summaryrefslogtreecommitdiff
path: root/kernel/rcu/tree.h
AgeCommit message (Collapse)AuthorFilesLines
2024-02-27Merge branches 'rcu-doc.2024.02.14a', 'rcu-nocb.2024.02.14a', ↵Boqun Feng1-11/+9
'rcu-exp.2024.02.14a', 'rcu-tasks.2024.02.26a' and 'rcu-misc.2024.02.14a' into rcu.2024.02.26a
2024-02-14rcu/exp: Remove rcu_par_gp_wqFrederic Weisbecker1-5/+1
TREE04 running on short iterations can produce writer stalls of the following kind: ??? Writer stall state RTWS_EXP_SYNC(4) g3968 f0x0 ->state 0x2 cpu 0 task:rcu_torture_wri state:D stack:14568 pid:83 ppid:2 flags:0x00004000 Call Trace: <TASK> __schedule+0x2de/0x850 ? trace_event_raw_event_rcu_exp_funnel_lock+0x6d/0xb0 schedule+0x4f/0x90 synchronize_rcu_expedited+0x430/0x670 ? __pfx_autoremove_wake_function+0x10/0x10 ? __pfx_synchronize_rcu_expedited+0x10/0x10 do_rtws_sync.constprop.0+0xde/0x230 rcu_torture_writer+0x4b4/0xcd0 ? __pfx_rcu_torture_writer+0x10/0x10 kthread+0xc7/0xf0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2f/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Waiting for an expedited grace period and polling for an expedited grace period both are operations that internally rely on the same workqueue performing necessary asynchronous work. However, a dependency chain is involved between those two operations, as depicted below: ====== CPU 0 ======= ====== CPU 1 ======= synchronize_rcu_expedited() exp_funnel_lock() mutex_lock(&rcu_state.exp_mutex); start_poll_synchronize_rcu_expedited queue_work(rcu_gp_wq, &rnp->exp_poll_wq); synchronize_rcu_expedited_queue_work() queue_work(rcu_gp_wq, &rew->rew_work); wait_event() // A, wait for &rew->rew_work completion mutex_unlock() // B //======> switch to kworker sync_rcu_do_polled_gp() { synchronize_rcu_expedited() exp_funnel_lock() mutex_lock(&rcu_state.exp_mutex); // C, wait B .... } // D Since workqueues are usually implemented on top of several kworkers handling the queue concurrently, the above situation wouldn't deadlock most of the time because A then doesn't depend on D. But in case of memory stress, a single kworker may end up handling alone all the works in a serialized way. In that case the above layout becomes a problem because A then waits for D, closing a circular dependency: A -> D -> C -> B -> A This however only happens when CONFIG_RCU_EXP_KTHREAD=n. Indeed synchronize_rcu_expedited() is otherwise implemented on top of a kthread worker while polling still relies on rcu_gp_wq workqueue, breaking the above circular dependency chain. Fix this with making expedited grace period to always rely on kthread worker. The workqueue based implementation is essentially a duplicate anyway now that the per-node initialization is performed by per-node kthread workers. Meanwhile the CONFIG_RCU_EXP_KTHREAD switch is still kept around to manage the scheduler policy of these kthread workers. Reported-by: Anna-Maria Behnsen <anna-maria@linutronix.de> Reported-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Joel Fernandes <joel@joelfernandes.org> Suggested-by: Paul E. McKenney <paulmck@kernel.org> Suggested-by: Neeraj upadhyay <Neeraj.Upadhyay@amd.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-14rcu/exp: Make parallel exp gp kworker per rcu nodeFrederic Weisbecker1-0/+3
When CONFIG_RCU_EXP_KTHREAD=n, the expedited grace period per node initialization is performed in parallel via workqueues (one work per node). However in CONFIG_RCU_EXP_KTHREAD=y, this per node initialization is performed by a single kworker serializing each node initialization (one work for all nodes). The second part is certainly less scalable and efficient beyond a single leaf node. To improve this, expand this single kworker into per-node kworkers. This new layout is eventually intended to remove the workqueues based implementation since it will essentially now become duplicate code. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-14rcu: s/boost_kthread_mutex/kthread_mutexFrederic Weisbecker1-1/+1
This mutex is currently protecting per node boost kthreads creation and affinity setting across CPU hotplug operations. Since the expedited kworkers will soon be split per node as well, they will be subject to the same concurrency constraints against hotplug. Therefore their creation and affinity tuning operations will be grouped with those of boost kthreads and then rely on the same mutex. To prepare for that, generalize its name. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2024-02-14rcu/nocb: Re-arrange call_rcu() NOCB specific codeFrederic Weisbecker1-5/+4
Currently the call_rcu() function interleaves NOCB and !NOCB enqueue code in a complicated way such that: * The bypass enqueue code may or may not have enqueued and may or may not have locked the ->nocb_lock. Everything that follows is in a Schrödinger locking state for the unwary reviewer's eyes. * The was_alldone is always set but only used in NOCB related code. * The NOCB wake up is distantly related to the locking hopefully performed by the bypass enqueue code that did not enqueue on the bypass list. Unconfuse the whole and gather NOCB and !NOCB specific enqueue code to their own functions. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
2023-09-11rcu/tree: Defer setting of jiffies during stall resetJoel Fernandes (Google)1-0/+4
