynchronous grace-period requests happen every few milliseconds, synchronous grace-period requests are quite rare. This commit therefore arrranges for grace periods to be initiated immediately in response to calls to synchronize_rcu_tasks*() and also to calls to synchronize_rcu_mult() that are passed one of the call_rcu_tasks*() functions. These are recognized by the tell-tale wakeme_after_rcu callback function. In other cases, callbacks are gathered up for up to about 250 milliseconds before a grace period is initiated. This results in more than an order of magnitude reduction in RCU Tasks Trace grace periods, with corresponding reduction in consumption of CPU time. Reported-by: Alexei Starovoitov <ast@kernel.org> Reported-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-06-07Merge branches 'doc.2023.05.10a', 'fixes.2023.05.11a', 'kvfree.2023.05.10a', ↵Paul E. McKenney1-4/+8
'nocb.2023.05.11a', 'rcu-tasks.2023.05.10a', 'torture.2023.05.15a' and 'rcu-urgent.2023.06.06a' into HEAD doc.2023.05.10a: Documentation updates fixes.2023.05.11a: Miscellaneous fixes kvfree.2023.05.10a: kvfree_rcu updates nocb.2023.05.11a: Callback-offloading updates rcu-tasks.2023.05.10a: Tasks RCU updates torture.2023.05.15a: Torture-test updates rcu-urgent.2023.06.06a: Urgent SRCU fix
2023-05-11rcu-tasks: Stop rcu_tasks_invoke_cbs() from using never-onlined CPUsPaul E. McKenney1-2/+5
The rcu_tasks_invoke_cbs() function relies on queue_work_on() to silently fall back to WORK_CPU_UNBOUND when the specified CPU is offline. However, the queue_work_on() function's silent fallback mechanism relies on that CPU having been online at some time in the past. When queue_work_on() is passed a CPU that has never been online, workqueue lockups ensue, which can be bad for your kernel's general health and well-being. This commit therefore checks whether a given CPU has ever been online, and, if not substitutes WORK_CPU_UNBOUND in the subsequent call to queue_work_on(). Why not simply omit the queue_work_on() call entirely? Because this function is flooding callback-invocation notifications to all CPUs, and must deal with possibilities that include a sparse cpu_possible_mask. This commit also moves the setting of the rcu_data structure's ->beenonline field to rcu_cpu_starting(), which executes on the incoming CPU before that CPU has ever enabled interrupts. This ensures that the required workqueues are present. In addition, because the incoming CPU has not yet enabled its interrupts, there cannot yet have been any softirq handlers running on this CPU, which means that the WARN_ON_ONCE(!rdp->beenonline) within the RCU_SOFTIRQ handler cannot have triggered yet. Fixes: d363f833c6d88 ("rcu-tasks: Use workqueues for multiple rcu_tasks_invoke_cbs() invocations") Reported-by: Tejun Heo <tj@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-10rcu-tasks: Clarify the cblist_init_generic() function's pr_info() outputZqiang1-4/+2
This commit uses rtp->name instead of __func__ and outputs the value of rcu_task_cb_adjust, thus reducing console-log output. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-05-10rcu-tasks: Avoid pr_info() with spin lock in cblist_init_generic()Shigeru Yoshida1-1/+4
pr_info() is called with rtp->cbs_gbl_lock spin lock locked. Because pr_info() calls printk() that might sleep, this will result in BUG like below: [ 0.206455] cblist_init_generic: Setting adjustable number of callback queues. [ 0.206463] [ 0.206464] ============================= [ 0.206464] [ BUG: Invalid wait context ] [ 0.206465] 5.19.0-00428-g9de1f9c8ca51 #5 Not tainted [ 0.206466] ----------------------------- [ 0.206466] swapper/0/1 is trying to lock: [ 0.206467] ffffffffa0167a58 (&port_lock_key){....}-{3:3}, at: serial8250_console_write+0x327/0x4a0 [ 0.206473] other info that might help us debug this: [ 0.206473] context-{5:5} [ 0.206474] 3 locks held by swapper/0/1: [ 0.206474] #0: ffffffff9eb597e0 (rcu_tasks.cbs_gbl_lock){....}-{2:2}, at: cblist_init_generic.constprop.0+0x14/0x1f0 [ 0.206478] #1: ffffffff9eb579c0 (console_lock){+.+.}-{0:0}, at: _printk+0x63/0x7e [ 0.206482] #2: ffffffff9ea77780 (console_owner){....