summaryrefslogtreecommitdiff
path: root/rust/kernel/init.rs
AgeCommit message (Collapse)AuthorFilesLines
2023-10-05rust: kernel: remove `#[allow(clippy::new_ret_no_self)]`Gary Guo1-10/+10
Clippy triggered a false positive on its `new_ret_no_self` lint when using the `pin_init!` macro. Since Rust 1.67.0, that does not happen anymore, since Clippy learnt to not warn about `-> impl Trait<Self>` [1][2]. The kernel nowadays uses Rust 1.72.1, thus remove the `#[allow]`. Signed-off-by: Gary Guo <gary@garyguo.net> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Finn Behrens <me@kloenk.dev> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://github.com/rust-lang/rust-clippy/issues/7344 [1] Link: https://github.com/rust-lang/rust-clippy/pull/9733 [2] Link: https://lore.kernel.org/r/20230923024707.47610-1-gary@garyguo.net [ Reworded slightly and added a couple `Link`s. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-29Merge tag 'rust-6.6' of https://github.com/Rust-for-Linux/linuxLinus Torvalds1-371/+275
Pull rust updates from Miguel Ojeda: "In terms of lines, most changes this time are on the pinned-init API and infrastructure. While we have a Rust version upgrade, and thus a bunch of changes from the vendored 'alloc' crate as usual, this time those do not account for many lines. Toolchain and infrastructure: - Upgrade to Rust 1.71.1. This is the second such upgrade, which is a smaller jump compared to the last time. This version allows us to remove the '__rust_*' allocator functions -- the compiler now generates them as expected, thus now our 'KernelAllocator' is used. It also introduces the 'offset_of!' macro in the standard library (as an unstable feature) which we will need soon. So far, we were using a declarative macro as a prerequisite in some not-yet-landed patch series, which did not support sub-fields (i.e. nested structs): #[repr(C)] struct S { a: u16, b: (u8, u8), } assert_eq!(offset_of!(S, b.1), 3); - Upgrade to bindgen 0.65.1. This is the first time we upgrade its version. Given it is a fairly big jump, it comes with a fair number of improvements/changes that affect us, such as a fix needed to support LLVM 16 as well as proper support for '__noreturn' C functions, which are now mapped to return the '!' type in Rust: void __noreturn f(void); // C pub fn f() -> !; // Rust - 'scripts/rust_is_available.sh' improvements and fixes. This series takes care of all the issues known so far and adds a few new checks to cover for even more cases, plus adds some more help texts. All this together will hopefully make problematic setups easier to identify and to be solved by users building the kernel. In addition, it adds a test suite which covers all branches of the shell script, as well as tests for the issues found so far. - Support rust-analyzer for out-of-tree modules too. - Give 'cfg's to rust-analyzer for the 'core' and 'alloc' crates. - Drop 'scripts/is_rust_module.sh' since it is not needed anymore. Macros crate: - New 'paste!' proc macro. This macro is a more flexible version of 'concat_idents!': it allows the resulting identifier to be used to declare new items and it allows to transform the identifiers before concatenating them, e.g. let x_1 = 42; paste!(let [<x _2>] = [<x _1>];); assert!(x_1 == x_2); The macro is then used for several of the pinned-init API changes in this pull. Pinned-init API: - Make '#[pin_data]' compatible with conditional compilation of fields, allowing to write code like: #[pin_data] pub struct Foo { #[cfg(CONFIG_BAR)] a: Bar, #[cfg(not(CONFIG_BAR))] a: Baz, } - New '#[derive(Zeroable)]' proc macro for the 'Zeroable' trait, which allows 'unsafe' implementations for structs where every field implements the 'Zeroable' trait, e.g.: #[derive(Zeroable)] pub struct DriverData { id: i64, buf_ptr: *mut u8, len: usize, } - Add '..Zeroable::zeroed()' syntax to the 'pin_init!' macro for zeroing all other fields, e.g.: pin_init!(Buf { buf: [1; 64], ..Zeroable::zeroed() }); - New '{,pin_}init_array_from_fn()' functions to create array initializers given a generator function, e.g.: let b: Box<[usize; 1_000]> = Box::init::<Error>( init_array_from_fn(|i| i) ).unwrap(); assert_eq!(b.len(), 1_000); assert_eq!(b[123], 123); - New '{,pin_}chain' methods for '{,Pin}Init<T, E>' that allow to execute a closure on the value directly after initialization, e.g.: let foo = init!(Foo { buf <- init::zeroed() }).chain(|foo| { foo.setup(); Ok(()) }); - Support arbitrary paths in init macros, instead of just identifiers and generic types. - Implement the 'Zeroable' trait for the 'UnsafeCell<T>' and 'Opaque<T>' types. - Make initializer values inaccessible after initialization. - Make guards in the init macros hygienic. 