There are instances where rcu_cpu_stall_reset() is called when jiffies did not get a chance to update for a long time. Before jiffies is updated, the CPU stall detector can go off triggering false-positives where a just-started grace period appears to be ages old. In the past, we disabled stall detection in rcu_cpu_stall_reset() however this got changed [1]. This is resulting in false-positives in KGDB usecase [2]. Fix this by deferring the update of jiffies to the third run of the FQS loop. This is more robust, as, even if rcu_cpu_stall_reset() is called just before jiffies is read, we would end up pushing out the jiffies read by 3 more FQS loops. Meanwhile the CPU stall detection will be delayed and we will not get any false positives. [1] https://lore.kernel.org/all/20210521155624.174524-2-senozhatsky@chromium.org/ [2] https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/ Tested with rcutorture.cpu_stall option as well to verify stall behavior with/without patch. Tested-by: Huacai Chen <chenhuacai@loongson.cn> Reported-by: Binbin Zhou <zhoubinbin@loongson.cn> Closes: https://lore.kernel.org/all/20230814020045.51950-2-chenhuacai@loongson.cn/ Suggested-by: Paul McKenney <paulmck@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: a80be428fbc1 ("rcu: Do not disable GP stall detection in rcu_cpu_stall_reset()") Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-01-05rcu: Add RCU stall diagnosis informationZhen Lei1-0/+19
Because RCU CPU stall warnings are driven from the scheduling-clock interrupt handler, a workload consisting of a very large number of short-duration hardware interrupts can result in misleading stall-warning messages. On systems supporting only a single level of interrupts, that is, where interrupts handlers cannot be interrupted, this can produce misleading diagnostics. The stack traces will show the innocent-bystander interrupted task, not the interrupts that are at the very least exacerbating the stall. This situation can be improved by displaying the number of interrupts and the CPU time that they have consumed. Diagnosing other types of stalls can be eased by also providing the count of softirqs and the CPU time that they consumed as well as the number of context switches and the task-level CPU time consumed. Consider the following output given this change: rcu: INFO: rcu_preempt self-detected stall on CPU rcu: 0-....: (1250 ticks this GP) <omitted> rcu: hardirqs softirqs csw/system rcu: number: 624 45 0 rcu: cputime: 69 1 2425 ==> 2500(ms) This output shows that the number of hard and soft interrupts is small, there are no context switches, and the system takes up a lot of time. This indicates that the current task is looping with preemption disabled. The impact on system performance is negligible because snapshot is recorded only once for all continuous RCU stalls. This added debugging information is suppressed by default and can be enabled by building the kernel with CONFIG_RCU_CPU_STALL_CPUTIME=y or by booting with rcupdate.rcu_cpu_stall_cputime=1. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-11-30rcu: Make call_rcu() lazy to save powerJoel Fernandes (Google)1-4/+7
Implement timer-based RCU callback batching (also known as lazy callbacks). With this we save about 5-10% of power consumed due to RCU requests that happen when system is lightly loaded or idle. By default, all async callbacks (queued via call_rcu) are marked lazy. An alternate API call_rcu_hurry() is provided for the few users, for example synchronize_rcu(), that need the old behavior. The batch is flushed whenever a certain amount of time has passed, or the batch on a particular CPU grows too big. Also memory pressure will flush it in a future patch. To handle several corner cases automagically (such as rcu_barrier() and hotplug), we re-use bypass lists which were originally introduced to address lock contention, to handle lazy CBs as well. The bypass list length has the lazy CB length included in it. A separate lazy CB length counter is also introduced to keep track of the number of lazy CBs. [ paulmck: Fix formatting of inline call_rcu_lazy() definition. ] [ paulmck: Apply Zqiang feedback. ] [ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ] Suggested-by: Paul McKenney <paulmck@kernel.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-10-19rcu: Fix missing nocb gp wake on rcu_barrier()Frederic Weisbecker1-0/+1
In preparation for RCU lazy changes, wake up the RCU nocb gp thread if needed after an entrain. This change prevents the RCU barrier callback from waiting in the queue for several seconds before the lazy callbacks in front of it are serviced. Reported-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-07-22Merge branch 'ctxt.2022.07.05a' into HEADPaul E. McKenney1-8/+0
ctxt.2022.07.05a: Linux-kernel memory model development branch.
2022-07-22Merge branches 'doc.2022.06.21a', 'fixes.2022.07.19a', 'nocb.2022.07.19a', ↵Paul E. McKenney1-1/+12
'poll.2022.07.21a', 'rcu-tasks.2022.06.21a' and 'torture.2022.06.21a' into HEAD doc.2022.06.21a: Documentation updates. fixes.2022.07.19a: Miscellaneous fixes. nocb.2022.07.19a: Callback-offload updates. poll.2022.07.21a: Polled grace-period updates. rcu-tasks.2022.06.21a: Tasks RCU updates. torture.2022.06.21a: Torture-test updates.