}-{0:0}, at: console_emit_next_record.constprop.0+0x111/0x330 [ 0.206485] stack backtrace: [ 0.206486] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-00428-g9de1f9c8ca51 #5 [ 0.206488] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014 [ 0.206489] Call Trace: [ 0.206490] <TASK> [ 0.206491] dump_stack_lvl+0x6a/0x9f [ 0.206493] __lock_acquire.cold+0x2d7/0x2fe [ 0.206496] ? stack_trace_save+0x46/0x70 [ 0.206497] lock_acquire+0xd1/0x2f0 [ 0.206499] ? serial8250_console_write+0x327/0x4a0 [ 0.206500] ? __lock_acquire+0x5c7/0x2720 [ 0.206502] _raw_spin_lock_irqsave+0x3d/0x90 [ 0.206504] ? serial8250_console_write+0x327/0x4a0 [ 0.206506] serial8250_console_write+0x327/0x4a0 [ 0.206508] console_emit_next_record.constprop.0+0x180/0x330 [ 0.206511] console_unlock+0xf7/0x1f0 [ 0.206512] vprintk_emit+0xf7/0x330 [ 0.206514] _printk+0x63/0x7e [ 0.206516] cblist_init_generic.constprop.0.cold+0x24/0x32 [ 0.206518] rcu_init_tasks_generic+0x5/0xd9 [ 0.206522] kernel_init_freeable+0x15b/0x2a2 [ 0.206523] ? rest_init+0x160/0x160 [ 0.206526] kernel_init+0x11/0x120 [ 0.206527] ret_from_fork+0x1f/0x30 [ 0.206530] </TASK> [ 0.207018] cblist_init_generic: Setting shift to 1 and lim to 1. This patch moves pr_info() so that it is called without rtp->cbs_gbl_lock locked. Signed-off-by: Shigeru Yoshida <syoshida@redhat.com> Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-04-05Merge branches 'rcu/staging-core', 'rcu/staging-docs' and ↵Joel Fernandes (Google)1-0/+2
'rcu/staging-kfree', remote-tracking branches 'paul/srcu-cf.2023.04.04a', 'fbq/rcu/lockdep.2023.03.27a' and 'fbq/rcu/rcutorture.2023.03.20a' into rcu/staging
2023-04-05rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()Neeraj Upadhyay1-0/+31
The call to synchronize_srcu() from rcu_tasks_postscan() can be stalled by a task getting stuck in do_exit() between that function's calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish(). To ease diagnosis of this situation, print a stall warning message every rcu_task_stall_info period when rcu_tasks_postscan() is stalled. [ paulmck: Adjust to handle CONFIG_SMP=n. ] Acked-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reported-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/rcu/20230111212736.GA1062057@paulmck-ThinkPad-P17-Gen-1/ Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-04rcu-tasks: Fix warning for unused tasks_rcu_exit_srcuPaul E. McKenney1-0/+2
The tasks_rcu_exit_srcu variable is used only by kernels built with CONFIG_TASKS_RCU=y, but is defined for all kernesl with CONFIG_TASKS_RCU_GENERIC=y. Therefore, in kernels built with CONFIG_TASKS_RCU_GENERIC=y but CONFIG_TASKS_RCU=n, this gives a "defined but not used" warning. This commit therefore moves this variable under CONFIG_TASKS_RCU. Link: https://lore.kernel.org/oe-kbuild-all/202303191536.XzMSyzTl-lkp@intel.com/ Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Handle queue-shrink/callback-enqueue race conditionZqiang1-5/+8
The rcu_tasks_need_gpcb() determines whether or not: (1) There are callbacks needing another grace period, (2) There are callbacks ready to be invoked, and (3) It would be a good time to shrink back down to a single-CPU callback list. This third case is interesting because some other CPU might be adding new callbacks, which might suddenly make this a very bad time to be shrinking. This is currently handled by requiring call_rcu_tasks_generic() to enqueue callbacks under the protection of rcu_read_lock() and requiring rcu_tasks_need_gpcb() to wait for an RCU grace period to elapse before finalizing the transition. This works well in practice. Unfortunately, the current code assumes that a grace period whose end is detected by the poll_state_synchronize_rcu() in the second "if" condition actually ended before the earlier code counted the callbacks queued on CPUs other than CPU 0 (local variable "ncbsnz"). Given the current code, it is possible that a long-delayed call_rcu_tasks_generic() invocation will queue a callback on a non-zero CPU after these CPUs have had their callbacks counted and zero has been stored to ncbsnz. Such a callback would trigger the WARN_ON_ONCE() in the second "if" statement. To see this, consider the following sequence of events: o CPU 0 invokes rcu_tasks_one_gp(), and counts fewer than rcu_task_collapse_lim