'allocator' module: - Use 'krealloc_aligned()' in 'KernelAllocator::alloc' preventing misaligned allocations when the Rust 1.71.1 upgrade is applied later in this pull. The equivalent fix for the previous compiler version (where 'KernelAllocator' is not yet used) was merged into 6.5 already, which added the 'krealloc_aligned()' function used here. - Implement 'KernelAllocator::{realloc, alloc_zeroed}' for performance, using 'krealloc_aligned()' too, which forwards the call to the C API. 'types' module: - Make 'Opaque' be '!Unpin', removing the need to add a 'PhantomPinned' field to Rust structs that contain C structs which must not be moved. - Make 'Opaque' use 'UnsafeCell' as the outer type, rather than inner. Documentation: - Suggest obtaining the source code of the Rust's 'core' library using the tarball instead of the repository. MAINTAINERS: - Andreas and Alice, from Samsung and Google respectively, are joining as reviewers of the "RUST" entry. As well as a few other minor changes and cleanups" * tag 'rust-6.6' of https://github.com/Rust-for-Linux/linux: (42 commits) rust: init: update expanded macro explanation rust: init: add `{pin_}chain` functions to `{Pin}Init<T, E>` rust: init: make `PinInit<T, E>` a supertrait of `Init<T, E>` rust: init: implement `Zeroable` for `UnsafeCell<T>` and `Opaque<T>` rust: init: add support for arbitrary paths in init macros rust: init: add functions to create array initializers rust: init: add `..Zeroable::zeroed()` syntax for zeroing all missing fields rust: init: make initializer values inaccessible after initializing rust: init: wrap type checking struct initializers in a closure rust: init: make guards in the init macros hygienic rust: add derive macro for `Zeroable` rust: init: make `#[pin_data]` compatible with conditional compilation of fields rust: init: consolidate init macros docs: rust: clarify what 'rustup override' does docs: rust: update instructions for obtaining 'core' source docs: rust: add command line to rust-analyzer section scripts: generate_rust_analyzer: provide `cfg`s for `core` and `alloc` rust: bindgen: upgrade to 0.65.1 rust: enable `no_mangle_with_rust_abi` Clippy lint rust: upgrade to Rust 1.71.1 ...
2023-08-21rust: init: add `{pin_}chain` functions to `{Pin}Init<T, E>`Benno Lossin1-0/+142
The `{pin_}chain` functions extend an initializer: it not only initializes the value, but also executes a closure taking a reference to the initialized value. This allows to do something with a value directly after initialization. Suggested-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20230814084602.25699-13-benno.lossin@proton.me [ Cleaned a few trivial nits. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: make `PinInit<T, E>` a supertrait of `Init<T, E>`Benno Lossin1-13/+8
Remove the blanket implementation of `PinInit<T, E> for I where I: Init<T, E>`. This blanket implementation prevented custom types that implement `PinInit`. Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-12-benno.lossin@proton.me Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: implement `Zeroable` for `UnsafeCell<T>` and `Opaque<T>`Benno Lossin1-1/+7
`UnsafeCell<T>` and `T` have the same layout so if `T` is `Zeroable` then so should `UnsafeCell<T>` be. This allows using the derive macro for `Zeroable` on types that contain an `UnsafeCell<T>`. Since `Opaque<T>` contains a `MaybeUninit<T>`, all bytes zero is a valid bit pattern for that type. Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-11-benno.lossin@proton.me Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: add functions to create array initializersBenno Lossin1-0/+88
Add two functions `pin_init_array_from_fn` and `init_array_from_fn` that take a function that generates initializers for `T` from `usize`, the added functions then return an initializer for `[T; N]` where every element is initialized by an element returned from the generator function. Suggested-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-9-benno.lossin@proton.me [ Cleaned a couple trivial nits. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: add `..Zeroable::zeroed()` syntax for zeroing all missing fieldsBenno Lossin1-1/+15
Add the struct update syntax to the init macros, but only for `..Zeroable::zeroed()`. Adding this at the end of the struct initializer allows one to omit fields from the initializer, these fields will be initialized with 0x00 set to every byte. Only types that implement the `Zeroable` trait can utilize this. Suggested-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-8-benno.lossin@proton.me [ Rebased on `rust-next` and cleaned a few trivial nits. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: make guards in the init macros hygienicBenno Lossin1-1/+0