2022-07-22rcu: Add polled expedited grace-period primitivesPaul E. McKenney1-0/+7
This commit adds expedited grace-period functionality to RCU's polled grace-period API, adding start_poll_synchronize_rcu_expedited() and cond_synchronize_rcu_expedited(), which are similar to the existing start_poll_synchronize_rcu() and cond_synchronize_rcu() functions, respectively. Note that although start_poll_synchronize_rcu_expedited() can be invoked very early, the resulting expedited grace periods are not guaranteed to start until after workqueues are fully initialized. On the other hand, both synchronize_rcu() and synchronize_rcu_expedited() can also be invoked very early, and the resulting grace periods will be taken into account as they occur. [ paulmck: Apply feedback from Neeraj Upadhyay. ] Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/ Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing Cc: Brian Foster <bfoster@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ian Kent <raven@themaw.net> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-07-22rcu: Make polled grace-period API account for expedited grace periodsPaul E. McKenney1-0/+1
Currently, this code could splat: oldstate = get_state_synchronize_rcu(); synchronize_rcu_expedited(); WARN_ON_ONCE(!poll_state_synchronize_rcu(oldstate)); This situation is counter-intuitive and user-unfriendly. After all, there really was a perfectly valid full grace period right after the call to get_state_synchronize_rcu(), so why shouldn't poll_state_synchronize_rcu() know about it? This commit therefore makes the polled grace-period API aware of expedited grace periods in addition to the normal grace periods that it is already aware of. With this change, the above code is guaranteed not to splat. Please note that the above code can still splat due to counter wrap on the one hand and situations involving partially overlapping normal/expedited grace periods on the other. On 64-bit systems, the second is of course much more likely than the first. It is possible to modify this approach to prevent overlapping grace periods from causing splats, but only at the expense of greatly increasing the probability of counter wrap, as in within milliseconds on 32-bit systems and within minutes on 64-bit systems. This commit is in preparation for polled expedited grace periods. Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/ Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing Cc: Brian Foster <bfoster@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ian Kent <raven@themaw.net> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-07-22rcu: Switch polled grace-period APIs to ->gp_seq_polledPaul E. McKenney1-0/+2
This commit switches the existing polled grace-period APIs to use a new ->gp_seq_polled counter in the rcu_state structure. An additional ->gp_seq_polled_snap counter in that same structure allows the normal grace period kthread to interact properly with the !SMP !PREEMPT fastpath through synchronize_rcu(). The first of the two to note the end of a given grace period will make knowledge of this transition available to the polled API. This commit is in preparation for polled expedited grace periods. [ paulmck: Fix use of rcu_state.gp_seq_polled to start normal grace period. ] Link: https://lore.kernel.org/all/20220121142454.1994916-1-bfoster@redhat.com/ Link: https://docs.google.com/document/d/1RNKWW9jQyfjxw2E8dsXVTdvZYh0HnYeSHDKog9jhdN8/edit?usp=sharing Cc: Brian Foster <bfoster@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Ian Kent <raven@themaw.net> Co-developed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-07-19rcu: Add nocb_cb_kthread check to rcu_is_callbacks_kthread()Zqiang1-1/+1
Callbacks are invoked in RCU kthreads when calbacks are offloaded (rcu_nocbs boot parameter) or when RCU's softirq handler has been offloaded to rcuc kthreads (use_softirq==0). The current code allows for the rcu_nocbs case but not the use_softirq case. This commit adds support for the use_softirq case. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
2022-07-19rcu/nocb: Add/del rdp to iterate from rcuog itselfFrederic Weisbecker1-0/+1
NOCB rdp's are part of a group whose list is iterated by the corresponding rdp leader. This list is RCU traversed because an rdp can be either added or deleted concurrently. Upon addition, a new iteration to the list after a synchronization point (a pair of LOCK/UNLOCK ->nocb_gp_lock) is forced to make sure: 1) we didn't miss a new element added in the middle of an iteration 2) we didn't ignore a whole subset of the list due to an element being quickly deleted and then re-added. 3) we prevent from probably other surprises... Although this layout is expected to be safe, it doesn't help anybody to sleep well. Simplify instead the nocb state toggling with moving the list modification from the nocb (de-)offloading workqueue to the rcuog kthreads instead. Whenever the rdp leader is expected to (re-)set the SEGCBLIST_KTHREAD_GP flag of a target rdp, the latter is queued so that the leader handles the flag flip along with adding or deleting the target rdp to the list to iterate. This way the list modification and iteration happen from the same kthread and those operations can't race altogether. As a bonus, the flags for each rdp don't need to be checked locklessly before each iteration, which is one less opportunity to produce nightmares. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
2022-07-05rcu/context-tracking: Move RCU-dynticks internal functions to context_trackingFrederic Weisbecker1-5/+0
Move the core RCU eqs/dynticks functions to context tracking so that we can later merge all that code within context tracking. Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-07-05rcu/context_tracking: Move dynticks_nmi_nesting to context trackingFrederic Weisbecker1-1/+0
The RCU eqs tracking is going to be performed by the context tracking subsystem. The related nesting counters thus need to be moved to the context tracking structure. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-07-05rcu/context_tracking: Move dynticks_nesting to context trackingFrederic Weisbecker1-1/+0
The RCU eqs tracking is going to be performed by the context tracking subsystem. The related nesting counters thus need to be moved to the context tracking structure. Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-07-05rcu/context_tracking: Move dynticks counter to context trackingFrederic Weisbecker1-1/+0
In order to prepare for merging RCU dynticks counter into the context tracking state, move the rcu_data's dynticks field to the context tracking structure. It will later be mixed within the context tracking state itself. [ paulmck: Move enum ctx_state into global scope. ] Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Nicolas Saenz Julienne <nsaenz@kernel.org> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Xiongfeng Wang <wangxiongfeng2@huawei.com> Cc: Yu Liao <liaoyu15@huawei.com> Cc: Phil Auld <pauld@redhat.com> Cc: Paul Gortmaker<paul.gortmaker@windriver.com> Cc: Alex Belits <abelits@marvell.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com> Tested-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
2022-05-11Merge branch 'exp.2022.05.11a' into HEADPaul E. McKenney1-0/+5
exp.2022.05.11a: Expedited-grace-period latency-reduction updates.