callbacks. It sees at least one callback queued on some other CPU, thus setting ncbsnz to a non-zero value. o CPU 1 invokes call_rcu_tasks_generic() and loads 42 from ->percpu_enqueue_lim. It therefore decides to enqueue its callback onto CPU 1's callback list, but is delayed. o CPU 0 sees the rcu_task_cb_adjust is non-zero and that the number of callbacks does not exceed rcu_task_collapse_lim. It therefore checks percpu_enqueue_lim, and sees that its value is greater than the value one. CPU 0 therefore starts the shift back to a single callback list. It sets ->percpu_enqueue_lim to 1, but CPU 1 has already read the old value of 42. It also gets a grace-period state value from get_state_synchronize_rcu(). o CPU 0 sees that ncbsnz is non-zero in its second "if" statement, so it declines to finalize the shrink operation. o CPU 0 again invokes rcu_tasks_one_gp(), and counts fewer than rcu_task_collapse_lim callbacks. It also sees that there are no callback queued on any other CPU, and thus sets ncbsnz to zero. o CPU 1 resumes execution and enqueues its callback onto its own list. This invalidates the value of ncbsnz. o CPU 0 sees the rcu_task_cb_adjust is non-zero and that the number of callbacks does not exceed rcu_task_collapse_lim. It therefore checks percpu_enqueue_lim, but sees that its value is already unity. It therefore does not get a new grace-period state value. o CPU 0 sees that rcu_task_cb_adjust is non-zero, ncbsnz is zero, and that poll_state_synchronize_rcu() says that the grace period has completed. it therefore finalizes the shrink operation, setting ->percpu_dequeue_lim to the value one. o CPU 0 does a debug check, scanning the other CPUs' callback lists. It sees that CPU 1's list has a callback, so it (rightly) triggers the WARN_ON_ONCE(). After all, the new value of ->percpu_dequeue_lim says to not bother looking at CPU 1's callback list, which means that this callback will never be invoked. This can result in hangs and maybe even OOMs. Based on long experience with rcutorture, this is an extremely low-probability race condition, but it really can happen, especially in preemptible kernels or within guest OSes. This commit therefore checks for completion of the grace period before counting callbacks. With this change, in the above failure scenario CPU 0 would know not to prematurely end the shrink operation because the grace period would not have completed before the count operation started. [ paulmck: Adjust grace-period end rather than adding RCU reader. ] [ paulmck: Avoid spurious WARN_ON_ONCE() with ->percpu_dequeue_lim check. ] Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Make rude RCU-Tasks work well with CPU hotplugZqiang1-5/+3
The synchronize_rcu_tasks_rude() function invokes rcu_tasks_rude_wait_gp() to wait one rude RCU-tasks grace period. The rcu_tasks_rude_wait_gp() function in turn checks if there is only a single online CPU. If so, it will immediately return, because a call to synchronize_rcu_tasks_rude() is by definition a grace period on a single-CPU system. (We could have blocked!) Unfortunately, this check uses num_online_cpus() without synchronization, which can result in too-short grace periods. To see this, consider the following scenario: CPU0 CPU1 (going offline) migration/1 task: cpu_stopper_thread -> take_cpu_down -> _cpu_disable (dec __num_online_cpus) ->cpuhp_invoke_callback preempt_disable access old_data0 task1 del old_data0 ..... synchronize_rcu_tasks_rude() task1 schedule out .... task2 schedule in rcu_tasks_rude_wait_gp() ->__num_online_cpus == 1 ->return .... task1 schedule in ->free old_data0 preempt_enable When CPU1 decrements __num_online_cpus, its value becomes 1. However, CPU1 has not finished going offline, and will take one last trip through the scheduler and the idle loop before it actually stops executing instructions. Because synchronize_rcu_tasks_rude() is mostly used for tracing, and because both the scheduler and the idle loop can be traced, this means that CPU0's prematurely ended grace period might disrupt the tracing on CPU1. Given that this disruption might include CPU1 executing instructions in memory that was just now freed (and maybe reallocated), this is a matter of some