Use hygienic identifiers for the guards instead of the field names. This makes the init macros feel more like normal struct initializers, since assigning identifiers with the name of a field does not create conflicts. Also change the internals of the guards, no need to make the `forget` function `unsafe`, since users cannot access the guards anyways. Now the guards are carried directly on the stack and have no extra `Cell<bool>` field that marks if they have been forgotten or not, instead they are just forgotten via `mem::forget`. Suggested-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-5-benno.lossin@proton.me [ Cleaned a few trivial nits. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-08-21rust: init: consolidate init macrosBenno Lossin1-364/+24
Merges the implementations of `try_init!` and `try_pin_init!`. These two macros are very similar, but use different traits. The new macro `__init_internal!` that is now the implementation for both takes these traits as parameters. This change does not affect any users, as no public API has been changed, but it should simplify maintaining the init macros. Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Link: https://lore.kernel.org/r/20230814084602.25699-2-benno.lossin@proton.me [ Cleaned a couple trivial nits. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-07-19rust: init: make doctests compilable/testableMiguel Ojeda1-9/+17
Rust documentation tests are going to be build/run-tested with the KUnit integration added in a future patch, thus update them to make them compilable/testable so that we may start enforcing it. Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Reviewed-by: David Gow <davidgow@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2023-05-31rust: upgrade to Rust 1.68.2Miguel Ojeda1-0/+5
This is the first upgrade to the Rust toolchain since the initial Rust merge, from 1.62.0 to 1.68.2 (i.e. the latest). # Context The kernel currently supports only a single Rust version [1] (rather than a minimum) given our usage of some "unstable" Rust features [2] which do not promise backwards compatibility. The goal is to reach a point where we can declare a minimum version for the toolchain. For instance, by waiting for some of the features to be stabilized. Therefore, the first minimum Rust version that the kernel will support is "in the future". # Upgrade policy Given we will eventually need to reach that minimum version, it would be ideal to upgrade the compiler from time to time to be as close as possible to that goal and find any issues sooner. In the extreme, we could upgrade as soon as a new Rust release is out. Of course, upgrading so often is in stark contrast to what one normally would need for GCC and LLVM, especially given the release schedule: 6 weeks for Rust vs. half a year for LLVM and a year for GCC. Having said that, there is no particular advantage to updating slowly either: kernel developers in "stable" distributions are unlikely to be able to use their distribution-provided Rust toolchain for the kernel anyway [3]. Instead, by routinely upgrading to the latest instead, kernel developers using Linux distributions that track the latest Rust release may be able to use those rather than Rust-provided ones, especially if their package manager allows to pin / hold back / downgrade the version for some days during windows where the version may not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide and track the latest version of Rust as they get released every 6 weeks. Then, when the minimum version is reached, we will stop upgrading and decide how wide the window of support will be. For instance, a year of Rust versions. We will probably want to start small, and then widen it over time, just like the kernel did originally for LLVM, see commit 3519c4d6e08e ("Documentation: add minimum clang/llvm version"). # Unstable features stabilized This upgrade allows us to remove the following unstable features since they were stabilized: - `feature(explicit_generic_args_with_impl_trait)` (1.63). - `feature(core_ffi_c)` (1.64). - `feature(generic_associated_types)` (1.65). - `feature(const_ptr_offset_from)` (1.65, *). - `feature(bench_black_box)` (1.66, *). - `feature(pin_macro)` (1.68). The ones marked with `*` apply only to our old `rust` branch, not mainline yet, i.e. only for code that we may potentially upstream. With this patch applied, the only unstable feature allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. # Other required changes Since 1.63, `rustdoc` triggers the `broken_intra_doc_links` lint for links pointing to exported (`#[macro_export]`) `macro_rules`. An issue was opened upstream [4], but it turns out it is intended behavior. For the moment, just add an explicit reference for each link. Later we can revisit this if `rustdoc` removes the compatibility measure. Nevertheless, this was helpful to discover a link that was pointing to the wrong place unintentionally. Since that one was actually wrong, it is fixed in a previous commit independently. Another change was the addition of `cfg(no_rc)` and `cfg(no_sync)` in upstream [5], thus remove our