2022-05-11rcu: Move expedited grace period (GP) work to RT kthread_workerKalesh Singh1-0/+5
Enabling CONFIG_RCU_BOOST did not reduce RCU expedited grace-period latency because its workqueues run at SCHED_OTHER, and thus can be delayed by normal processes. This commit avoids these delays by moving the expedited GP work items to a real-time-priority kthread_worker. This option is controlled by CONFIG_RCU_EXP_KTHREAD and disabled by default on PREEMPT_RT=y kernels which disable expedited grace periods after boot by unconditionally setting rcupdate.rcu_normal_after_boot=1. The results were evaluated on arm64 Android devices (6GB ram) running 5.10 kernel, and capturing trace data in critical user-level code. The table below shows the resulting order-of-magnitude improvements in synchronize_rcu_expedited() latency: ------------------------------------------------------------------------ | | workqueues | kthread_worker | Diff | ------------------------------------------------------------------------ | Count | 725 | 688 | | ------------------------------------------------------------------------ | Min Duration (ns) | 326 | 447 | 37.12% | ------------------------------------------------------------------------ | Q1 (ns) | 39,428 | 38,971 | -1.16% | ------------------------------------------------------------------------ | Q2 - Median (ns) | 98,225 | 69,743 | -29.00% | ------------------------------------------------------------------------ | Q3 (ns) | 342,122 | 126,638 | -62.98% | ------------------------------------------------------------------------ | Max Duration (ns) | 372,766,967 | 2,329,671 | -99.38% | ------------------------------------------------------------------------ | Avg Duration (ns) | 2,746,353 | 151,242 | -94.49% | ------------------------------------------------------------------------ | Standard Deviation (ns) | 19,327,765 | 294,408 | | ------------------------------------------------------------------------ The below table show the range of maximums/minimums for synchronize_rcu_expedited() latency from all experiments: ------------------------------------------------------------------------ | | workqueues | kthread_worker | Diff | ------------------------------------------------------------------------ | Total No. of Experiments | 25 | 23 | | ------------------------------------------------------------------------ | Largest Maximum (ns) | 372,766,967 | 2,329,671 | -99.38% | ------------------------------------------------------------------------ | Smallest Maximum (ns) | 38,819 | 86,954 | 124.00% | ------------------------------------------------------------------------ | Range of Maximums (ns) | 372,728,148 | 2,242,717 | | ------------------------------------------------------------------------ | Largest Minimum (ns) | 88,623 | 27,588 | -68.87% | ------------------------------------------------------------------------ | Smallest Minimum (ns) | 326 | 447 | 37.12% | ------------------------------------------------------------------------ | Range of Minimums (ns) | 88,297 | 27,141 | | ------------------------------------------------------------------------ Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Tejun Heo <tj@kernel.org> Reported-by: Tim Murray <timmurray@google.com> Reported-by: Wei Wang <wvw@google.com> Tested-by: Kyle Lin <kylelin@google.com> Tested-by: Chunwei Lu <chunweilu@google.com> Tested-by: Lulu Wang <luluw@google.com> Signed-off-by: Kalesh Singh <kaleshsingh@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-05-03Merge branches 'docs.2022.04.20a', 'fixes.2022.04.20a', 'nocb.2022.04.11b', ↵Paul E. McKenney1-2/+2
'rcu-tasks.2022.04.11b', 'srcu.2022.05.03a', 'torture.2022.04.11b', 'torture-tasks.2022.04.20a' and 'torturescript.2022.04.20a' into HEAD docs.2022.04.20a: Documentation updates. fixes.2022.04.20a: Miscellaneous fixes. nocb.2022.04.11b: Callback-offloading updates. rcu-tasks.2022.04.11b: RCU-tasks updates. srcu.2022.05.03a: Put SRCU on a memory diet. torture.2022.04.11b: Torture-test updates. torture-tasks.2022.04.20a: Avoid torture testing changing RCU configuration. torturescript.2022.04.20a: Torture-test scripting updates.
2022-04-12rcu: Check for jiffies going backwardsPaul E. McKenney1-0/+1
A report of a 12-jiffy normal RCU CPU stall warning raises interesting questions about the nature of time on the offending system. This commit instruments rcu_sched_clock_irq(), which is RCU's hook into the scheduling-clock interrupt, checking for the jiffies counter going backwards. Reported-by: Saravanan D <sarvanand@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-04-12rcu/nocb: Initialize nocb kthreads only for boot CPU prior SMP initializationFrederic Weisbecker1-1/+0
The rcu_spawn_gp_kthread() function is called as an early initcall, which means that SMP initialization hasn't happened yet and only the boot CPU is online. Therefore, create only the NOCB kthreads related to the boot CPU. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-04-12rcu: Initialize boost kthread only for boot node prior SMP initializationFrederic Weisbecker1-1/+0
The rcu_spawn_gp_kthread() function is called as an early initcall, which means that SMP initialization hasn't happened yet and only the boot CPU is online. Therefore, create only the boost kthread for the leaf node of the boot CPU. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-04-12rcu/nocb: Move rcu_nocb_is_setup to rcu_stateFrederic Weisbecker1-0/+1
This commit moves the RCU nocb initialization witness within rcu_state to consolidate RCU's global state. Reported-by: Paul E. McKenney <paulmck@kernel.org> Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-24Merge branches 'exp.2022.02.24a', 'fixes.2022.02.14a', ↵Paul E. McKenney1-6/+12
'rcu_barrier.2022.02.08a', 'rcu-tasks.2022.02.08a', 'rt.2022.02.01b', 'torture.2022.02.01b' and 'torturescript.2022.02.08a' into HEAD exp.2022.02.24a: Expedited grace-period updates. fixes.2022.02.14a: Miscellaneous fixes. rcu_barrier.2022.02.08a: Make rcu_barrier() no longer exclude CPU hotplug. rcu-tasks.2022.02.08a: RCU-tasks updates. rt.2022.02.01b: Real-time-related updates. torture.2022.02.01b: Torture-test updates. torturescript.2022.02.08a: Torture-test scripting updates.