concern. This commit therefore removes that problematic single-CPU check from the rcu_tasks_rude_wait_gp() function. This dispenses with the single-CPU optimization, but there is no evidence indicating that this optimization is important. In addition, synchronize_rcu_tasks_generic() contains a similar optimization (albeit only for early boot), which also splats. (As in exactly why are you invoking synchronize_rcu_tasks_rude() so early in boot, anyway???) It is OK for the synchronize_rcu_tasks_rude() function's check to be unsynchronized because the only times that this check can evaluate to true is when there is only a single CPU running with preemption disabled. While in the area, this commit also fixes a minor bug in which a call to synchronize_rcu_tasks_rude() would instead be attributed to synchronize_rcu_tasks(). [ paulmck: Add "synchronize_" prefix and "()" suffix. ] Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Fix synchronize_rcu_tasks() VS zap_pid_ns_processes()Frederic Weisbecker1-2/+13
RCU Tasks and PID-namespace unshare can interact in do_exit() in a complicated circular dependency: 1) TASK A calls unshare(CLONE_NEWPID), this creates a new PID namespace that every subsequent child of TASK A will belong to. But TASK A doesn't itself belong to that new PID namespace. 2) TASK A forks() and creates TASK B. TASK A stays attached to its PID namespace (let's say PID_NS1) and TASK B is the first task belonging to the new PID namespace created by unshare() (let's call it PID_NS2). 3) Since TASK B is the first task attached to PID_NS2, it becomes the PID_NS2 child reaper. 4) TASK A forks() again and creates TASK C which get attached to PID_NS2. Note how TASK C has TASK A as a parent (belonging to PID_NS1) but has TASK B (belonging to PID_NS2) as a pid_namespace child_reaper. 5) TASK B exits and since it is the child reaper for PID_NS2, it has to kill all other tasks attached to PID_NS2, and wait for all of them to die before getting reaped itself (zap_pid_ns_process()). 6) TASK A calls synchronize_rcu_tasks() which leads to synchronize_srcu(&tasks_rcu_exit_srcu). 7) TASK B is waiting for TASK C to get reaped. But TASK B is under a tasks_rcu_exit_srcu SRCU critical section (exit_notify() is between exit_tasks_rcu_start() and exit_tasks_rcu_finish()), blocking TASK A. 8) TASK C exits and since TASK A is its parent, it waits for it to reap TASK C, but it can't because TASK A waits for TASK B that waits for TASK C. Pid_namespace semantics can hardly be changed at this point. But the coverage of tasks_rcu_exit_srcu can be reduced instead. The current task is assumed not to be concurrently reapable at this stage of exit_notify() and therefore tasks_rcu_exit_srcu can be temporarily relaxed without breaking its constraints, providing a way out of the deadlock scenario. [ paulmck: Fix build failure by adding additional declaration. ] Fixes: 3f95aa81d265 ("rcu: Make TASKS_RCU handle tasks that are almost done exiting") Reported-by: Pengfei Xu <pengfei.xu@intel.com> Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Eric W . Biederman <ebiederm@xmission.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Remove preemption disablement around srcu_read_[un]lock() callsFrederic Weisbecker1-4/+0
Ever since the following commit: 5a41344a3d83 ("srcu: Simplify __srcu_read_unlock() via this_cpu_dec()") SRCU doesn't rely anymore on preemption to be disabled in order to modify the per-CPU counter. And even then it used to be done from the API itself. Therefore and after checking further, it appears to be safe to remove the preemption disablement around __srcu_read_[un]lock() in exit_tasks_rcu_start() and exit_tasks_rcu_finish() Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Improve comments explaining tasks_rcu_exit_srcu purposeFrederic Weisbecker1-8/+29
Make sure we don't need to look again into the depths of git blame in order not to miss a subtle part about how rcu-tasks is dealing with exiting tasks. Suggested-by: Boqun Feng <boqun.feng@gmail.com> Suggested-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-01-04rcu-tasks: Use accurate runstart time for RCU Tasks boot-time testingZqiang1-5/+3