original changes for that. Similarly, upstream now tests that it compiles successfully with `#[cfg(not(no_global_oom_handling))]` [6], which allow us to get rid of some changes, such as an `#[allow(dead_code)]`. In addition, remove another `#[allow(dead_code)]` due to new uses within the standard library. Finally, add `try_extend_trusted` and move the code in `spec_extend.rs` since upstream moved it for the infallible version. # `alloc` upgrade and reviewing There are a large amount of changes, but the vast majority of them are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: https://github.com/Rust-for-Linux/linux/issues/2 [2] Link: https://lore.kernel.org/rust-for-linux/CANiq72mT3bVDKdHgaea-6WiZazd8Mvurqmqegbe5JZxVyLR8Yg@mail.gmail.com/ [3] Link: https://github.com/rust-lang/rust/issues/106142 [4] Link: https://github.com/rust-lang/rust/pull/89891 [5] Link: https://github.com/rust-lang/rust/pull/98652 [6] Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-By: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Tested-by: Ariel Miculas <amiculas@cisco.com> Tested-by: David Gow <davidgow@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20230418214347.324156-4-ojeda@kernel.org [ Removed `feature(core_ffi_c)` from `uapi` ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-21rust: init: broaden the blanket impl of `Init`Benno Lossin1-2/+2
This makes it possible to use `T` as a `impl Init<T, E>` for every error type `E` instead of just `Infallible`. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Link: https://lore.kernel.org/r/20230413100157.740697-1-benno.lossin@proton.me Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: types: add `Opaque::ffi_init`Benno Lossin1-0/+9
This function allows to easily initialize `Opaque` with the pin-init API. `Opaque::ffi_init` takes a closure and returns a pin-initializer. This pin-initiailizer calls the given closure with a pointer to the inner `T`. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20230408122429.1103522-14-y86-dev@protonmail.com [ Fixed typo. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: init: add `Zeroable` trait and `init::zeroed` functionBenno Lossin1-2/+95
Add the `Zeroable` trait which marks types that can be initialized by writing `0x00` to every byte of the type. Also add the `init::zeroed` function that creates an initializer for a `Zeroable` type that writes `0x00` to every byte. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-12-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: init: add `stack_pin_init!` macroBenno Lossin1-6/+134
The `stack_pin_init!` macro allows pin-initializing a value on the stack. It accepts a `impl PinInit<T, E>` to initialize a `T`. It allows propagating any errors via `?` or handling it normally via `match`. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Gary Guo <gary@garyguo.net> Link: https://lore.kernel.org/r/20230408122429.1103522-11-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: init: add `PinnedDrop` trait and macrosBenno Lossin1-0/+111
The `PinnedDrop` trait that facilitates destruction of pinned types. It has to be implemented via the `#[pinned_drop]` macro, since the `drop` function should not be called by normal code, only by other destructors. It also only works on structs that are annotated with `#[pin_data(PinnedDrop)]`. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-10-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: init/sync: add `InPlaceInit` trait to pin-initialize smart pointersBenno Lossin1-13/+115
The `InPlaceInit` trait that provides two functions, for initializing using `PinInit<T, E>` and `Init<T>`. It is implemented by `Arc<T>`, `UniqueArc<T>` and `Box<T>`. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-9-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: init: add initialization macrosBenno Lossin1-5/+802
Add the following initializer macros: - `#[pin_data]` to annotate structurally pinned fields of structs, needed for `pin_init!` and `try_pin_init!` to select the correct initializer of fields. - `pin_init!` create a pin-initializer for a struct with the `Infallible` error type. - `try_pin_init!` create a pin-initializer for a struct with a custom error type (`kernel::error::Error` is the default). - `init!` create an in-place-initializer for a struct with the `Infallible` error type. - `try_init!` create an in-place-initializer for a struct with a custom error type (`kernel::error::Error` is the default). Also add their needed internal helper traits and structs. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-8-y86-dev@protonmail.com [ Fixed three typos. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: add pin-init API coreBenno Lossin1-0/+187