2022-02-14rcu: Add mutex for rcu boost kthread spawning and affinity settingDavid Woodhouse1-0/+3
As we handle parallel CPU bringup, we will need to take care to avoid spawning multiple boost threads, or race conditions when setting their affinity. Spotted by Paul McKenney. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-08rcu: Make rcu_barrier() no longer block CPU-hotplug operationsPaul E. McKenney1-1/+2
This commit removes the cpus_read_lock() and cpus_read_unlock() calls from rcu_barrier(), thus allowing CPUs to come and go during the course of rcu_barrier() execution. Posting of the ->barrier_head callbacks does synchronize with portions of RCU's CPU-hotplug notifiers, but these locks are held for short time periods on both sides. Thus, full CPU-hotplug operations could both start and finish during the execution of a given rcu_barrier() invocation. Additional synchronization is provided by a global ->barrier_lock. Since the ->barrier_lock is only used during rcu_barrier() execution and during onlining/offlining a CPU, the contention for this lock should be low. It might be tempting to make use of a per-CPU lock just on general principles, but straightforward attempts to do this have the problems shown below. Initial state: 3 CPUs present, CPU 0 and CPU1 do not have any callback and CPU2 has callbacks. 1. CPU0 calls rcu_barrier(). 2. CPU1 starts offlining for CPU2. CPU1 calls rcutree_migrate_callbacks(). rcu_barrier_entrain() is called from rcutree_migrate_callbacks(), with CPU2's rdp->barrier_lock. It does not entrain ->barrier_head for CPU2, as rcu_barrier() on CPU0 hasn't started the barrier sequence (by calling rcu_seq_start(&rcu_state.barrier_sequence)) yet. 3. CPU0 starts new barrier sequence. It iterates over CPU0 and CPU1, after acquiring their per-cpu ->barrier_lock and finds 0 segcblist length. It updates ->barrier_seq_snap for CPU0 and CPU1 and continues loop iteration to CPU2. for_each_possible_cpu(cpu) { raw_spin_lock_irqsave(&rdp->barrier_lock, flags); if (!rcu_segcblist_n_cbs(&rdp->cblist)) { WRITE_ONCE(rdp->barrier_seq_snap, gseq); raw_spin_unlock_irqrestore(&rdp->barrier_lock, flags); rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); continue; } 4. rcutree_migrate_callbacks() completes execution on CPU1. Segcblist len for CPU2 becomes 0. 5. The loop iteration on CPU0, checks rcu_segcblist_n_cbs(&rdp->cblist) for CPU2 and completes the loop iteration after setting ->barrier_seq_snap. 6. As there isn't any ->barrier_head callback entrained; at this point, rcu_barrier() in CPU0 returns. 7. The callbacks, which migrated from CPU2 to CPU1, execute. Straightforward per-CPU locking is also subject to the following race condition noted by Boqun Feng: 1. CPU0 calls rcu_barrier(), starting a new barrier sequence by invoking rcu_seq_start() and init_completion(), but does not yet initialize rcu_state.barrier_cpu_count. 2. CPU1 starts offlining for CPU2, calling rcutree_migrate_callbacks(), which in turn calls rcu_barrier_entrain() holding CPU2's. rdp->barrier_lock. It then entrains ->barrier_head for CPU2 and atomically increments rcu_state.barrier_cpu_count, which is unfortunately not yet initialized to the value 2. 3. The just-entrained RCU callback is invoked. It atomically decrements rcu_state.barrier_cpu_count and sees that it is now zero. This callback therefore invokes complete(). 4. CPU0 continues executing rcu_barrier(), but is not blocked by its call to wait_for_completion(). This results in rcu_barrier() returning before all pre-existing callbacks have been invoked, which is a bug. Therefore, synchronization is provided by rcu_state.barrier_lock, which is also held across the initialization sequence, especially the rcu_seq_start() and the atomic_set() that sets rcu_state.barrier_cpu_count to the value 2. In addition, this lock is held when entraining the rcu_barrier() callback, when deciding whether or not a CPU has callbacks that rcu_barrier() must wait on, when setting the ->qsmaskinitnext for incoming CPUs, and when migrating callbacks from a CPU that is going offline. Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Co-developed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-08rcu: Rework rcu_barrier() and callback-migration logicPaul E. McKenney1-0/+2
This commit reworks rcu_barrier() and callback-migration logic to permit allowing rcu_barrier() to run concurrently with CPU-hotplug operations. The key trick is for callback migration to check to see if an rcu_barrier() is in flight, and, if so, enqueue the ->barrier_head callback on its behalf. This commit adds synchronization with RCU's CPU-hotplug notifiers. Taken together, this will permit a later commit to remove the cpus_read_lock() and cpus_read_unlock() calls from rcu_barrier(). [ paulmck: Updated per kbuild test robot feedback. ] [ paulmck: Updated per reviews session with Neeraj, Frederic, Uladzislau, and Boqun. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-08rcu: Kill rnp->ofl_seq and use only rcu_state.ofl_lock for exclusionDavid Woodhouse1-3/+1
If we allow architectures to bring APs online in parallel, then we end up requiring rcu_cpu_starting() to be reentrant. But currently, the manipulation of rnp->ofl_seq is not thread-safe. However, rnp->ofl_seq is also fairly much pointless anyway since both rcu_cpu_starting() and rcu_report_dead() hold rcu_state.ofl_lock for fairly much the whole time that rnp->ofl_seq is set to an odd number to indicate that an operation is in progress. So drop rnp->ofl_seq completely, and use only rcu_state.ofl_lock. This has a couple of minor complexities: lockdep will complain when we take rcu_state.ofl_lock, and currently accepts the 'excuse' of having an odd value in rnp->ofl_seq. So switch it to an arch_spinlock_t to avoid that false positive complaint. Since we're killing rnp->ofl_seq of course that 'excuse' has to be changed too, so make it check for arch_spin_is_locked(rcu_state.ofl_lock). There's no arch_spin_lock_irqsave() so we have to manually save and restore local interrupts around the locking. At Paul's request based on Neeraj's analysis, make rcu_gp_init not just wait but *exclude* any CPU online/offline activity, which was fairly much true already by virtue of it holding rcu_state.ofl_lock. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-02rcu: Add per-CPU rcuc task dumps to RCU CPU stall warningsZqiang1-0/+1