Currently, test_rcu_tasks_callback() reads from the jiffies counter only once when this function is invoked. This introduces inaccuracies because of the latencies induced by the synchronize_rcu_tasks*() invocations. This commit therefore re-reads the jiffies counter at the beginning of each test, thus avoiding penalizing later tests for the latencies induced by earlier tests. Therefore, this commit at the start of each RCU Tasks test, re-fetch the jiffies time as the runstart time. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-12-14Merge tag 'net-next-6.2' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Paolo Abeni: "Core: - Allow live renaming when an interface is up - Add retpoline wrappers for tc, improving considerably the performances of complex queue discipline configurations - Add inet drop monitor support - A few GRO performance improvements - Add infrastructure for atomic dev stats, addressing long standing data races - De-duplicate common code between OVS and conntrack offloading infrastructure - A bunch of UBSAN_BOUNDS/FORTIFY_SOURCE improvements - Netfilter: introduce packet parser for tunneled packets - Replace IPVS timer-based estimators with kthreads to scale up the workload with the number of available CPUs - Add the helper support for connection-tracking OVS offload BPF: - Support for user defined BPF objects: the use case is to allocate own objects, build own object hierarchies and use the building blocks to build own data structures flexibly, for example, linked lists in BPF - Make cgroup local storage available to non-cgroup attached BPF programs - Avoid unnecessary deadlock detection and failures wrt BPF task storage helpers - A relevant bunch of BPF verifier fixes and improvements - Veristat tool improvements to support custom filtering, sorting, and replay of results - Add LLVM disassembler as default library for dumping JITed code - Lots of new BPF documentation for various BPF maps - Add bpf_rcu_read_{,un}lock() support for sleepable programs - Add RCU grace period chaining to BPF to wait for the completion of access from both sleepable and non-sleepable BPF programs - Add support storing struct task_struct objects as kptrs in maps - Improve helper UAPI by explicitly defining BPF_FUNC_xxx integer values - Add libbpf *_opts API-variants for bpf_*_get_fd_by_id() functions Protocols: - TCP: implement Protective Load Balancing across switch links - TCP: allow dynamically disabling TCP-MD5 static key, reverting back to fast[er]-path - UDP: Introduce optional per-netns hash lookup table - IPv6: simplify and cleanup sockets disposal - Netlink: support different type policies for each generic netlink operation - MPTCP: add MSG_FASTOPEN and FastOpen listener side support - MPTCP: add netlink notification support for listener sockets events - SCTP: add VRF support, allowing sctp sockets binding to VRF devices - Add bridging MAC Authentication Bypass (MAB) support - Extensions for Ethernet VPN bridging implementation to better support multicast scenarios - More work for Wi-Fi 7 support, comprising conversion of all the existing drivers to internal TX queue usage - IPSec: introduce a new offload type (packet offload) allowing complete header processing and crypto offloading - IPSec: extended ack support for more descriptive XFRM error reporting - RXRPC: increase SACK table size and move processing into a per-local endpoint kernel thread, reducing considerably the required locking - IEEE 802154: synchronous send frame and extended filtering support, initial support for scanning available 15.4 networks - Tun: bump the link speed from 10Mbps to 10Gbps - Tun/VirtioNet: implement UDP segmentation offload support Driver API: - PHY/SFP: improve power level switching between standard level 1 and the higher power levels - New API for netdev <-> devlink_port linkage - PTP: convert existing drivers to new frequency adjustment implementation - DSA: add support for rx offloading - Autoload DSA tagging driver when dynamically changing protocol - Add new PCP and APPTRUST attributes to Data Center Bridging - Add configuration support for 800Gbps link speed - Add devlink port function attribute to enable/disable RoCE and migratable - Extend devlink-rate to support strict prioriry and weighted fair queuing - Add devlink support to directly reading from region memory - New device tree helper to fetch MAC address from nvmem - New big TCP helper to simplify temporary header stripping New hardware / drivers: - Ethernet: - Marvel Octeon CNF95N and CN10KB Ethernet Switches - Marvel Prestera AC5X Ethernet Switch - WangXun 10 Gigabit NIC - Motorcomm yt8521 Gigabit Ethernet - Microchip ksz9563 Gigabit Ethernet Switch - Microsoft Azure Network Adapter - Linux Automation 10Base-T1L adapter - PHY: - Aquantia AQR112 and AQR412 - Motorcomm YT8531S - PTP: - Orolia ART-CARD - WiFi: - MediaTek Wi-Fi 7 (802.11be) devices - RealTek rtw8821cu, rtw8822bu, rtw8822cu and rtw8723du USB devices - Bluetooth: - Broadcom BCM4377/4378/4387 Bluetooth chipsets - Realtek RTL8852BE and RTL8723DS - Cypress.CYW4373A0 WiFi + Bluetooth combo device Drivers: - CAN: - gs_usb: bus error reporting support - kvaser_usb: listen only and bus error reporting support - Ethernet NICs: - Intel (100G): - extend action skbedit to RX queue mapping - implement devlink-rate support - support direct read from memory - nVidia/Mellanox (mlx5): - SW steering improvements, increasing rules update rate - Support for enhanced events compression - extend H/W offload packet manipulation capabilities - implement IPSec packet offload mode - nVidia/Mellanox (mlx4): - better big TCP support - Netronome Ethernet NICs (nfp): - IPsec offload support - add support for multicast filter - Broadcom: - RSS and PTP support improvements - AMD/SolarFlare: - netlink extened ack improvements - add basic flower matches to offload, and related stats - Virtual NICs: - ibmvnic: introduce affinity hint support - small / embedded: - FreeScale fec: add initial XDP support - Marvel mv643xx_eth: support MII/GMII/RGMII modes for Kirkwood - TI am65-cpsw: add suspend/resume support - Mediatek MT7986: add RX wireless wthernet dispatch support - Realtek 8169: enable GRO software interrupt coalescing per default - Ethernet high-speed switches: - Microchip (sparx5): - add support for Sparx5 TC/flower H/W offload via VCAP - Mellanox mlxsw: - add 802.1X and MAC Authentication Bypass offload support - add ip6gre support - Embedded Ethernet switches: - Mediatek (mtk_eth_soc): - improve PCS implementation, add DSA untag support - enable flow offload support - Renesas: - add rswitch R-Car Gen4 gPTP support - Microchip (lan966x): - add full XDP support - add TC H/W offload via VCAP - enable PTP on bridge interfaces - Microchip (ksz8): - add MTU support for KSZ8 series - Qualcomm 802.11ax WiFi (ath11k): - support configuring channel dwell time during scan - MediaTek WiFi (mt76): - enable Wireless Ethernet Dispatch (WED) offload support - add ack signal support - enable coredump support - remain_on_channel support - Intel WiFi (iwlwifi): - enable Wi-Fi 7 Extremely High Throughput (EHT) PHY capabilities - 320 MHz channels support - RealTek WiFi (rtw89): - new dynamic header firmware format support - wake-over-WLAN support" * tag 'net-next-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2002 commits) ipvs: fix type warning in do_div() on 32 bit net: lan966x: Remove a useless test in lan966x_ptp_add_trap() net: ipa: add IPA v4.7 support dt-bindings: net: qcom,ipa: Add SM6350 compatible bnxt: Use generic HBH removal helper in tx path IPv6/GRO: generic helper to remove temporary HBH/jumbo header in driver selftests: forwarding: Add bridge MDB test selftests: forwarding: Rename bridge_mdb test bridge: mcast: Support replacement of MDB port group entries bridge: mcast: Allow user space to specify MDB entry routing protocol bridge: mcast: Allow user space to add (*, G) with a source list and filter mode bridge: mcast: Add support for (*, G) with a source list and filter mode bridge: mcast: Avoid arming group timer when (S, G) corresponds to a source bridge: mcast: Add a flag for user installed source entries bridge: mcast: Expose __br_multicast_del_group_src() bridge: mcast: Expose br_multicast_new_group_src() bridge: mcast: Add a centralized error path bridge: mcast: Place netlink policy before validation functions bridge: mcast: Split (*, G) and (S, G) addition into different functions bridge: mcast: Do not derive entry type from its filter mode ...