This API is used to facilitate safe pinned initialization of structs. It replaces cumbersome `unsafe` manual initialization with elegant safe macro invocations. Due to the size of this change it has been split into six commits: 1. This commit introducing the basic public interface: traits and functions to represent and create initializers. 2. Adds the `#[pin_data]`, `pin_init!`, `try_pin_init!`, `init!` and `try_init!` macros along with their internal types. 3. Adds the `InPlaceInit` trait that allows using an initializer to create an object inside of a `Box<T>` and other smart pointers. 4. Adds the `PinnedDrop` trait and adds macro support for it in the `#[pin_data]` macro. 5. Adds the `stack_pin_init!` macro allowing to pin-initialize a struct on the stack. 6. Adds the `Zeroable` trait and `init::zeroed` function to initialize types that have `0x00` in all bytes as a valid bit pattern. -- In this section the problem that the new pin-init API solves is outlined. This message describes the entirety of the API, not just the parts introduced in this commit. For a more granular explanation and additional information on pinning and this issue, view [1]. Pinning is Rust's way of enforcing the address stability of a value. When a value gets pinned it will be impossible for safe code to move it to another location. This is done by wrapping pointers to said object with `Pin<P>`. This wrapper prevents safe code from creating mutable references to the object, preventing mutable access, which is needed to move the value. `Pin<P>` provides `unsafe` functions to circumvent this and allow modifications regardless. It is then the programmer's responsibility to uphold the pinning guarantee. Many kernel data structures require a stable address, because there are foreign pointers to them which would get invalidated by moving the structure. Since these data structures are usually embedded in structs to use them, this pinning property propagates to the container struct. Resulting in most structs in both Rust and C code needing to be pinned. So if we want to have a `mutex` field in a Rust struct, this struct also needs to be pinned, because a `mutex` contains a `list_head`. Additionally initializing a `list_head` requires already having the final memory location available, because it is initialized by pointing it to itself. But this presents another challenge in Rust: values have to be initialized at all times. There is the `MaybeUninit<T>` wrapper type, which allows handling uninitialized memory, but this requires using the `unsafe` raw pointers and a casting the type to the initialized variant. This problem gets exacerbated when considering encapsulation and the normal safety requirements of Rust code. The fields of the Rust `Mutex<T>` should not be accessible to normal driver code. After all if anyone can modify the fields, there is no way to ensure the invariants of the `Mutex<T>` are upheld. But if the fields are inaccessible, then initialization of a `Mutex<T>` needs to be somehow achieved via a function or a macro. Because the `Mutex<T>` must be pinned in memory, the function cannot return it by value. It also cannot allocate a `Box` to put the `Mutex<T>` into, because that is an unnecessary allocation and indirection which would hurt performance. The solution in the rust tree (e.g. this commit: [2]) that is replaced by this API is to split this function into two parts: 1. A `new` function that returns a partially initialized `Mutex<T>`, 2. An `init` function that requires the `Mutex<T>` to be pinned and that fully initializes the `Mutex<T>`. Both of these functions have to be marked `unsafe`, since a call to `new` needs to be accompanied with a call to `init`, otherwise using the `Mutex<T>` could result in UB. And because calling `init` twice also is not safe. While `Mutex<T>` initialization cannot fail, other structs might also have to allocate memory, which would result in conditional successful initialization requiring even more manual accommodation work. Combine this with the problem of pin-projections -- the way of accessing fields of a pinned struct -- which also have an `unsafe` API, pinned initialization is riddled with `unsafe` resulting in very poor ergonomics. Not only that, but also having to call two functions possibly multiple lines apart makes it very easy to forget it outright or during refactoring. Here is an example of the current way of initializing a struct with two synchronization primitives (see [3] for the full example): struct SharedState { state_changed: CondVar, inner: Mutex<SharedStateInner>, } impl SharedState { fn try_new() -> Result<Arc<Self>> { let mut state = Pin::from(UniqueArc::try_new(Self { // SAFETY: `condvar_init!` is called below. state_changed: unsafe { CondVar::new() }, // SAFETY: `mutex_init!` is called below. inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) }, })?); // SAFETY: `state_changed` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.state_changed) }; kernel::condvar_init!