When the rcutree.use_softirq kernel boot parameter is set to zero, all RCU_SOFTIRQ processing is carried out by the per-CPU rcuc kthreads. If these kthreads are being starved, quiescent states will not be reported, which in turn means that the grace period will not end, which can in turn trigger RCU CPU stall warnings. This commit therefore dumps stack traces of stalled CPUs' rcuc kthreads, which can help identify what is preventing those kthreads from running. Suggested-by: Ammar Faizi <ammarfaizi2@gnuweeb.org> Reviewed-by: Ammar Faizi <ammarfaizi2@gnuweeb.org> Signed-off-by: Zqiang <qiang1.zhang@intel.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-02rcu: Remove unused rcu_state.boostNeeraj Upadhyay1-3/+2
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2022-02-02rcu/nocb: Handle concurrent nocb kthreads creationNeeraj Upadhyay1-0/+2
When multiple CPUs in the same nocb gp/cb group concurrently come online, they might try to concurrently create the same rcuog kthread. Fix this by using nocb gp CPU's spawn mutex to provide mutual exclusion for the rcuog kthread creation code. [ paulmck: Whitespace fixes per kernel test robot feedback. ] Acked-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-12-09Merge branches 'doc.2021.11.30c', 'exp.2021.12.07a', 'fastnohz.2021.11.30c', ↵Paul E. McKenney1-16/+15
'fixes.2021.11.30c', 'nocb.2021.12.09a', 'nolibc.2021.11.30c', 'tasks.2021.12.09a', 'torture.2021.12.07a' and 'torturescript.2021.11.30c' into HEAD doc.2021.11.30c: Documentation updates. exp.2021.12.07a: Expedited-grace-period fixes. fastnohz.2021.11.30c: Remove CONFIG_RCU_FAST_NO_HZ. fixes.2021.11.30c: Miscellaneous fixes. nocb.2021.12.09a: No-CB CPU updates. nolibc.2021.11.30c: Tiny in-kernel library updates. tasks.2021.12.09a: RCU-tasks updates, including update-side scalability. torture.2021.12.07a: Torture-test in-kernel module updates. torturescript.2021.11.30c: Torture-test scripting updates.
2021-12-09rcu/nocb: Remove rcu_node structure from nocb list when de-offloadedFrederic Weisbecker1-2/+5
The nocb_gp_wait() function iterates over all CPUs in its group, including even those CPUs that have been de-offloaded. This is of course suboptimal, especially if none of the CPUs within the group are currently offloaded. This will become even more of a problem once a nocb kthread is created for all possible CPUs. Therefore use a standard double linked list to link all the offloaded rcu_data structures and safely add or delete these structure as we offload or de-offload them, respectively. Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-12-08rcu/nocb: Make local rcu_nocb_lock_irqsave() safe against concurrent ↵Frederic Weisbecker1-6/+10
deoffloading rcu_nocb_lock_irqsave() can be preempted between the call to rcu_segcblist_is_offloaded() and the actual locking. This matters now that rcu_core() is preemptible on PREEMPT_RT and the (de-)offloading process can interrupt the softirq or the rcuc kthread. As a result we may locklessly call into code that requires nocb locking. In practice this is a problem while we accelerate callbacks on rcu_core(). Simply disabling interrupts before (instead of after) checking the NOCB offload state fixes the issue. Reported-and-tested-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Valentin Schneider <valentin.schneider@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-12-08rcu: Remove rcu_data.exp_deferred_qs and convert to rcu_data.cpu no_qs.b.expFrederic Weisbecker1-1/+0
Having two fields for the same purpose with subtle differences on different RCU flavours is confusing, especially when both fields always exist on both RCU flavours. Fortunately, it is now safe for preemptible RCU to rely on the rcu_data structure's ->cpu_no_qs.b.exp field, just like non-preemptible RCU. This commit therefore removes the ad-hoc ->exp_deferred_qs field. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-12-01rcu: Remove the RCU_FAST_NO_HZ Kconfig optionPaul E. McKenney1-7/+0
All of the uses of CONFIG_RCU_FAST_NO_HZ=y that I have seen involve systems with RCU callbacks offloaded. In this situation, all that this Kconfig option does is slow down idle entry/exit with an additional allways-taken early exit. If this is the only use case, then this Kconfig option nothing but an attractive nuisance that needs to go away. This commit therefore removes the RCU_FAST_NO_HZ Kconfig option. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-18Merge branches 'bitmaprange.2021.05.10c', 'doc.2021.05.10c', ↵Paul E. McKenney1-7/+7
'fixes.2021.05.13a', 'kvfree_rcu.2021.05.10c', 'mmdumpobj.2021.05.10c', 'nocb.2021.05.12a', 'srcu.2021.05.12a', 'tasks.2021.05.18a' and 'torture.2021.05.10c' into HEAD bitmaprange.2021.05.10c: Allow "all" for bitmap ranges. doc.2021.05.10c: Documentation updates. fixes.2021.05.13a: Miscellaneous fixes. kvfree_rcu.2021.05.10c: kvfree_rcu() updates. mmdumpobj.2021.05.10c: mem_dump_obj() updates. nocb.2021.05.12a: RCU NOCB CPU updates, including limited deoffloading. srcu.2021.05.12a: SRCU updates. tasks.2021.05.18a: Tasks-RCU updates. torture.2021.05.10c: Torture-test updates.