2022-10-21rcu-tasks: Make grace-period-age message human-readablePaul E. McKenney1-1/+1
This commit adds a few words to the informative message that appears every ten seconds in RCU Tasks and RCU Tasks Trace grace periods. This message currently reads as follows: rcu_tasks_wait_gp: rcu_tasks grace period 1046 is 10088 jiffies old. After this change, it provides additional context, instead reading as follows: rcu_tasks_wait_gp: rcu_tasks grace period number 1046 (since boot) is 10088 jiffies old. Reported-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-10-18rcu-tasks: Provide rcu_trace_implies_rcu_gp()Paul E. McKenney1-0/+2
As an accident of implementation, an RCU Tasks Trace grace period also acts as an RCU grace period. However, this could change at any time. This commit therefore creates an rcu_trace_implies_rcu_gp() that currently returns true to codify this accident. Code relying on this accident must call this function to verify that this accident is still happening. Reported-by: Hou Tao <houtao@huaweicloud.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Martin KaFai Lau <martin.lau@linux.dev> Link: https://lore.kernel.org/r/20221014113946.965131-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-31rcu-tasks: Ensure RCU Tasks Trace loops have quiescent statesPaul E. McKenney1-0/+3
The RCU Tasks Trace grace-period kthread loops across all CPUs, and there can be quite a few CPUs, with some commercially available systems sporting well over a thousand of them. Some of these loops can feature IPIs, which can take some time. This commit therefore places a call to cond_resched_tasks_rcu_qs() in each such loop. Link: https://docs.google.com/document/d/1V0YnG1HTWMt9WHJjroiJL9lf-hMrud4v8Fn3fhyY0cI/edit?usp=sharing Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-08-31rcu-tasks: Convert RCU_LOCKDEP_WARN() to WARN_ONCE()Zqiang1-1/+1
Kernels built with CONFIG_PROVE_RCU=y and CONFIG_DEBUG_LOCK_ALLOC=y attempt to emit a warning when the synchronize_rcu_tasks_generic() function is called during early boot while the rcu_scheduler_active variable is RCU_SCHEDULER_INACTIVE. However the warnings is not actually be printed because the debug_lockdep_rcu_enabled() returns false, exactly because the rcu_scheduler_active variable is still equal to RCU_SCHEDULER_INACTIVE. This commit therefore replaces RCU_LOCKDEP_WARN() with WARN_ONCE() to force these warnings to actually be printed. Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-06-22rcu-tasks: Use delayed_work to delay rcu_tasks_verify_self_tests()Waiman Long1-5/+32
Commit 2585014188d5 ("rcu-tasks: Be more patient for RCU Tasks boot-time testing") fixes false positive rcu_tasks verification check failure by repeating the test once every second until timeout using schedule_timeout_uninterruptible(). Since rcu_tasks_verify_selft_tests() is called from do_initcalls() as a late_initcall, this has the undesirable side effect of delaying other late_initcall's queued after it by a second or more. Fix this by instead using delayed_work to repeat the verification check. Fixes: 2585014188d5 ("rcu-tasks: Be more patient for RCU Tasks boot-time testing") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-06-22rcu-tasks: Be more patient for RCU Tasks boot-time testingPaul E. McKenney1-7/+21
The RCU-Tasks family of grace-period primitives can take some time to complete, and the amount of time can depend on the exact hardware and software configuration. Some configurations boot up fast enough that the RCU-Tasks verification process gets false-positive failures. This commit therefore allows up to 30 seconds for the grace periods to complete, with this value adjustable downwards using the rcupdate.rcu_task_stall_timeout kernel boot parameter. Reported-by: Matthew Wilcox <willy@infradead.org> Reported-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Tested-by: Mark Rutland <mark.rutland@arm.com>
2022-06-22rcu-tasks: Update commentsPaul E. McKenney1-38/+33
This commit updates comments to reflect the changes in the series of commits that eliminated the full task-list scan. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org>
2022-06-22rcu-tasks: Disable and enable CPU hotplug in same functionPaul E. McKenney1-3/+3
The rcu_tasks_trace_pregp_step() function invokes cpus_read_lock() to disable CPU hotplug, and a later call to the rcu_tasks_trace_postscan() function invokes cpus_read_unlock() to re-enable it. This was absolutely necessary in the past in order to protect the intervening scan of the full tasks list, but there is no longer such a scan. This commit therefore improves readability by moving the cpus_read_unlock() call to the end of the rcu_tasks_trace_pregp_step() function. This commit is a pure code-motion commit without any (intended) change in functionality. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org>