(pinned, "SharedState::state_changed"); // SAFETY: `inner` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.inner) }; kernel::mutex_init!(pinned, "SharedState::inner"); Ok(state.into()) } } The pin-init API of this patch solves this issue by providing a comprehensive solution comprised of macros and traits. Here is the example from above using the pin-init API: #[pin_data] struct SharedState { #[pin] state_changed: CondVar, #[pin] inner: Mutex<SharedStateInner>, } impl SharedState { fn new() -> impl PinInit<Self> { pin_init!(Self { state_changed <- new_condvar!("SharedState::state_changed"), inner <- new_mutex!( SharedStateInner { token_count: 0 }, "SharedState::inner", ), }) } } Notably the way the macro is used here requires no `unsafe` and thus comes with the usual Rust promise of safe code not introducing any memory violations. Additionally it is now up to the caller of `new()` to decide the memory location of the `SharedState`. They can choose at the moment `Arc<T>`, `Box<T>` or the stack. -- The API has the following architecture: 1. Initializer traits `PinInit<T, E>` and `Init<T, E>` that act like closures. 2. Macros to create these initializer traits safely. 3. Functions to allow manually writing initializers. The initializers (an `impl PinInit<T, E>`) receive a raw pointer pointing to uninitialized memory and their job is to fully initialize a `T` at that location. If initialization fails, they return an error (`E`) by value. This way of initializing cannot be safely exposed to the user, since it relies upon these properties outside of the control of the trait: - the memory location (slot) needs to be valid memory, - if initialization fails, the slot should not be read from, - the value in the slot should be pinned, so it cannot move and the memory cannot be deallocated until the value is dropped. This is why using an initializer is facilitated by another trait that ensures these requirements. These initializers can be created manually by just supplying a closure that fulfills the same safety requirements as `PinInit<T, E>`. But this is an `unsafe` operation. To allow safe initializer creation, the `pin_init!` is provided along with three other variants: `try_pin_init!`, `try_init!` and `init!`. These take a modified struct initializer as a parameter and generate a closure that initializes the fields in sequence. The macros take great care in upholding the safety requirements: - A shadowed struct type is used as the return type of the closure instead of `()`. This is to prevent early returns, as these would prevent full initialization. - To ensure every field is only initialized once, a normal struct initializer is placed in unreachable code. The type checker will emit errors if a field is missing or specified multiple times. - When initializing a field fails, the whole initializer will fail and automatically drop fields that have been initialized earlier. - Only the correct initializer type is allowed for unpinned fields. You cannot use a `impl PinInit<T, E>` to initialize a structurally not pinned field. To ensure the last point, an additional macro `#[pin_data]` is needed. This macro annotates the struct itself and the user specifies structurally pinned and not pinned fields. Because dropping a pinned struct is also not allowed to break the pinning invariants, another macro attribute `#[pinned_drop]` is needed. This macro is introduced in a following commit. These two macros also have mechanisms to ensure the overall safety of the API. Additionally, they utilize a combined proc-macro, declarative macro design: first a proc-macro enables the outer attribute syntax `#[...]` and does some important pre-parsing. Notably this prepares the generics such that the declarative macro can handle them using token trees. Then the actual parsing of the structure and the emission of code is handled by a declarative macro. For pin-projections the crates `pin-project` [4] and `pin-project-lite` [5] had been considered, but were ultimately rejected: - `pin-project` depends on `syn` [6] which is a very big dependency, around 50k lines of code. - `pin-project-lite` is a more reasonable 5k lines of code, but contains a very complex declarative macro to parse generics. On top of that it would require modification that would need to be maintained independently. Link: https://rust-for-linux.com/the-safe-pinned-initialization-problem [1] Link: https://github.com/Rust-for-Linux/linux/tree/0a04dc4ddd671efb87eef54dde0fb38e9074f4be [2] Link: https://github.com/Rust-for-Linux/linux/blob/f509ede33fc10a07eba3da14aa00302bd4b5dddd/samples/rust/rust_miscdev.rs [3] Link: https://crates.io/crates/pin-project [4] Link: https://crates.io/crates/pin-project-lite [5] Link: https://crates.io/crates/syn [6] Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-7-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>