2021-05-12rcu: Fix various typos in commentsIngo Molnar1-1/+1
Fix ~12 single-word typos in RCU code comments. [ paulmck: Apply feedback from Randy Dunlap. ] Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-12rcu/nocb: Unify timersFrederic Weisbecker1-3/+3
Now that ->nocb_timer and ->nocb_bypass_timer have become quite similar, this commit merges them together. A new RCU_NOCB_WAKE_BYPASS wake level is introduced. As a result, timers perform all kinds of deferred wake ups but other deferred wakeup callsites only handle non-bypass wakeups in order not to wake up rcuo too early. The timer also unconditionally executes a full barrier so as to order timer_pending() and callback enqueue although the path performing RCU_NOCB_WAKE_FORCE that makes use of it is debatable. It should also test against the rdp leader instead of the current rdp. This unconditional full barrier shouldn't bring visible overhead since these timers almost never fire. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-12rcu/nocb: Prepare for fine-grained deferred wakeupFrederic Weisbecker1-1/+1
Tuning the deferred wakeup level must be done from a safe wakeup point. Currently those sites are: * ->nocb_timer * user/idle/guest entry * CPU down * softirq/rcuc All of these sites perform the wake up for both RCU_NOCB_WAKE and RCU_NOCB_WAKE_FORCE. In order to merge ->nocb_timer and ->nocb_bypass_timer together, we plan to add a new RCU_NOCB_WAKE_BYPASS that really should be deferred until a timer fires so that we don't wake up the NOCB-gp kthread too early. To prepare for that, this commit specifies the per-callsite wakeup level/limit. Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> [ paulmck: Fix non-NOCB rcu_nocb_need_deferred_wakeup() definition. ] Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Make RCU priority boosting work on single-CPU rcu_node structuresPaul E. McKenney1-1/+1
When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Add quiescent states and boost states to show_rcu_gp_kthreads() outputPaul E. McKenney1-0/+1
This commit adds each rcu_node structure's ->qsmask and "bBEG" output indicating whether: (1) There is a boost kthread, (2) A reader needs to be (or is in the process of being) boosted, (3) A reader is blocking an expedited grace period, and (4) A reader is blocking a normal grace period. This helps diagnose RCU priority boosting failures. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu/nocb: Use the rcuog CPU's ->nocb_timerFrederic Weisbecker1-1/+0
Currently each CPU has its own ->nocb_timer queued when the nocb_gp wakeup must be deferred. This approach has many drawbacks, compared to a solution based on a single timer per NOCB group: * There are a lot of timers to maintain. * The per-rdp ->nocb_lock must be held to queue and cancel the timer and this lock can already be heavily contended. * One timer firing doesn't cancel the other timers in the same group: - These other timers can thus cause spurious wakeups - Each rdp that queued a timer must lock both ->nocb_lock and then ->nocb_gp_lock upon exit from the kernel to idle/user/guest mode. * We can't cancel all of them if we detect an unflushed bypass in nocb_gp_wait(). In fact currently we only ever cancel the ->nocb_timer of the leader group. * The leader group's nocb_timer is cancelled without locking ->nocb_lock in nocb_gp_wait(). This currently appears to be safe but is an accident waiting to happen. * Since the timer acquires ->nocb_lock, it requires extra care in the NOCB (de-)offloading process, requiring that it be either enabled or disabled and then flushed. This commit instead uses the rcuog kthread's CPU's ->nocb_timer instead. It is protected by nocb_gp_lock, which is _way_ less contended and remains so even after this change. As a matter of fact, the nocb_timer almost never fires and the deferred wakeup is mostly carried out upon idle/user/guest entry. Now the early check performed at this point in do_nocb_deferred_wakeup() is done on rdp_gp->nocb_defer_wakeup, which is of course racy. However, this raciness is harmless because we only need the guarantee that the timer is queued if we were the last one to queue it. Any other situation (another CPU has queued it and we either see it or not) is fine. This solves all the issues listed above. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-02-21Merge tag 'sched-core-2021-02-17' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Core scheduler updates: - Add CONFIG_PREEMPT_DYNAMIC: this in its current form adds the preempt=none/voluntary/full boot options (default: full), to allow distros to build a PREEMPT kernel but fall back to close to PREEMPT_VOLUNTARY (or PREEMPT_NONE) runtime scheduling behavior via a boot time selection. There's also the /debug/sched_debug switch to do this runtime. This feature is implemented via runtime patching (a new variant of static calls). The scope of the runtime patching can be best reviewed by looking at the sched_dynamic_update() function in kernel/sched/core.c. ( Note that the dynamic none/voluntary mode isn't 100% identical, for example preempt-RCU is available in all cases, plus