2022-06-22rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUsPaul E. McKenney1-17/+7
Currently, the RCU Tasks Trace grace-period kthread IPIs each online CPU using smp_call_function_single() in order to track any tasks currently in RCU Tasks Trace read-side critical sections during which the corresponding task has neither blocked nor been preempted. These IPIs are annoying and are also not strictly necessary because any task that blocks or is preempted within its current RCU Tasks Trace read-side critical section will be tracked on one of the per-CPU rcu_tasks_percpu structure's ->rtp_blkd_tasks list. So the only time that this is a problem is if one of the CPUs runs through a long-duration RCU Tasks Trace read-side critical section without a context switch. Note that the task_call_func() function cannot help here because there is no safe way to identify the target task. Of course, the task_call_func() function will be very useful later, when processing the list of tasks, but it needs to know the task. This commit therefore creates a cpu_curr_snapshot() function that returns a pointer the task_struct structure of some task that happened to be running on the specified CPU more or less during the time that the cpu_curr_snapshot() function was executing. If there was no context switch during this time, this function will return a pointer to the task_struct structure of the task that was running throughout. If there was a context switch, then the outgoing task will be taken care of by RCU's context-switch hook, and the incoming task was either already taken care during some previous context switch, or it is not currently within an RCU Tasks Trace read-side critical section. And in this latter case, the grace period already started, so there is no need to wait on this task. This new cpu_curr_snapshot() function is invoked on each CPU early in the RCU Tasks Trace grace-period processing, and the resulting tasks are queued for later quiescent-state inspection. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org>
2022-06-22rcu-tasks: Maintain a count of tasks blocking RCU Tasks Trace grace periodPaul E. McKenney1-1/+5
This commit maintains a new n_trc_holdouts counter that tracks the number of tasks blocking the RCU Tasks grace period. This counter is useful for debugging, and its value has been added to a diagostic message. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org>
2022-06-22rcu-tasks: Stop RCU Tasks Trace from scanning full tasks listPaul E. McKenney1-5/+6
This commit takes off the training wheels and relies only on scanning currently running tasks and tasks that have blocked or been preempted within their current RCU Tasks Trace read-side critical section. Before this commit, the time complexity of an RCU Tasks Trace grace period is O(T), where T is the number of tasks. After this commit, this time complexity is O(C+B), where C is the number of CPUs and B is the number of tasks that have blocked (or been preempted) at least once during their current RCU Tasks Trace read-side critical sections. Of course, if all tasks have blocked (or been preempted) at least once during their current RCU Tasks Trace read-side critical sections, this is still O(T), but current expectations are that RCU Tasks Trace read-side critical section will be short and that there will normally not be large numbers of tasks blocked within such a critical section. Dave Marchevsky kindly measured the effects of this commit on the RCU Tasks Trace grace-period latency and the rcu_tasks_trace_kthread task's CPU consumption per RCU Tasks Trace grace period over the course of a fixed test, all in milliseconds: Before After GP latency 22.3 ms stddev > 0.1 17.0 ms stddev < 0.1 GP CPU 2.3 ms stddev 0.3 1.1 ms stddev 0.2 This was on a system with 15,000 tasks, so it is reasonable to expect much larger savings on the systems on which this issue was first noted, given that they sport well in excess of 100,000 tasks. CPU consumption was measured using profiling techniques. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org> Tested-by: Dave Marchevsky <davemarchevsky@fb.com>
2022-06-20rcu-tasks: Stop RCU Tasks Trace from scanning idle tasksPaul E. McKenney1-7/+1
Now that RCU scans both running tasks and tasks that have blocked within their current RCU Tasks Trace read-side critical section, there is no need for it to scan the idle tasks. After all, an idle loop should not be remain within an RCU Tasks Trace read-side critical section across exit from idle, and from a BPF viewpoint, functions invoked from the idle loop should not sleep. So only running idle tasks can be within RCU Tasks Trace read-side critical sections. This commit therefore removes the scan of the idle tasks from the rcu_tasks_trace_postscan() function. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Martin KaFai Lau <kafai@fb.com> Cc: KP Singh <kpsingh@kernel.org>