the preempt count is maintained in all models, which has runtime overhead even with the code patching. ) The PREEMPT_VOLUNTARY/PREEMPT_NONE models, used by the vast majority of distributions, are supposed to be unaffected. - Fix ignored rescheduling after rcu_eqs_enter(). This is a bug that was found via rcutorture triggering a hang. The bug is that rcu_idle_enter() may wake up a NOCB kthread, but this happens after the last generic need_resched() check. Some cpuidle drivers fix it by chance but many others don't. In true 2020 fashion the original bug fix has grown into a 5-patch scheduler/RCU fix series plus another 16 RCU patches to address the underlying issue of missed preemption events. These are the initial fixes that should fix current incarnations of the bug. - Clean up rbtree usage in the scheduler, by providing & using the following consistent set of rbtree APIs: partial-order; less() based: - rb_add(): add a new entry to the rbtree - rb_add_cached(): like rb_add(), but for a rb_root_cached total-order; cmp() based: - rb_find(): find an entry in an rbtree - rb_find_add(): find an entry, and add if not found - rb_find_first(): find the first (leftmost) matching entry - rb_next_match(): continue from rb_find_first() - rb_for_each(): iterate a sub-tree using the previous two - Improve the SMP/NUMA load-balancer: scan for an idle sibling in a single pass. This is a 4-commit series where each commit improves one aspect of the idle sibling scan logic. - Improve the cpufreq cooling driver by getting the effective CPU utilization metrics from the scheduler - Improve the fair scheduler's active load-balancing logic by reducing the number of active LB attempts & lengthen the load-balancing interval. This improves stress-ng mmapfork performance. - Fix CFS's estimated utilization (util_est) calculation bug that can result in too high utilization values Misc updates & fixes: - Fix the HRTICK reprogramming & optimization feature - Fix SCHED_SOFTIRQ raising race & warning in the CPU offlining code - Reduce dl_add_task_root_domain() overhead - Fix uprobes refcount bug - Process pending softirqs in flush_smp_call_function_from_idle() - Clean up task priority related defines, remove *USER_*PRIO and USER_PRIO() - Simplify the sched_init_numa() deduplication sort - Documentation updates - Fix EAS bug in update_misfit_status(), which degraded the quality of energy-balancing - Smaller cleanups" * tag 'sched-core-2021-02-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits) sched,x86: Allow !PREEMPT_DYNAMIC entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point entry: Explicitly flush pending rcuog wakeup before last rescheduling point rcu/nocb: Trigger self-IPI on late deferred wake up before user resume rcu/nocb: Perform deferred wake up before last idle's need_resched() check rcu: Pull deferred rcuog wake up to rcu_eqs_enter() callers sched/features: Distinguish between NORMAL and DEADLINE hrtick sched/features: Fix hrtick reprogramming sched/deadline: Reduce rq lock contention in dl_add_task_root_domain() uprobes: (Re)add missing get_uprobe() in __find_uprobe() smp: Process pending softirqs in flush_smp_call_function_from_idle() sched: Harden PREEMPT_DYNAMIC static_call: Allow module use without exposing static_call_key sched: Add /debug/sched_preempt preempt/dynamic: Support dynamic preempt with preempt= boot option preempt/dynamic: Provide irqentry_exit_cond_resched() static call preempt/dynamic: Provide preempt_schedule[_notrace]() static calls preempt/dynamic: Provide cond_resched() and might_resched() static calls preempt: Introduce CONFIG_PREEMPT_DYNAMIC static_call: Provide DEFINE_STATIC_CALL_RET0() ...
2021-02-17rcu/nocb: Trigger self-IPI on late deferred wake up before user resumeFrederic Weisbecker1-1/+1
Entering RCU idle mode may cause a deferred wake up of an RCU NOCB_GP kthread (rcuog) to be serviced. Unfortunately the call to rcu_user_enter() is already past the last rescheduling opportunity before we resume to userspace or to guest mode. We may escape there with the woken task ignored. The ultimate resort to fix every callsites is to trigger a self-IPI (nohz_full depends on arch to implement arch_irq_work_raise()) that will trigger a reschedule on IRQ tail or guest exit. Eventually every site that want a saner treatment will need to carefully place a call to rcu_nocb_flush_deferred_wakeup() before the last explicit need_resched() check upon resume. Fixes: 96d3fd0d315a (rcu: Break call_rcu() deadlock involving scheduler and perf) Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20210131230548.32970-4-frederic@kernel.org
2021-01-07rcu/nocb: Shutdown nocb timer on de-offloadingFrederic Weisbecker1-0/+1
This commit ensures that the nocb timer is shut down before reaching the final de-offloaded state. The key goal is to prevent the timer handler from manipulating the callbacks without the protection of the nocb locks. Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Thomas Gleixner <tglx@linutronix.de> Inspired-by: Paul E. McKenney <paulmck@kernel.org> Tested-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>